34,788 research outputs found

    Comment on "High Field Studies of Superconducting Fluctuations in High-Tc Cuprates. Evidence for a Small Gap distinct from the Large Pseudogap"

    Full text link
    By using high magnetic field data to estimate the background conductivity, Rullier-Albenque and coworkers have recently published [Phys.Rev.B 84, 014522 (2011)] experimental evidence that the in-plane paraconductivity in cuprates is almost independent of doping. In this Comment we also show that, in contrast with their claims, these useful data may be explained at a quantitative level in terms of the Gaussian-Ginzburg-Landau approach for layered superconductors, extended by Carballeira and coworkers to high reduced-temperatures by introducing a total-energy cutoff [Phys.Rev.B 63, 144515 (2001)]. When combined, these two conclusions further suggest that the paraconductivity in cuprates is conventional, i.e., associated with fluctuating superconducting pairs above the mean-field critical temperature.Comment: 9 pages, 1 figur

    Perfect Sampling with Unitary Tensor Networks

    Get PDF
    Tensor network states are powerful variational ans\"atze for many-body ground states of quantum lattice models. The use of Monte Carlo sampling techniques in tensor network approaches significantly reduces the cost of tensor contractions, potentially leading to a substantial increase in computational efficiency. Previous proposals are based on a Markov chain Monte Carlo scheme generated by locally updating configurations and, as such, must deal with equilibration and autocorrelation times, which result in a reduction of efficiency. Here we propose a perfect sampling scheme, with vanishing equilibration and autocorrelation times, for unitary tensor networks -- namely tensor networks based on efficiently contractible, unitary quantum circuits, such as unitary versions of the matrix product state (MPS) and tree tensor network (TTN), and the multi-scale entanglement renormalization ansatz (MERA). Configurations are directly sampled according to their probabilities in the wavefunction, without resorting to a Markov chain process. We also describe a partial sampling scheme that can result in a dramatic (basis-dependent) reduction of sampling error.Comment: 11 pages, 9 figures, renamed partial sampling to incomplete sampling for clarity, extra references, plus a variety of minor change

    Real-time support for high performance aircraft operation

    Get PDF
    The feasibility of real-time processing schemes using artificial neural networks (ANNs) is investigated. A rationale for digital neural nets is presented and a general processor architecture for control applications is illustrated. Research results on ANN structures for real-time applications are given. Research results on ANN algorithms for real-time control are also shown

    Tensor network states and algorithms in the presence of a global SU(2) symmetry

    Full text link
    The benefits of exploiting the presence of symmetries in tensor network algorithms have been extensively demonstrated in the context of matrix product states (MPSs). These include the ability to select a specific symmetry sector (e.g. with a given particle number or spin), to ensure the exact preservation of total charge, and to significantly reduce computational costs. Compared to the case of a generic tensor network, the practical implementation of symmetries in the MPS is simplified by the fact that tensors only have three indices (they are trivalent, just as the Clebsch-Gordan coefficients of the symmetry group) and are organized as a one-dimensional array of tensors, without closed loops. Instead, a more complex tensor network, one where tensors have a larger number of indices and/or a more elaborate network structure, requires a more general treatment. In two recent papers, namely (i) [Phys. Rev. A 82, 050301 (2010)] and (ii) [Phys. Rev. B 83, 115125 (2011)], we described how to incorporate a global internal symmetry into a generic tensor network algorithm based on decomposing and manipulating tensors that are invariant under the symmetry. In (i) we considered a generic symmetry group G that is compact, completely reducible and multiplicity free, acting as a global internal symmetry. Then in (ii) we described the practical implementation of Abelian group symmetries. In this paper we describe the implementation of non-Abelian group symmetries in great detail and for concreteness consider an SU(2) symmetry. Our formalism can be readily extended to more exotic symmetries associated with conservation of total fermionic or anyonic charge. As a practical demonstration, we describe the SU(2)-invariant version of the multi-scale entanglement renormalization ansatz and apply it to study the low energy spectrum of a quantum spin chain with a global SU(2) symmetry.Comment: 32 pages, 37 figure

    Variational Monte Carlo with the Multi-Scale Entanglement Renormalization Ansatz

    Get PDF
    Monte Carlo sampling techniques have been proposed as a strategy to reduce the computational cost of contractions in tensor network approaches to solving many-body systems. Here we put forward a variational Monte Carlo approach for the multi-scale entanglement renormalization ansatz (MERA), which is a unitary tensor network. Two major adjustments are required compared to previous proposals with non-unitary tensor networks. First, instead of sampling over configurations of the original lattice, made of L sites, we sample over configurations of an effective lattice, which is made of just log(L) sites. Second, the optimization of unitary tensors must account for their unitary character while being robust to statistical noise, which we accomplish with a modified steepest descent method within the set of unitary tensors. We demonstrate the performance of the variational Monte Carlo MERA approach in the relatively simple context of a finite quantum spin chain at criticality, and discuss future, more challenging applications, including two dimensional systems.Comment: 11 pages, 12 figures, a variety of minor clarifications and correction

    A generalization of Bohr's Equivalence Theorem

    Get PDF
    Based on a generalization of Bohr's equivalence relation for general Dirichlet series, in this paper we study the sets of values taken by certain classes of equivalent almost periodic functions in their strips of almost periodicity. In fact, the main result of this paper consists of a result like Bohr's equivalence theorem extended to the case of these functions.Comment: Because of a mistake detected in one of the references, the previous version of this paper has been modified by the authors to restrict the scope of its application to the case of existence of an integral basi

    Bohr's equivalence relation in the space of Besicovitch almost periodic functions

    Get PDF
    Based on Bohr's equivalence relation which was established for general Dirichlet series, in this paper we introduce a new equivalence relation on the space of almost periodic functions in the sense of Besicovitch, B(R,C)B(\mathbb{R},\mathbb{C}), defined in terms of polynomial approximations. From this, we show that in an important subspace B2(R,C)⊂B(R,C)B^2(\mathbb{R},\mathbb{C})\subset B(\mathbb{R},\mathbb{C}), where Parseval's equality and Riesz-Fischer theorem holds, its equivalence classes are sequentially compact and the family of translates of a function belonging to this subspace is dense in its own class.Comment: Because of a mistake detected in one of the references, the equivalence relation which is inspired by that of Bohr is revised to adapt correctly the situation in the general case. arXiv admin note: text overlap with arXiv:1801.0803
    • …
    corecore