5 research outputs found

    Sensor characterization for multisensor odor-discrimination system

    Full text link
    In recent years, with the advent of new and cheaper sensors, the use of olfactory systems in homes, industries, and hospitals has a new start. Multisensor systems can improve the ability to distinguish between complex mixtures of volatile substances. To develop multisensor systems that are accurate and reliable, it is important to take into account the anomalies that may arise because of electronic instabilities, types of sensors, and air flow. In this approach, 32 metal oxide semiconductor sensors of 7 different types and operating at different temperatures have been used to develop a multisensor olfactory system. Each type of sensor has been characterized to select the most suitable temperature combinations. In addition, a prechamber has been designed to ensure a good air flow from the sample to the sensing area. The multisensor system has been tested with good results to perform multidimensional information detection of two fruits, based on obtaining sensor matrix data, extracting three features parameters from each sensor curve and using these parameters as the input to a pattern recognition system. (C) 2012 Elsevier B.V. All rights reserved.Cueto Belchí, AD.; Rothpfeffer, N.; Pelegrí Sebastiá, J.; Chilo, J.; García Rodríguez, D.; Sogorb Devesa, TC. (2013). Sensor characterization for multisensor odor-discrimination system. Sensors and Actuators A: Physical. 191:68-72. doi:10.1016/j.sna.2012.11.039S687219

    Modelagem preditiva de linha de costa utilizando redes neurais artificiais

    Get PDF
    Estudar modelagens através de dados geodésicos temporais com a possibilidade de predizer a posição de linha de costa é uma tarefa importante e pode auxiliar significativamente na gestão costeira. A área de estudo neste trabalho se refere ao município de Matinhos no estado do Paraná, Brasil. As linhas de costa temporais utilizadas para testar a modelagem preditiva são provenientes respectivamente da fotogrametria analógica para anos 1954, 1963, 1980, 1991 e 1997 e de levantamentos geodésicos utilizando GPS (Global Position System) para 2001, 2002, 2005 e 2008 (como controle). Dois testes com as redes neurais artificiais foram organizados mudando alguns parâmetros como: arquitetura, número de neurônios nas camadas ocultas e algoritmos de treinamentos. Quando comparados o valor dos resíduos entre a predição e a linha de costa de controle, os melhores resultados estatísticos indicam que o MAPE (mean absolute percentage error) são 0,28% utilizando a rede neural parcialmente recorrente de Elman com o algoritmo de treinamento quase-Newton e 0,46% para o caso da rede neural perceptron multicamadas com o algoritmo de treinamento utilizando o método Bayesiano com regularização
    corecore