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INTRODUCTION

This paper presents the original design analysis and shop test data which

were obtained for this compressor. Also included are field test data, sub-

sequent rotor dynamics analysis, modifications, and final rotor behavior.

BASIC COMPRESSOR CHARACTERISTICS

The subject unit is a three-stage (poster) air compressor, with impellers

mounted on the extensions of a twin pinion gear, driven by an 8000-hp synchro-

nous motor. The motor speed is 1200 rpm, with speeds of 8057 rpm on the low-

speed pinion and 9400 rpm on the high-speed pinion. The compressor is rated at

approximately 40 000 acfm and an approximate discharge pressure of i00 psia

under normal summer conditions of temperature and humidity. Operation of the

process plant is basically constant weight flow at constant pressure.

At the time of design the compressor represented the highest horsepower

and largest volume for a three-poster design that had been built by Allis-

Chalmers. Four-poster designs had been built for higher horsepower levels using
the same frame size.

SUMMARY OF ORIGINAL ROTOR DESIGN METHODS

According to usual practice for a compressor of this type the aerodynamic

requirements were defined initially, thus establishing minimum pinion center

distances to allow for casing clearance. The gear vendor then designed the

gearing to satisfy power and ratio requirements in accordance with Allis-

Chalmers' specifications, which included data on pinion extension details.

After the pinion was designed to satisfy gearing and bearing loading require-

ments a rotor response evaluation of the pinions was performed.

At the time this compressor was designed, rotor analysis was limited to

undamped critical speed and synchronous unbalance response analysis, both as-

suming a circular orbit (isotropic bearing properties).

Details of speeds, horsepower, bearing types, and loading, as well as the

lubricant, are given in table i.

Figure 1 is a pseudo-undamped critical speed map for the low-speed pinion.

Because of unequal bearing properties the usual intersect point on this curve

is not appropriate. The stiffness for the bearings range from 5xlO 5 to

4x106 Ib/in. A similar pseudo-mode shape plot is also presented in figure 2
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for a stiffness of ixl06 ib/in. Figure 3 is a synchronous unbalance response
plot assumingunequal but constant bearing loadings with unbalance distribution
to excite the first mode. Assumption of constant bearing loading and direction
is not correct, as can be seen from figure 4; however, the program at that time
could not accommodatevariations of this type.

Figure 5 is an undampedcritical speed mapof the high-speed pinion with
part- and full-load bearing stiffnesses superimposed. Figures 6 and 7 are mode
shapes of the rotor at ixl06- and ixl07-1b/in bearing stiffnesses. This range
encompassesthe actual bearing stiffness. Figure 8 is a synchronous unbalance
response plot with combined unbalance to excite the first and second modes.
Basedon the rotor dynamics analysis the compressor design was deemedaccept-
able and proceeded through manufacture.

SHOPTESTING

The compressor was mechanically and aerodynamically tested. The first
stage was tested at atmospheric discharge conditions; therefore the low-speed
pinion was loaded to approximately 45%of design horsepower. The high-speed
pinion was tested with atmospheric inlet conditions and was loaded to approxi-
mately 35%of its rated load.

The compressor was equipped with radial proximity probes in the vertical
direction only. Vibration wasmonitored by using a digital vector filter and
real-time analyzer. The vibration spectrum for the low-speed pinion contained
synchronous and low-level two-per-revolution signals at 0.65 and 0.i mil, re-
spectively, for the impeller end probe and 0.3 and 0.i mil, respectively, for
the thrust bearing end probe. The vibration spectrum for the high-speed pinion
showeda synchronous componentof 0.2 mil at both pinion probes and was virtu-
ally free of all nonsynchronous components. The vibration signals were tape
recorded for quality assurance documentation. The compressor met mechanical
and aerodynamic requirements and was shipped.

FIELDPERFORMANCE

Shortly after startup the compressor exhibited overall vibration levels of
1.0 to 1.5 mils. It was observed that nearly 0.75 mil existed at slow roll.
Test tape recordings revaled that about 0.3 mil existed as electrical and mech-
anical runout when the unit was tested at the factory. The additional elec-
trical runout was attributed to magnetic fields induced by welding cables that
slung over the casing during installation.

During the early commissioning of the compressor the customer reported
sporadic vibration behavior of the low-speed rotor. At periods the overall
vibration level was around 1.5 mils and occasionally levels of 3 mils and great-
er were reported. Figure 9 reveals operating points where moderate and high
vibration conditions existed. A test was conducted with the compressor guide
vane fixed at 0° prewhirl. Test points were taken at flows from beyond the
rated point to close to the surge limit of the compressor. The high flow points
showedvery little subsynchronousvibration (<0.i mil); however, as the flow
was decreased the subsynchronouscomponentcontinued to increase until the sub-
synchronous componentwas approximately 1.5 mils, or 3 times the synchronous
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level of vibration. A point of interest is that two levels of subsynchronous
frequency appeared. Refer to figures I0 to 13, which depict the changing sub-
synchronous spectrum. It was apparent that a bounded subsynchronous instability
existed in the rotor.

ANALYSISOF FIELD DATA

Between the time when the compressor design was originally analyzed and
the time of the field tests in which subsynchronousvibration was found, con-
siderable improvementswere madeto Allis-Chalmers rotor dynamic analysis capa-
bilities (refs. 1 and 2). This finite-element method of analysis enabled us to
calculate undampedcritical speeds with unequal bearing forces. Input of bear-
ing forces to reflect external loading, such as gear reactions, was an added
capability. Synchronousunbalance response was upgraded to account for possi-
ble bearing asymmetry. Rotor stability calculations were improved and made
more convenient and less expensive. A pad assembly program was developed which
enabled the development of a full matrix to represent bearing stiffness and
damping for the stability analysis with a minimumof effort. Refer to figures
16 and 17, which reflect modeshape and response plots for the subject rotor
with these capabilities.

The low-speed pinion was modeled by using these programs to gain insight
into its base log decrement at operating conditions and subsequently to evalu-
ate proposed modifications. The rotor model included the addedweight of
shrunk-on parts without any additional stiffening effect of these parts. The
effective stiffness of the center section of the rotor, where significant dif-
ference in shaft diameters exists, was based on data presented in reference 5.
A horsepower level was chosen for analysis based on aerodynamic data for a test
point represented by figure 13. Bearing and gear manufacturer's quality re-
cords were procured. They revealed that the actual bearing diametral clearance
ranged from 0.0075 to 0.0093 inch with preload between 0.2 and 0.4, respec-
tively.

The modeled original configuration was analyzed without any calculated
destabilizing force at the impeller. No attempt was madeto makeallowances
for labyrinth seal effects or nebulous factors such as internal friction. This
analysis resulted in a relatively sizable value of log decrement (table 2 and
fig. 14). The frequency and modeshape were in good agreement with probe data
from field tests. Several other cases were analyzed and are summarizedhere.

Destabilizing Forces

It was assumedthat the primary cause of instability in the rotor was asso-
ciated with aerodynamic destabilizing forces. Several levels were analyzed
until a log decrement of 0.0 was obtained (fig. 18). As a point of reference
the destabilizing force was calculated according to references 4 and 8 per the
equation

T
Kxy =-Kyx = 2rh

where
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Kxy,Kyx aerodynamic destabilizing force represented as cross-coupled bear-
ing stiffness, Ib/in

T torque input to stage, in-lb

r impeller meanradius, in.

h blade height, in.

The computedvalue of the 0° guide vane instability (fig. 13) test point is
742.5 ib/in. The destabilizing value calculated to create a log decrement of
0.0 is approximately 16 000 ib/in, or 21.5 times the calculated value.

As a basic of comparison it was decided to use 16 000 ib/in for the re-
mainder of the analysis.

Rotation of Existing Bearings

It was decided to determine the effects of rotating the journal bearings
based on data presented in reference 6. An analysis was madefor loading
directly into the pivot and directly centered between the pivots. It was deter-
mined that rotation would be of little benefit. Refer to table 2 for summary
details.

Increased Bearing Width

The effect of increased bearing width (i.0 L/D) was analyzed to establish
if improvements in the log decrement could be made. Several combinations of
diametral clearances and preload were evaluated for loading into the pivot. It
was found that a lower preload (normally 0.2) and bearing clearances toward the
upper range of the clearance range defined in table 2 would produce the best im-
provement in log decrement. The relative increase in log decrement for a bear-
ing preload of 0.2 and an average diametral clearance of 0.0085 inch is pre-
sented in figure 18. Details are tabulated in table 2.

A run using the above preload and clearance (0.2 and 0.0085 in., respec-
tively) was performed for load between pivots. A decrease in log decrement was
found (table 2).

Reduction of Impeller Overhang

An analysis was performed of the bearings as designed and installed and the
pinion as designed except for removing 2 inches from the shaft between the im-
peller and the impeller end bearing. The effect on the log decrement was a con-
siderable improvement, as detailed in table 2.

Increase in Shaft Section Modulus

An analysis was madeof the compressor rotor as designed except for increas-
ing the pinion bearing diameter to 4.5 inches. The bearing L/D was maintained
at 0.75 with an average preload of 0.2 and a clearance of 0.0095 inch. Again a
considerable improvementwas found in the log decrement, nearly equal to that
for reducing the overhang. Details are listed in table 2.
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Oil Viscosity Effects

A higher viscosity was used in the compressor to favor gear lubrication.
The effects of viscosity changeswere analyzed for the case of a bearing L/D
equal to 1 with load into the pivot. As can be seen from the data in table 2
further increase in oil viscosity would either raise or lower the log decre-
ment for this rotor.

ACTUALFIELDMODIFICATIONSANDFIELD RETESTING

As a result of this analysis it was apparent that the most expedient modi-
fication to improve rotor stability is a bearing modification. A wider bearing
(L/D = 1.0) with a nominal preload of 0.2 and clearance range of 0.0075 to
0.0095 inch was specified. Bearings were oriented such that each bearing would
be loaded into the pivot at rated power, even though load angles were different
for each bearing.

The compressor was modified and retested. The retesting at previous test
points and other operating and nonoperating points revealed only synchronous
frequencies. All signs of subsynchronous frequencies were removed.

DISCUSSION

There are two areas for further investigation as a result of this problem
and subsequent analysis. First is the observation of two distinct subsynchro-
nous frequencies. Allis-Chalmers' analysis predicted the higher frequency of
approximately 3100 cpmquite well; however, the frequency of major amplitude
occurred at approximately 2700 cpm. Allis-Chalmers had not seen this type of
double subsynchronous frequency previously on a conventional midspan compressor
rotor. It is assumedto have been generated as a result of unequal bearing
loadings compoundedby the magnitude of levels of subsynchronous vibration.
A point of interest is that the lower frequency agrees reasonably well with a
peak on the synchronous response curve (fig. 17).

Second, and most disconcerting, is the fact that subsynchronous instabili-
ties did develop despite the substantial values of the log decrement. Even if
one were to increase the destabilizing force four times, a log decrement of ap-
proximately 0.3 would still exist. There are manyconventional midspan rotors
with log decrementsmuch lower than this value with equal or higher destabiliz-
ing force values that have a history of successful operation. It is postulated
that somenot-yet-defined level of excitation exists on this type of rotor.
There are several possibilities:

(i) Gear error effects - No attempt has been madeto add any destabilizing
force as a result of gear inaccuracies or torsional-lateral coupling.

(2) Effects of open impellers - The impeller on this pinion was of an un-
covered design. It is physically impossible to assure operation of this type
of impeller with uniform circumferential and axial clearances. Perhaps the non-
uniform clearances along with the turbulent bypass effects from blade to blade
are generating muchhigher destabilizing forces than normally associated with a
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closed impeller. In addition, other aerodynamic factors such as flow separation
and stall have not been quantified as to their destabilizing influence.

It is worth noting that our experiences are in reasonable agreementwith data
presented in reference 7.

CONCLUSIONS

i. A subsynchronous instability existed on a geared, overhung rotor.
State-of-the-art rotor dynamics analysis techniques provided a reasonable ana-
lytical model of the rotor. A bearing modification, arrived at analytically,
was madeto the compressor and eliminated the instability.

2. Further research is required to more accurately define the mechanism
and to quantify the forces which cause the instability.
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TABLE 1

SPEED (RPM)

HORSgPOWER (B_{P)

BEARING LOADS (POb_DSFoRC E)

STAT IC

(_I C,HT)

TOTAL (WEIC,]{T AN[] GEAR

REACTIONS)

JOL_,NAL DIA#IETER (IN.)

LENC.T_{ (IN.)

DIAMETRAL CLEAraNCE INCLUDING

JObTCqAL TOLERANCE (IN .)

m (BEARING PRELOAD)

BEARING TYPE

LUB RI CAN T

LOW SPEED

8057

3774

1114 DOWNWARD

IST STAGE

242 UPWARD

THRUST BRC_.

178 

IST STAGE

3487 28o

THRUST BRG.

4.0

3.0

.007/.010

.33

5 PAD TILT PAD

CENTRAL PIVOT

215 8SU @ lO0°F

VI = 95

HIGH SPEED

9400

4226

432 DO_rN'WARD

2ND STAGE

352 DO_TA RD

3RD STAGE

'., ]0.5 °
3560 ""

2ND STAGE

3936 _"_ 27o

3RD STAGE

4.0

3.0

.007/.Of0

.33

5 PAD TILT PAD

CENTRAL PIVOT
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OVERHUNG GEAR COMPRESSOR -- UNDAMPED

VERTICAL CRITICAL SPEEDS
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OVERHUNG GEAR COMPRESSOR - tOG DECREMENT VS. AERODYNAMIC DESTABILIZING
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