1,410 research outputs found

    Correspondence between geometrical and differential definitions of the sine and cosine functions and connection with kinematics

    Full text link
    In classical physics, the familiar sine and cosine functions appear in two forms: (1) geometrical, in the treatment of vectors such as forces and velocities, and (2) differential, as solutions of oscillation and wave equations. These two forms correspond to two different definitions of trigonometric functions, one geometrical using right triangles and unit circles, and the other employing differential equations. Although the two definitions must be equivalent, this equivalence is not demonstrated in textbooks. In this manuscript, the equivalence between the geometrical and the differential definition is presented assuming no a priori knowledge of the properties of sine and cosine functions. We start with the usual length projections on the unit circle and use elementary geometry and elementary calculus to arrive to harmonic differential equations. This more general and abstract treatment not only reveals the equivalence of the two definitions but also provides an instructive perspective on circular and harmonic motion as studied in kinematics. This exercise can help develop an appreciation of abstract thinking in physics.Comment: 6 pages including 1 figur

    Discrete Symmetries and Generalized Fields of Dyons

    Full text link
    We have studied the different symmetric properties of the generalized Maxwell's - Dirac equation along with their quantum properties. Applying the parity (\mathcal{P}), time reversal (\mathcal{T}), charge conjugation (\mathcal{C}) and their combined effect like parity time reversal (\mathcal{PT}), charge conjugation and parity (\mathcal{CP}) and \mathcal{CP}T transformations to varius equations of generalized fields of dyons, it is shown that the corresponding dynamical quantities and equations of dyons are invariant under these discrete symmetries. Abstract Key words- parity, time reversal, charge-conjugation, dyons Abstract PACS No.- 14.80 Hv

    Comparing families of dynamic causal models

    Get PDF
    Mathematical models of scientific data can be formally compared using Bayesian model evidence. Previous applications in the biological sciences have mainly focussed on model selection in which one first selects the model with the highest evidence and then makes inferences based on the parameters of that model. This “best model” approach is very useful but can become brittle if there are a large number of models to compare, and if different subjects use different models. To overcome this shortcoming we propose the combination of two further approaches: (i) family level inference and (ii) Bayesian model averaging within families. Family level inference removes uncertainty about aspects of model structure other than the characteristic of interest. For example: What are the inputs to the system? Is processing serial or parallel? Is it linear or nonlinear? Is it mediated by a single, crucial connection? We apply Bayesian model averaging within families to provide inferences about parameters that are independent of further assumptions about model structure. We illustrate the methods using Dynamic Causal Models of brain imaging data

    Heat Transfer Operators Associated with Quantum Operations

    Get PDF
    Any quantum operation applied on a physical system is performed as a unitary transformation on a larger extended system. If the extension used is a heat bath in thermal equilibrium, the concomitant change in the state of the bath necessarily implies a heat exchange with it. The dependence of the average heat transferred to the bath on the initial state of the system can then be found from the expectation value of a hermitian operator, which is named as the heat transfer operator (HTO). The purpose of this article is the investigation of the relation between the HTOs and the associated quantum operations. Since, any given quantum operation on a system can be realized by different baths and unitaries, many different HTOs are possible for each quantum operation. On the other hand, there are also strong restrictions on the HTOs which arise from the unitarity of the transformations. The most important of these is the Landauer erasure principle. This article is concerned with the question of finding a complete set of restrictions on the HTOs that are associated with a given quantum operation. An answer to this question has been found only for a subset of quantum operations. For erasure operations, these characterizations are equivalent to the generalized Landauer erasure principle. For the case of generic quantum operations however, it appears that the HTOs obey further restrictions which cannot be obtained from the entropic restrictions of the generalized Landauer erasure principle.Comment: A significant revision is made; 33 pages with 2 figure

    Stochastic Energetics of Quantum Transport

    Get PDF
    We examine the stochastic energetics of directed quantum transport due to rectification of non-equilibrium thermal fluctuations. We calculate the quantum efficiency of a ratchet device both in presence and absence of an external load to characterize two quantifiers of efficiency. It has been shown that the quantum current as well as efficiency in absence of load (Stokes efficiency) is higher as compared to classical current and efficiency, respectively, at low temperature. The conventional efficiency of the device in presence of load on the other hand is higher for a classical system in contrast to its classical counterpart. The maximum conventional efficiency being independent of the nature of the bath and the potential remains the same for classical and quantum systems.Comment: To be published in Phys. Rev.

    A quantum-mechanical Maxwell's demon

    Get PDF
    A Maxwell's demon is a device that gets information and trades it in for thermodynamic advantage, in apparent (but not actual) contradiction to the second law of thermodynamics. Quantum-mechanical versions of Maxwell's demon exhibit features that classical versions do not: in particular, a device that gets information about a quantum system disturbs it in the process. In addition, the information produced by quantum measurement acts as an additional source of thermodynamic inefficiency. This paper investigates the properties of quantum-mechanical Maxwell's demons, and proposes experimentally realizable models of such devices.Comment: 13 pages, Te

    Correlation functions of eigenvalues of multi-matrix models, and the limit of a time dependent matrix

    Full text link
    We consider the correlation functions of eigenvalues of a unidimensional chain of large random hermitian matrices. An asymptotic expression of the orthogonal polynomials allows to find new results for the correlations of eigenvalues of different matrices of the chain. Eventually, we consider the limit of the infinite chain of matrices, which can be interpreted as a time dependent one-matrix model, and give the correlation functions of eigenvalues at different times.Comment: Tex-Harvmac, 27 pages, submitted to Journ. Phys.

    Thermodynamical Cost of Accessing Quantum Information

    Full text link
    Thermodynamics is a macroscopic physical theory whose two very general laws are independent of any underlying dynamical laws and structures. Nevertheless, its generality enables us to understand a broad spectrum of phenomena in physics, information science and biology. Recently, it has been realised that information storage and processing based on quantum mechanics can be much more efficient than their classical counterpart. What general bound on storage of quantum information does thermodynamics imply? We show that thermodynamics implies a weaker bound than the quantum mechanical one (the Holevo bound). In other words, if any post-quantum physics should allow more information storage it could still be under the umbrella of thermodynamics.Comment: 3 figure

    The left superior temporal gyrus is a shared substrate for auditory short-term memory and speech comprehension: evidence from 210 patients with stroke

    Get PDF
    Competing theories of short-term memory function make specific predictions about the functional anatomy of auditory short-term memory and its role in language comprehension. We analysed high-resolution structural magnetic resonance images from 210 stroke patients and employed a novel voxel based analysis to test the relationship between auditory short-term memory and speech comprehension. Using digit span as an index of auditory short-term memory capacity we found that the structural integrity of a posterior region of the superior temporal gyrus and sulcus predicted auditory short-term memory capacity, even when performance on a range of other measures was factored out. We show that the integrity of this region also predicts the ability to comprehend spoken sentences. Our results therefore support cognitive models that posit a shared substrate between auditory short-term memory capacity and speech comprehension ability. The method applied here will be particularly useful for modelling structure–function relationships within other complex cognitive domains

    Langevin dynamics with dichotomous noise; direct simulation and applications

    Get PDF
    We consider the motion of a Brownian particle moving in a potential field and driven by dichotomous noise with exponential correlation. Traditionally, the analytic as well as the numerical treatments of the problem, in general, rely on Fokker-Planck description. We present a method for direct numerical simulation of dichotomous noise to solve the Langevin equation. The method is applied to calculate nonequilibrium fluctuation induced current in a symmetric periodic potential using asymmetric dichotomous noise and compared to Fokker-Planck-Master equation based algorithm for a range of parameter values. Our second application concerns the study of resonant activation over a fluctuating barrier.Comment: Accepted in Journal of Statistical Mechanics: Theory and Experimen
    corecore