1,218 research outputs found

    Subsynchronous instability of a geared centrifugal compressor of overhung design

    Get PDF
    The original design analysis and shop test data are presented for a three stage (poster) air compressor with impellers mounted on the extensions of a twin pinion gear, and driven by an 8000 hp synchronous motor. Also included are field test data, subsequent rotor dynamics analysis, modifications, and final rotor behavior. A subsynchronous instability existed on a geared, overhung rotor. State-of-the-art rotor dynamics analysis techniques provided a reasonable analytical model of the rotor. A bearing modification arrived at analytically eliminated the instability

    Open cell fire-resistant foam

    Get PDF
    Candidate polyphosphazene polymers were investigated to develop a fire-resistant, thermally stable and flexible open cell foam. The copolymers were prepared in several mole ratios of the substituent side chains and a (nominal) 40:60 derivative was selected for formulation studies. Synthesis of the polymers involved solution by polymerization of hexachlorophosphazene to soluble high molecular weight poly(dichlorophosphazene), followed by derivatization of the resultant polymer in a normal fashion to give polymers in high yield and high molecular weight. Small amounts of a cure site were incorporated into the polymer for vulcanization purposes. The poly(aryloxyphosphazenes) exhibited good thermal stability and the first polymer mentioned above exhibited the best thermal behavior of all the candidate polymers studied

    MC2^2: Multi-wavelength and dynamical analysis of the merging galaxy cluster ZwCl 0008.8+5215: An older and less massive Bullet Cluster

    Get PDF
    We analyze a rich dataset including Subaru/SuprimeCam, HST/ACS and WFC3, Keck/DEIMOS, Chandra/ACIS-I, and JVLA/C and D array for the merging galaxy cluster ZwCl 0008.8+5215. With a joint Subaru/HST weak gravitational lensing analysis, we identify two dominant subclusters and estimate the masses to be M200=5.7−1.8+2.8×1014 M⊙_{200}=\text{5.7}^{+\text{2.8}}_{-\text{1.8}}\times\text{10}^{\text{14}}\,\text{M}_{\odot} and 1.2−0.6+1.4×1014^{+\text{1.4}}_{-\text{0.6}}\times10^{14} M⊙_{\odot}. We estimate the projected separation between the two subclusters to be 924−206+243^{+\text{243}}_{-\text{206}} kpc. We perform a clustering analysis on confirmed cluster member galaxies and estimate the line of sight velocity difference between the two subclusters to be 92±\pm164 km s−1^{-\text{1}}. We further motivate, discuss, and analyze the merger scenario through an analysis of the 42 ks of Chandra/ACIS-I and JVLA/C and D polarization data. The X-ray surface brightness profile reveals a remnant core reminiscent of the Bullet Cluster. The X-ray luminosity in the 0.5-7.0 keV band is 1.7±\pm0.1×\times1044^{\text{44}} erg s−1^{-\text{1}} and the X-ray temperature is 4.90±\pm0.13 keV. The radio relics are polarized up to 40%\%. We implement a Monte Carlo dynamical analysis and estimate the merger velocity at pericenter to be 1800−300+400^{+\text{400}}_{-\text{300}} km s−1^{-\text{1}}. ZwCl 0008.8+5215 is a low-mass version of the Bullet Cluster and therefore may prove useful in testing alternative models of dark matter. We do not find significant offsets between dark matter and galaxies, as the uncertainties are large with the current lensing data. Furthermore, in the east, the BCG is offset from other luminous cluster galaxies, which poses a puzzle for defining dark matter -- galaxy offsets.Comment: 22 pages, 19 figures, accepted for publication in the Astrophysical Journal on March 13, 201

    Cosmic Shear Results from the Deep Lens Survey - II: Full Cosmological Parameter Constraints from Tomography

    Full text link
    We present a tomographic cosmic shear study from the Deep Lens Survey (DLS), which, providing a limiting magnitude r_{lim}~27 (5 sigma), is designed as a pre-cursor Large Synoptic Survey Telescope (LSST) survey with an emphasis on depth. Using five tomographic redshift bins, we study their auto- and cross-correlations to constrain cosmological parameters. We use a luminosity-dependent nonlinear model to account for the astrophysical systematics originating from intrinsic alignments of galaxy shapes. We find that the cosmological leverage of the DLS is among the highest among existing >10 sq. deg cosmic shear surveys. Combining the DLS tomography with the 9-year results of the Wilkinson Microwave Anisotropy Probe (WMAP9) gives Omega_m=0.293_{-0.014}^{+0.012}, sigma_8=0.833_{-0.018}^{+0.011}, H_0=68.6_{-1.2}^{+1.4} km/s/Mpc, and Omega_b=0.0475+-0.0012 for LCDM, reducing the uncertainties of the WMAP9-only constraints by ~50%. When we do not assume flatness for LCDM, we obtain the curvature constraint Omega_k=-0.010_{-0.015}^{+0.013} from the DLS+WMAP9 combination, which however is not well constrained when WMAP9 is used alone. The dark energy equation of state parameter w is tightly constrained when Baryonic Acoustic Oscillation (BAO) data are added, yielding w=-1.02_{-0.09}^{+0.10} with the DLS+WMAP9+BAO joint probe. The addition of supernova constraints further tightens the parameter to w=-1.03+-0.03. Our joint constraints are fully consistent with the final Planck results and also the predictions of a LCDM universe.Comment: Accepted for publication in Ap

    MC2^2: Dynamical Analysis of the Merging Galaxy Cluster MACS J1149.5+2223

    Full text link
    We present an analysis of the merging cluster MACS J1149.5+2223 using archival imaging from Subaru/Suprime-Cam and multi-object spectroscopy from Keck/DEIMOS and Gemini/GMOS. We employ two and three dimensional substructure tests and determine that MACS J1149.5+2223 is composed of two separate mergers between three subclusters occurring ∼\sim1 Gyr apart. The primary merger gives rise to elongated X-ray morphology and a radio relic in the southeast. The brightest cluster galaxy is a member of the northern subcluster of the primary merger. This subcluster is very massive (16.7−1.60+1.25×1014^{+\text{1.25}}_{-\text{1.60}}\times\text{10}^{\text{14}} M⊙_{\odot}). The southern subcluster is also very massive (10.8−3.54+3.37×1014^{+\text{3.37}}_{-\text{3.54}}\times\text{10}^{\text{14}} M⊙_{\odot}), yet it lacks an associated X-ray surface brightness peak, and it has been unidentified previously despite the detailed study of this \emph{Frontier Field} cluster. A secondary merger is occurring in the north along the line of sight with a third, less massive, subcluster (1.20−0.34+0.19×1014^{+\text{0.19}}_{-\text{0.34}}\times\text{10}^{\text{14}} M⊙_{\odot}). We perform a Monte Carlo dynamical analysis on the main merger and estimate a collision speed at pericenter of 2770−310+610^{+\text{610}}_{-\text{310}} km s−1^{-\text{1}}. We show the merger to be returning from apocenter with core passage occurring 1.16−0.25+0.50^{+\text{0.50}}_{-\text{0.25}} Gyr before the observed state. We identify the line of sight merging subcluster in a strong lensing analysis in the literature and show that it is likely bound to MACS J1149 despite having reached an extreme collision velocity of ∼\sim4000 km s−1^{-\text{1}}.Comment: 17 pages, 12 figure

    Wide-field weak lensing by RXJ1347-1145

    Full text link
    We present an analysis of weak lensing observations for RXJ1347-1145 over a 43' X 43' field taken in B and R filters on the Blanco 4m telescope at CTIO. RXJ1347-1145 is a massive cluster at redshift z=0.45. Using a population of galaxies with 20<R<26, we detect a weak lensing signal at the p<0.0005 level, finding best-fit parameters of \sigma_v=1400^{+130}_{-140} km s^{-1} for a singular isothermal sphere model and r_{200} = 3.5^{+0.8}_{-0.2} Mpc with c = 15^{+64}_{-10} for a NFW model in an \Omega_m = 0.3, \Omega_\Lambda = 0.7 cosmology. In addition, a mass to light ratio M/L_R =90 \pm 20 M_\odot / L_{R\odot} was determined. These values are consistent with the previous weak lensing study of RXJ1347--1145 by Fischer and Tyson, 1997, giving strong evidence that systemic bias was not introduced by the relatively small field of view in that study. Our best-fit parameter values are also consistent with recent X-ray studies by Allen et al, 2002 and Ettori et al, 2001, but are not consistent with recent optical velocity dispersion measurements by Cohen and Kneib, 2002.Comment: accepted to ApJ, tentative publication 10 May 2005, v624
    • …
    corecore