We consider the correlation functions of eigenvalues of a unidimensional
chain of large random hermitian matrices. An asymptotic expression of the
orthogonal polynomials allows to find new results for the correlations of
eigenvalues of different matrices of the chain. Eventually, we consider the
limit of the infinite chain of matrices, which can be interpreted as a time
dependent one-matrix model, and give the correlation functions of eigenvalues
at different times.Comment: Tex-Harvmac, 27 pages, submitted to Journ. Phys.