699 research outputs found

    Optimum rendezvous guidance study Interim report

    Get PDF
    Minimum fuel rendezvous guidance of powered interceptor from parking orbit to target in coplanar circular orbi

    Numerical Calculation of Bessel Functions

    Full text link
    A new computational procedure is offered to provide simple, accurate and flexible methods for using modern computers to give numerical evaluations of the various Bessel functions. The Trapezoidal Rule, applied to suitable integral representations, may become the method of choice for evaluation of the many Special Functions of mathematical physics.Comment: 10 page

    Methods of regularization for computing orbits in celestial mechanics

    Get PDF
    Numerical and analytical methods for orbit computation in celestial mechanics during and beyond collision by introduction of regularized coordinate

    Typhoid fever imported from Mexico to Switzerland. Studies on R factor mediated chloramphenicol resistance

    Get PDF
    A case of typhoid fever caused by Salmonella typhi occurred in Geneva. The patient was probably infected in Mexico City. The strain isolated from this patient corresponds with the description of the Mexican S. typhi strain, since it is a degraded Vi-strain resistant to chloramphenicol, streptomycin, sulphonamides and tetracyclines. It carried an fi− transferable R factor with a CSSuT resistance pattern. It can be accepted that this case forms part of the Mexican outbreak of chloramphenicol-resistant typhoid fever which has already been observed in visitors to Mexico from England and the United State

    Scaling laws for the photo-ionisation cross section of two-electron atoms

    Get PDF
    The cross sections for single-electron photo-ionisation in two-electron atoms show fluctuations which decrease in amplitude when approaching the double-ionisation threshold. Based on semiclassical closed orbit theory, we show that the algebraic decay of the fluctuations can be characterised in terms of a threshold law σEμ\sigma \propto |E|^{\mu} as E0E \to 0_- with exponent μ\mu obtained as a combination of stability exponents of the triple-collision singularity. It differs from Wannier's exponent dominating double ionisation processes. The details of the fluctuations are linked to a set of infinitely unstable classical orbits starting and ending in the non-regularisable triple collision. The findings are compared with quantum calculations for a model system, namely collinear helium.Comment: 4 pages, 1 figur

    Generalization of the Birkhoff Regularization of the Three Space Bodies Problem

    Get PDF
    Generalization of space restricted three-body problem by spinor regularizatio

    Foreign Body Infection: Role of Fibronectin as a Ligand for the Adherence of Staphylococcus aureus

    Get PDF
    Foreign bodies made of polymethylmethacrylate coverslips were implanted subcutaneously into guinea pigs, were explanted four weeks later, and were tested for in vitro adherence of Staphylococcus aureus strain Wood 46. In the presence of serum, the level of staphylococcal adherence to explanted coverslips was 20 times higher than that of adherence to unimplanted coverslips. Adherence to explanted coverslips was caused by fibronectin deposits on the foreign body surface and was inhibited in a dose-related fashion by specific antibodies to fibronecti

    Regularization of the circular restricted three-body problem using 'similar' coordinate systems

    Full text link
    The regularization of a new problem, namely the three-body problem, using 'similar' coordinate system is proposed. For this purpose we use the relation of 'similarity', which has been introduced as an equivalence relation in a previous paper (see \cite{rom11}). First we write the Hamiltonian function, the equations of motion in canonical form, and then using a generating function, we obtain the transformed equations of motion. After the coordinates transformations, we introduce the fictitious time, to regularize the equations of motion. Explicit formulas are given for the regularization in the coordinate systems centered in the more massive and the less massive star of the binary system. The 'similar' polar angle's definition is introduced, in order to analyze the regularization's geometrical transformation. The effect of Levi-Civita's transformation is described in a geometrical manner. Using the resulted regularized equations, we analyze and compare these canonical equations numerically, for the Earth-Moon binary system.Comment: 24 pages, 7 figures; Accepted for publication in Astrophysics and Space Scienc

    Localization of Glycine Receptors in the Human Forebrain, Brainstem, and Cervical Spinal Cord: An Immunohistochemical Review

    Get PDF
    Inhibitory neurotransmitter receptors for glycine (GlyR) are heteropentameric chloride ion channels that are comprised of four functional subunits, alpha1–3 and beta and that facilitate fast-response, inhibitory neurotransmission in the mammalian brain and spinal cord. We have investigated the distribution of GlyRs in the human forebrain, brainstem, and cervical spinal cord using immunohistochemistry at light and confocal laser scanning microscopy levels. This review will summarize the present knowledge on the GlyR distribution in the human brain using our established immunohistochemical techniques. The results of our immunohistochemical labeling studies demonstrated GlyR immunoreactivity (IR) throughout the human basal ganglia, substantia nigra, various pontine regions, rostral medulla oblongata and the cervical spinal cord present an intense and abundant punctate IR along the membranes of the neuronal soma and dendrites. This work is part of a systematic study of inhibitory neurotransmitter receptor distribution in the human CNS, and provides a basis for additional detailed physiological and pharmacological studies on the inter-relationship of GlyR, GABAAR and gephyrin in the human brain. This basic mapping exercise, we believe, will provide important baselines for the testing of future pharmacotherapies and drug regimes that modulate neuroinhibitory systems. These findings provide new information for understanding the complexity of glycinergic functions in the human brain, which will translate into the contribution of inhibitory mechanisms in paroxysmal disorders and neurodegenerative diseases such as Epilepsy, Huntington's and Parkinson's Disease and Motor Neuron Disease

    Kustaanheimo-Stiefel Regularization and the Quadrupolar Conjugacy

    Get PDF
    In this note, we present the Kustaanheimo-Stiefel regularization in a symplectic and quaternionic fashion. The bilinear relation is associated with the moment map of the S1S^{1}- action of the Kustaanheimo-Stiefel transformation, which yields a concise proof of the symplecticity of the Kustaanheimo-Stiefel transformation symplectically reduced by this circle action. The relation between the Kustaanheimo-Stiefel regularization and the Levi-Civita regularization is established via the investigation of the Levi-Civita planes. A set of Darboux coordinates (which we call Chenciner-F\'ejoz coordinates) is generalized from the planar case to the spatial case. Finally, we obtain a conjugacy relation between the integrable approximating dynamics of the lunar spatial three-body problem and its regularized counterpart, similar to the conjugacy relation between the extended averaged system and the averaged regularized system in the planar case.Comment: 19 pages, corrected versio
    corecore