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Abstract Based on Bohr’s equivalence relation which was established for gen-
eral Dirichlet series, in this paper we introduce a new equivalence relation on
the space of almost periodic functions in the sense of Besicovitch, B(R,C),
defined in terms of polynomial approximations. From this, we show that in
an important subspace B2(R,C) ⊂ B(R,C), where Parseval’s equality and
Riesz-Fischer theorem holds, its equivalence classes are sequentially compact
and the family of translates of a function belonging to this subspace is dense
in its own class.
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1 Introduction

The class of almost periodic functions, whose theory was created and developed
in its main features by H. Bohr during the 1920’s, is the class of continuous
functions possessing a certain structural property, which is a generalization of
pure periodicity. This theory opened a way to study a wide class of trigono-
metric series of the general type and even exponential series. In this context,
we can cite, among others, the papers [3,4,5,6,8,10].

Let f(t) be a real or complex function of an unrestricted real variable t. The
notion of almost periodicity given by Bohr involves the fact that f(t) must be
continuous, and for every ε > 0 there corresponds a number l = l(ε) > 0 such
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that each interval of length l contains a number τ satisfying |f(t+τ)−f(t)| ≤ ε
for all t. As in [8], we will denote as AP (R,C) the space of almost periodic
functions in the sense of this definition (Bohr’s condition). A very important
result of this theory is the approximation theorem according to which the
class of almost periodic functions AP (R,C) coincides with the class of limit
functions of uniformly convergent sequences of trigonometric polynomials of
the type

a1e
iλ1t + . . .+ ane

iλnt (1)

with arbitrary real exponents λj and arbitrary complex coefficients aj . More-
over, S. Bochner observed that Bohr’s notion of almost periodicity of a function
f is equivalent to the relative compactness, in the sense of uniform convergence,
of the family of its translates {f(t+ h)}, h ∈ R.

In the course of time, some variants and extensions of Bohr’s concept have
been introduced, most notably by A. S. Besicovitch, W. Stepanov and H.
Weyl. We refer the reader to the papers by Besicovitch [3, Chapter II], Bohr
and Fœlner [7], Corduneanu [8], and by Andres, Bersani and Grande [1] and
the references therein for a comprehensive treatment of this subject.

In particular, A.S. Besicovitch enlarged the class of almost periodic func-
tions by considering the convergence of sequences of functions in a more general
sense than uniform convergence. In this way, the Besicovitch spaces Bp(R,C),
1 ≤ p < ∞, are obtained by the completion of the trigonometric polynomials
of the form (1) with respect to the seminorms

(

lim sup
l→∞

(2l)−1

∫ l

−l

|f(t)|pdt
)1/p

.

This topology is certainly weaker than that of the uniform convergence. In
particular, the space B1(R,C) is denoted by B(R,C) and contains AP (R,C),
B2(R,C) and all variants of almost periodic functions which were mentioned
above.

Moreover, for any function f ∈ B(R,C) there exists the mean value

M(f) = lim
l→∞

(2l)−1

∫ l

−l

f(t)dt (2)

and, at most, a countable set of values of λk ∈ R such that ak = a(f, λk) =
M(f(t)e−λkt) 6= 0. Thus the series

∑

k≥1 ake
iλkt is called the Fourier series

of f [8, Section 4.2]. Also, λk and ak are called the Fourier exponents and
coefficients of the function f , respectively.

In the case that f ∈ B2(R,C), with
∑

k≥1 ake
iλkt the Fourier series of f ,

it is accomplished the Parseval’s equality [3, p. 109]
∑

k≥1

|ak|2 =M(|f(t)|2) <∞.

In this respect, if f1, f2 ∈ B2(R,C), then f1 and f2 have the same Fourier
series if and only if M(|f1(t) − f2(t)|2) = 0. That is, two functions satisfying
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this condition belong to the same class of equivalence defined in terms of the
Fourier series. This equivalence relation is inherent to the classes Bp(R,C)
and it is different from the generalization of Bohr’s equivalence of Definition
2 which is the main tool of this paper.

Besicovitch’s generalization is interesting because, for this extension, the
analogue of the Riesz-Fischer theorem is also valid, that is to say, any trigono-
metric series

∑

n≥1 ane
iλnt with

∑

n≥1 |an|2 finite is the Fourier series of a

B2(R,C) almost periodic function [3, p. 110] (in this sense, B2(R,C) is also
called AP2(R,C) in [8]). This is not the case for some Stepanov or Weyl func-
tions [10]. As a consequence of the above, a Fourier series

∑

n≥1 ane
iλnt so

that
∑

n≥1 |an|2 <∞ represents an equivalence class of functions in B2(R,C).
In this paper we extend Bohr’s equivalence relation to the Fourier series

associated with the Besicovitch almost periodic functions, and hence to the
Besicovitch almost periodic functions too. In this way, in view of the analogue
of the Riesz-Fischer theorem and with respect to the topology of B2(R,C),
the main result of our paper shows that, fixed an almost periodic function in
B2(R,C), the limit points of the set of its translates are precisely the functions
which are equivalent to it (see Theorem 2 in this paper). This means that the
Bochner-type property, which is satisfied for the Besicovitch classes of almost
periodic functions defined as above in terms of polynomials approximations
(see [1, Definition 5.5, Definition 5.17 and Theorem 5.34] or [8, Section 3.4,
p. 65]), is now refined for B2(R,C) in the sense that we show that the condi-
tion of almost periodicity in the Besicovitch sense implies that every sequence
of translates has a subsequence that converges in B2(R,C) to an equivalent
function.

2 Preliminary definitions and results on exponential sums

We shall refer to the expressions of the type

P1(p)e
λ1p + . . .+ Pj(p)e

λjp + . . .

as exponential sums, where the frequencies λj are complex numbers and the
Pj(p) are polynomials in p. In this paper we are going to consider some func-
tions which are associated with a concrete subclass of these exponential sums,
where the parameter p will be changed by t in the real case. In this way, as in
[11], we take the following definition.

Definition 1 Let Λ = {λ1, λ2, . . . , λj , . . .} be an arbitrary countable set of
distinct real numbers, which we will call a set of exponents or frequencies. We
will say that an exponential sum is in the class SΛ if it is a formal series of
type

∑

j≥1

aje
λjp, aj ∈ C, λj ∈ Λ. (3)

We next introduce an equivalence relation on the classes SΛ.
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Definition 2 Given an arbitrary countable set Λ = {λ1, λ2, . . . , λj , . . .} of
distinct real numbers, consider A1(p) and A2(p) two exponential sums in the
class SΛ, say A1(p) =

∑

j≥1 aje
λjp and A2(p) =

∑

j≥1 bje
λjp. We will say that

A1 is equivalent to A2 (in that case, we will write A1
∗∼A2) if for each integer

value n ≥ 1, with n ≤ ♯Λ, there exists a Q-linear map ψn : Vn → R, where Vn
is the Q-vector space generated by {λ1, λ2, . . . , λn}, such that

bj = aje
iψn(λj), j = 1, . . . , n.

It is plain that the relation
∗∼ considered in the foregoing definition is an

equivalence relation.
Let GΛ = {g1, g2, . . . , gk, . . .} be a basis of the vector space over the ra-

tionals generated by a set Λ of exponents, which implies that GΛ is linearly
independent over the rationals and each λj is expressible as a finite linear
combination of terms of GΛ, say

λj =

qj
∑

k=1

rj,kgk, for some rj,k ∈ Q. (4)

By abuse of notation, we will say that GΛ is a basis for Λ. Moreover, we will
say that GΛ is an integral basis for Λ when rj,k ∈ Z for any j, k. By taking
this into account, the equivalence relation introduced in Definition 2 can be
characterized in terms of a basis for Λ (see [11, Proposition 1’]).

Proposition 1 Given Λ = {λ1, λ2, . . . , λj , . . .} a set of exponents, consider
A1(p) and A2(p) two exponential sums in the class SΛ, say A1(p) =

∑

j≥1 aje
λjp

and A2(p) =
∑

j≥1 bje
λjp. Fixed a basis GΛ for Λ, for each j ≥ 1 let rj be

the vector of rational components satisfying (4). Then A1
∗∼A2 if and only

if for each integer value n ≥ 1, with n ≤ ♯Λ, there exists a vector xn =
(xn,1, xn,2, . . . , xn,k, . . .) ∈ R♯GΛ such that bj = aje

<rj ,xn>i for j = 1, 2, . . . , n.

Furthermore, if GΛ is an integral basis for Λ then A1
∗∼A2 if and only if there

exists x0 = (x0,1, x0,2, . . . , x0,k, . . .) ∈ R♯GΛ such that bj = aje
<rj ,x0>i for

every j ≥ 1.

Proof For each integer value n ≥ 1, let Vn be the Q-vector space generated by
{λ1, . . . , λn}, V theQ-vector space generated by Λ, andGΛ = {g1, g2, . . . , gk, . . .}
a basis of V . If A1

∗∼A2, by Definition 2 for each integer value n ≥ 1, with
n ≤ ♯Λ, there exists aQ-linear map ψn : Vn → R such that bj = aje

iψn(λj), j =

1, 2 . . . , n. Hence bj = aje
i
∑ij

k=1 rj,kψn(gk), j = 1, 2 . . . , n or, equivalently,
bj = aje

i<rj ,xn>, j = 1, 2 . . . , n, with xn := (ψn(g1), ψn(g2), . . .). Conversely,
suppose the existence, for each integer value n ≥ 1, of a vector of the form xn =
(xn,1, xn,2, . . . , xn,k, . . .) ∈ R♯GΛ such that bj = aje

<rj ,xn>i, j = 1, 2 . . . , n.
Thus a Q-linear map ψn : Vn → R can be defined from ψn(gk) := xn,k, k ≥ 1.

Therefore ψn(λj) =
∑ij
k=1 rj,kψ(gk) = < rj ,xn >, j = 1, 2 . . . , n, and the

result follows.
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Now, suppose that GΛ is an integral basis for Λ and A1
∗∼A2. Thus, by

above, for each fixed integer value n ≥ 1, let xn = (xn,1, xn,2, . . .) ∈ R♯GΛ be a
vector such that bj = aje

i<rj ,xn>, j = 1, 2 . . . , n. Since each component of rj
is an integer number, without loss of generality, we can take xn ∈ [0, 2π)♯GΛ

as the unique vector in [0, 2π)♯GΛ satisfying the above equalities, where we
assume xn,k = 0 for any k such that rj,k = 0 for j = 1, . . . , n. Therefore, under
this assumption, if m > n then xm,k = xn,k for any k so that xn,k 6= 0. In this
way, we can construct a vector x0 = (x0,1, x0,2, . . . , x0,k, . . .) ∈ [0, 2π)♯GΛ such
that bj = aje

<rj,x0>i for every j ≥ 1. Indeed, if r1,k 6= 0 then the component
x0,k is chosen as x1,k, and if r1,k = 0 then each component x0,k is defined as
xn+1,k where rj,k = 0 for j = 1, . . . , n and rn+1,k 6= 0. Conversely, if there
exists x0 = (x0,1, x0,2, . . . , x0,k, . . .) ∈ R♯GΛ such that bj = aje

<rj ,x0>i for

every j ≥ 1, then it is clear that A1
∗∼A2 under Definition 2.

On the other hand, we will say that GΛ is the natural basis for Λ, and we
will denote it as G∗

Λ, when it is constituted by elements in Λ. That is, firstly if
λ1 6= 0 then g1 := λ1 ∈ G∗

Λ. Secondly, if {λ1, λ2} are Q-rationally independent,
then g2 := λ2 ∈ G∗

Λ. Otherwise, if {λ1, λ3} are Q-rationally independent, then
g2 := λ3 ∈ G∗

Λ, and so on. In this way, if λj ∈ G∗
Λ then rj,mj

= 1 and rj,k = 0
for k 6= mj , where mj is such that gmj

= λj . In fact, each element in G∗
Λ

is of the form gmj
for j such that λj is Q-linear independent of the previous

elements in the basis. Furthermore, if λj /∈ G∗
Λ then λj =

∑ij
k=1 rj,kgk, where

{g1, g2, . . . , gij} ⊂ {λ1, λ2, . . . , λj−1}.
In terms of the natural basis, we next prove another characterization which

will be used later.

Proposition 2 Given Λ = {λ1, λ2, . . . , λj , . . .} a set of exponents, consider
A1(p) and A2(p) two exponential sums in the class SΛ, say A1(p) =

∑

j≥1 aje
λjp

and A2(p) =
∑

j≥1 bje
λjp. Fixed the natural basis G∗

Λ = {g1, g2, . . . , gk, . . .} for

Λ, for each j ≥ 1 let rj ∈ R♯G
∗

Λ be the vector of rational components verifying

(4). Then A1
∗∼A2 if and only if there exists x0 = (x0,1, x0,2, . . . , x0,k, . . .) ∈

[0, 2π)♯G
∗

Λ such that for each j = 1, 2, . . . it is satisfied bj = aje
<rj ,x0+pj>i for

some pj = (2πnj,1, 2πnj,2, . . .) ∈ R♯G
∗

Λ , with nj,k ∈ Z.

Proof Suppose that A1
∗∼A2. Consider I = {1, 2, . . . , k, . . . : λk ∈ G∗

Λ} and
In = {1, 2, . . . , k, . . . , n : λk ∈ G∗

Λ}. Let j ∈ I, then rj,mj
= 1 and rj,k = 0

for k 6= mj , where mj is such that gmj
= λj . Thus, by Proposition 1, let

xj = (xj,1, xj,2, . . .) ∈ R♯G
∗

Λ be a vector such that

bj = aje
i<rj ,xj> = aje

i
∑ij

k=1 rj,kxj,k = aje
irj,mj

xj,mj = aje
ixj,mj .

Define x0 = (x0,1, x0,2, . . .) ∈ R♯G
∗

Λ = R♯I as x0,mj
:= xj,mj

for j ∈ I. Thus, by
taking pj = (0, 0, . . .), the result trivially holds for those j’s such that λj ∈ G∗

Λ,
i.e. for j ∈ I. Now, let j be such that λj /∈ G∗

Λ, i.e. j /∈ I. By Proposition 1,
let xj = (xj,1, xj,2, . . .) ∈ R♯G

∗

Λ be a vector such that

bp = ape
i<rp,xj> = ape

i
∑ij

k=1 rp,kxj,k , p = 1, 2, . . . , j.
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Note that if p = 1, 2, . . . , j is such that λp ∈ G∗
Λ, then

bp = ape
irp,mpxj,mp ,

which necessarily implies that rp,mp
xj,mp

= rp,mp
xp,mp

+ 2πnp, i.e. xj,mp
=

xp,mp
+ 2πnj,p for some nj,p ∈ Z. Hence

bj = aje
i<rj ,xj> = aje

i
∑ij

k=1
rj,kxj,k = aje

i
∑

p∈Ij−1
rj,mpxj,mp =

aje
i
∑

p∈Ij−1
rj,mp (xp,mp+2πnj,p) = aje

i<rj ,x0+pj>,

where pj = (2πnj,1, 2πnj,2, . . . , 0, 0, . . .). Moreover, by changing conveniently
the vectors pj , we can take x0 ∈ [0, 2π)♯G

∗

Λ without loss of generality.
Conversely, suppose the existence of x0 = (x0,1, x0,2, . . . , x0,k, . . .) ∈ R♯G

∗

Λ

satisfying bj = aje
<rj ,x0+pj>i for some pj = (2πnj,1, 2πnj,2, . . .) ∈ R♯G

∗

Λ ,
with nj,k ∈ Z. Let rj,k =

pj,k
qj,k

with pj,k and qj,k coprime integer numbers,

and define qn,k := lcm(q1,k, q2,k, . . . , qn,k) for each k = 1, 2, . . .. Thus, for any
integer number n ≥ 1, take xn = x0+mn, wheremn,k = 2πp1,kp2,k · · · pn,kqn,k,
k = 1, 2, . . .. Therefore, it is satisfied bj = aje

<rj,xn>i for each j = 1, 2, . . . , n,

which implies that A1
∗∼A2.

As corollary, we can formulate the following result.

Corollary 1 Given Λ = {λ1, λ2, . . . , λj , . . .} a set of exponents, consider A1(p)
and A2(p) two exponential sums in the class SΛ, say A1(p) =

∑

j≥1 aje
λjp

and A2(p) =
∑

j≥1 bje
λjp. Fixed a basis GΛ = {g1, g2, . . . , gk, . . .} for Λ,

for each j ≥ 1 let rj ∈ R♯GΛ be the vector of rational components verifying

(4). Then A1
∗∼A2 if and only if there exists x0 = (x0,1, x0,2, . . . , x0,k, . . .) ∈

[0, 2π)♯GΛ such that for each j = 1, 2, . . . it is satisfied bj = aje
<rj,x0+qj>i

for some qj ∈ R♯GΛ which are of the form qj = T · ptj, where T is the
change of basis matrix, with respect to the natural basis, and pj is of the
form (2πnj,1, 2πnj,2, . . . , 2πnj,k, . . .), nj,k ∈ Z.

In particular, note that the coefficients of equivalent exponential sums have
the same modulus.

3 The finite exponential sums of the classes PR,Λ

This section is focused on the following classes of finite exponential sums.

Definition 3 Let Λ = {λ1, . . . , λn} be a set of n ≥ 1 distinct real numbers.
We will say that a function f : R 7→ C is in the class PR,Λ if it is of the form

f(t) = a1e
iλ1t + . . .+ ane

iλnt, aj ∈ C, λj ∈ Λ, j = 1, . . . , n. (5)

The functions f(t) of type (5) are also called trigonometric polynomials.
Note that Definition 2 can be particularized to the classes PR,Λ. Further-

more, if Λ is finite it is clear that it is always possible to find an integral basis
for Λ. In this context, we next prove the following important result.
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Theorem 1 Given Λ = {λ1, λ2, . . . , λn} a set of n ≥ 1 exponents, let a1e
iλ1t+

. . .+ane
iλnt and b1e

iλ1t+ . . .+bne
iλnt be two equivalent functions in the class

PR,Λ. Fixed d > 0 and ε > 0, there exists τ > d such that

n
∑

j=1

|ajeiλjτ − bj| < ε.

Proof Let GΛ = {g1, . . . , gm}, for a certain m ≥ 1, be linearly independent
over the rationals so that each λj ∈ Λ is expressible as a linear combination
of its terms, say

λj =

m
∑

k=1

rj,kgk, for some rj,k =
pj,k
qj,k

∈ Q, j = 1, 2, . . . , n. (6)

Consider ε > 0, q := lcm(qj,k : j = 1, . . . , n, k = 1, . . . ,m), r := max{|rj,k| :
j = 1, . . . , n, k = 1, . . . ,m} > 0 and a := max{|aj| : j = 1, 2, . . . , n} > 0. Since
a1e

iλ1t + . . .+ ane
iλnt and b1e

iλ1t + . . .+ bne
iλnt are equivalent, Proposition

1 assures the existence of a vector of real numbers x0 = (x0,1, x0,2, . . . , x0,m)
such that

bj = aje
<rj ,x0>i = aje

i
∑m

k=1 rj,kx0,k , j = 1, 2, . . . , n. (7)

Now, as the numbers ck = gk
2πq , k = 1, 2, . . . ,m, are rationally independent,

we next apply Kronecker’s theorem [9, p.382] with the following choice: ck,
ε1 = ε

a·m·n·r·E > 0 and dk =
x0,k

2πq , k = 1, 2, . . . ,m. In this manner we assure
the existence of a real number τ > d > 0 and integer numbers e1, e2, . . . , em
such that

|τck − ek − dk| =
∣

∣

∣

∣

τgk
2πq

− ek −
x0,k
2πq

∣

∣

∣

∣

< ε1,

that is
τgk = 2πqek + x0,k + ηk,with |ηk| < ε1. (8)

Therefore, from (6) and (7), with t ∈ R, we have

n
∑

j=1

|ajeiλjτ − bj| =
n
∑

j=1

∣

∣

∣
aje

iλjτ − aje
i
∑m

k=1 rj,kx0,k

∣

∣

∣
≤

n
∑

j=1

|aj |
∣

∣

∣eiτλj − ei
∑m

k=1 rj,kx0,k

∣

∣

∣ ≤ a

n
∑

j=1

∣

∣

∣eiτλj − ei
∑m

k=1 rj,kx0,k

∣

∣

∣ =

a

n
∑

j=1

∣

∣

∣eiτ
∑m

k=1 rj,kgk − ei
∑m

k=1 rj,kx0,k

∣

∣

∣ ,

which, from (8), is equal to

a

n
∑

j=1

∣

∣

∣ei
∑m

k=1(rj,k2πqek+rj,kx0,k+rj,kηk) − ei
∑m

k=1 rj,kx0,k

∣

∣

∣ =
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a

n
∑

j=1

∣

∣

∣ei
∑m

k=1 rj,kηk − 1
∣

∣

∣ ≤ a

n
∑

j=1

∣

∣

∣

∣

∣

m
∑

k=1

rj,kηk

∣

∣

∣

∣

∣

≤

anr

m
∑

k=1

|ηk| < anr

m
∑

k=1

ε

a ·m · n · r = ε.

As an immediate consequence of Theorem 1, we obtain the following corol-
lary (compare with [11, Corollary 3]).

Corollary 2 Given Λ = {λ1, λ2, . . . , λn} a finite set of exponents, let f1(t) =
∑n

j=1 aje
iλj t and f2(t) =

∑n
j=1 bje

iλjt be two equivalent functions in the class
PR,Λ. Fixed ε > 0, there exists a relatively dense set of real numbers τ such
that

|f1(t+ τ) − f2(t)| < ε ∀t ∈ R.

Proof Fixed τ > 0, note that for any t ∈ R it is accomplished that

|f1(t+ τ)− f2(t)| ≤
n
∑

j=1

|ajeiλj(t+τ) − bje
iλj t| =

n
∑

j=1

|ajeiλjτ − bj |.

Thus, by Theorem 1 and given d > 0, there exists τ1 > d such that

|f1(t+ τ1)− f2(t)| < ε/2 ∀t ∈ R. (9)

Moreover, since f1(t) is almost periodic, there exists a real number l = l(ε)
such that every interval of length l contains at least one translation number
τ , associated with ε, satisfying

|f1(t+ τ) − f1(t)| ≤ ε/2 for all t ∈ R. (10)

Consequently, from (9) and (10) we deduce the existence of a relatively dense
set of real numbers τ such that any t ∈ R satisfies

|f1(t+ τ + τ1)− f2(t)| ≤ |f1(t+ τ1 + τ)− f1(t+ τ1)|+ |f1(t+ τ1)− f2(t)| < ε.

This proves the result.

It was proved in [11, Proposition 2] that, with respect to the topology

of uniform convergence, the equivalence classes in PR,Λ/
∗∼ are sequentially

compact. We can analogously prove that this property is also true with respect
to the topology of B2(R,C) (see the proof in [11, Proposition 2]).

Proposition 3 Let Λ be a finite set of exponents and G an equivalence class
in PR,Λ/

∗∼. Thus G is sequentially compact.
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4 Besicovitch almost periodic functions in terms of an equivalence
relation

For our purposes, we next focus our attention on the Besicovitch spaceB(R,C),
whose functions are obtained by the completion of the trigonometric polynomi-

als with respect to the seminorm lim supl→∞

(

1
2l

∫ l

−l |f(t)|dt
)

(see for example

[8, Section 3.4]). In particular, the space of functions B(R,C) contains those
of the space of the almost periodic functions AP (R,C) and those functions of
B2(R,C). We recall that every function in B(R,C) is associated with a real
exponential sum with real frequencies of the form

∑

j≥1 aje
iλj t, which is called

its Fourier series.

Definition 4 Let Λ = {λ1, λ2, . . . , λj , . . .} be an arbitrary countable set of
distinct real numbers. We will say that a function f : R → C is in the class
FB2,Λ if it is an almost periodic function in B2(R,C) whose associated Fourier
series is of the form

∑

j≥1

aje
iλjt, aj ∈ C, λj ∈ Λ. (11)

It is worth noting that, in general, when we write that a function f is in
B(R,C) we do not have in mind the function f itself, it does represent a whole
class of equivalent functions according to the relation f1 ≃ f2 if and only if

lim sup
l→∞

(

1

2l

∫ l

−l

|f(t)− g(t)|2dt
)

= 0.

In terms of Definition 2, we can define an equivalence relation on the func-
tions in B(R,C), in particular on the classes FB2,Λ. More specifically, we es-
tablish the following definition.

Definition 5 Given Λ = {λ1, λ2, . . . , λj , . . .} a set of exponents, let f1 and f2
denote two equivalence classes of B(R,C)/ ≃ whose associated Fourier series
are given by

∑

j≥1

aje
iλjt and

∑

j≥1

bje
iλjt, aj , bj ∈ C, λj ∈ Λ.

We will say that f1 is equivalent to f2 if for each integer value n ≥ 1 there
exists a Q-linear map ψn : Vn → R, where Vn is the Q-vector space generated
by {λ1, λ2, . . . , λn}, such that

bj = aje
iψn(λj), j = 1, . . . , n.

In that case, we will write f1
∗∼f2.

The next important lemma allows us to prove that if a function f2 is
equivalent (in the sense of Definition 5) to a function f1 belonging to the space
B2(R,C), then f2 also belongs to B2(R,C). This is clearly a consequence of
Riesz-Fischer theorem [3, p. 110].
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Lemma 1 Let f1(t) ∈ B2(R,C) be an almost periodic function whose Fourier
series is given by

∑

j≥1 aje
iλjt, aj ∈ C, where {λ1, . . . , λj , . . .} is a set of dis-

tinct exponents. Consider bj ∈ C such that
∑

j≥1 bje
iλjt and

∑

j≥1 aje
iλj t are

equivalent. Then
∑

j≥1 bje
iλj t is the Fourier series associated with an almost

periodic function f2(t) ∈ B2(R,C) so that f1
∗∼f2.

Proof Take Λ = {λ1, . . . , λj , . . .}. By the hypothesis, f1 ∈ FB2,Λ ⊂ B2(R,C)
is determined by the series

∑

j≥1 aje
iλjt, aj ∈ C, λj ∈ Λ. Moreover, since

∑

j≥1 aje
iλj t

∗∼
∑

j≥1 bje
iλjt, we deduce from Corollary 1 that |bj| = |aj | for

j ≥ 1 and hence
∑

j≥1

|bj |2 =
∑

j≥1

|aj |2 <∞.

By Riesz-Fischer theorem [3, p. 110], there exists a function f2 ∈ B2(R,C)
such that the values bn are the Fourier coefficients of f2.

As it was said before, it is worth noting that a Fourier series
∑

n≥1 ane
iλnt,

such that
∑

n≥1 |an|2 < ∞, represents an equivalence class (according to the

relation ≃) of functions in B2(R,C) (not a single function). In fact, as we
pointed out in introduction, since two almost periodic functions in the Besi-
covitch sense are connected in B2(R,C) when they have the same Fourier
series ([3, p. 148] or [8, Section 4.2]), we immediately deduce from the results
above the following corollary.

Corollary 3 Let f1(t) and f2(t) be two equivalent functions in B(R,C). If
f1(t) ∈ B2(R,C), then f2(t) ∈ B2(R,C).

The following result is concerned with the concept of convergence in B2(R,C)
which is certainly weaker than the uniform convergence. Under this topology,
we next show that the equivalence classes of FB2,Λ/

∗∼ are closed. In fact, more
specifically, they are sequentially compact.

Proposition 4 Let Λ be a set of exponents and G an equivalence class in
FB2,Λ/

∗∼. Thus G is sequentially compact.

Proof Let {fl}l≥1 be a sequence in an equivalence class G in FB2,Λ/
∗∼. For

each l = 1, 2, . . ., suppose that the Fourier series which is associated with fl(t)
is given by

∑

j≥1

al,je
iλjt with al,j ∈ C, λj ∈ Λ.

Fixed a basis GΛ = {g1, g2, . . . , gk, . . .} for Λ, let rj = (rj,1, rj,2, . . .) be the
vector satisfying < rj ,g >= λj for each j ≥ 1, where g = (g1, g2, . . . , gk, . . .).

Since f1
∗∼fl for each l = 1, 2, . . ., we deduce from Proposition 1 that for each

integer value n ≥ 1 there exists xl,n = (xl,n,1, xl,n,2, . . .) ∈ R♯GΛ such that

al,j = a1,je
i<rj ,xl,n>, j = 1, 2 . . . , n. (12)
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Given l ≥ 1, let Pl,k(t) =
∑

j≥1 pj,kal,je
iλj t, k = 1, 2, . . ., be the Bochner-Fejér

polynomials which converge to fl with respect to the topology of B2(R,C)
(and converge formally to its Fourier series on R) [3, p. 105, Theorem II]. It
is worth noting that for each k only a finite number of the factors pj,k dif-
fer from zero, and these factors pj,k do not depend on l [3, p. 48]. Thus,
by taking into account (12), it is clear that {Pl,1(t)}l≥1 is a sequence of
equivalent trigonometric polynomials and, by Proposition 3, there exists a
subsequence {Plm,1,1(t)}m≥1 ⊂ {Pl,1(t)}l≥1 convergent to a certain P1(t) =
∑

j≥1 pj,1aje
iλj t ∈ PR,Λ1 , where Λ1 = {λj ∈ Λ : pj,1 6= 0}, which is in the

same equivalence class as P1,1(t). Furthermore, by Proposition 1, this means

that there exists x
(1)
0 = (x

(1)
0,1, x

(1)
0,2, . . .) ∈ Rm1 such that

pj,1aj = pj,1a1,je
i<rj ,x

(1)
0 >, j = 1, 2 . . . , with λj ∈ Λ1,

where m1 is the number of elements of any basis for Λ1. Equivalently

aj = a1,je
i<rj ,x

(1)
0 >, j = 1, 2 . . . , with λj ∈ Λ1.

Analogously, from the sequence {Plm,1,2(t)}m≥1, we can draw a subsequence
{Plm,2,2(t)}m≥1 ⊂ {Plm,1,2(t)}m≥1 convergent to a certain

P2(t) =
∑

j≥1

pj,2aje
iλjt ∈ PR,Λ2 ,

where Λ2 = {λj ∈ Λ : pj,2 6= 0}∪Λ1, which is in the same equivalence class as

P1,2(t). This implies that there exists x
(2)
0 = (x

(2)
0,1, x

(2)
0,2, . . .) ∈ Rm2 such that

aj = a1,je
i<rj ,x

(2)
0 >, j = 1, 2 . . . , with λj ∈ Λ2,

wherem2 is the number of elements of any basis for Λ2. In general, for each k =
2, 3, . . ., we can extract a subsequence {Plm,k,k(t)}m≥1 ⊂ {Plm,k−1,k(t)}m≥1

convergent to a certain

Pk(t) =
∑

j≥1

pj,kaje
iλjt ∈ PR,Λk

,

where Λk = {λj ∈ Λ : pj,k 6= 0} ∪ Λk−1, which is in the same equivalence

class as P1,k(t) and hence there exists x
(k)
0 = (x

(k)
0,1 , x

(k)
0,2 , . . .) ∈ Rmk (mk is the

number of elements of any basis for Λk) such that

aj = a1,je
i<rj ,x

(k)
0 >, j = 1, 2 . . . , with λj ∈ Λk. (13)

So we get by induction a sequence {Pk(t)}k≥1 of trigonometric polynomials
which converges formally to the series

∑

j≥1

aje
iλj t, λj ∈ Λ, (14)



12 J.M. Sepulcre, T. Vidal

and, since (13) is satisfied for any k = 1, 2, . . ., we can construct, for each
integer value n ≥ 1, a vector x0,n ∈ R♯GΛ such that

aj = a1,je
i<rj ,x0,n>, j = 1, 2 . . . , n with λj ∈ Λ.

Hence the series (14) is equivalent to
∑

j≥1 a1,je
iλj t and, by Lemma 1, it is the

Fourier series associated with an almost periodic function h(t) ∈ B2(R,C) such

that h
∗∼f1. Consequently, {Pk(t)}k≥1 converges with respect to the topology

of B2(R,C) to h(t) ∈ G and we can extract a subsequence of {fl(t)}l≥1 which
also converges in B2(R,C) to h(t).

As a consequence of Proposition 4, in the topology of B2(R,C), we next
show that the family of translates of a function f ∈ FB2,Λ is closed on its

equivalence class of FB2,Λ/
∗∼.

Corollary 4 Let Λ be a set of exponents and f ∈ FB2,Λ. Thus the limit points
of the set of functions Tf = {fτ(t) := f(t + τ) : τ ∈ R} are functions which
are equivalent to f .

Proof Since it is plain that the functions included in Tf = {fτ (p) := f(t+ τ) :
τ ∈ R} are in the same equivalence class of f (see in [8, Section 4.2] the
Fourier series of the translates of a function in the Besicovitch spaces), the
result follows easily from Proposition 4.

Now Corollary 4 can be improved with the following result. Indeed, we
next prove that, fixed a function f ∈ FB2,Λ, the limit points of the set of
the translates Tf = {f(t+ τ) : τ ∈ R} of f are precisely the almost periodic
functions which are equivalent to f .

Theorem 2 Let Λ be a set of exponents, G an equivalence class in FB2,Λ/
∗∼

and f ∈ G. Thus the set of functions Tf = {fτ (t) := f(t+ τ) : τ ∈ R} is dense
in G.

Proof Let f(t) be a function in the class FB2,Λ. We know by Corollary 4 that
the limit points of the set of functions Tf = {fτ (t) := f(t + τ) : τ ∈ R}
are functions in B2(R,C) which are equivalent to f . We next demonstrate
that any function h(t) which is equivalent to f(t) is also a limit point of Tf .
If ♯Λ < ∞, given εn = 1

n , n ∈ N, Corollary 2 assures the existence of an
increasing sequence {τn}n≥1 of positive real numbers such that any n ∈ N

verifies
|f(t+ τn)− h(t)|2 < εn ∀t ∈ R.

Hence M(|fτn(t)−h(t)|2) → 0 as n goes to ∞ (see (2) for the definition of the
mean valueM(f)), and the result holds for the case ♯Λ <∞. Consider ♯Λ = ∞
and let

∑

j≥1 aje
iλj t and

∑

j≥1 bje
iλjt be the Fourier series of f ∈ FB2,Λ and

h
∗∼f , respectively. Take ε1 =

∑

j>1 |aj |2 > 0, then Theorem 1 assures the
existence of τ1 > 0 such that

∣

∣

∣a1e
iλ1(t+τ1) − b1e

iλ1t
∣

∣

∣ <
√
ε1 ∀t ∈ R,
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which implies
∣

∣a1e
iλ1τ1 − b1

∣

∣

2
< ε1. (15)

Thus, from (15) and |aj | = |bj | for any j ≥ 1 (Corollary 1), we have that

∑

j≥1

|ajeiλ1τ1 − bj |2 < ε1 +
∑

j>1

|ajeiλjτ1 − bj |2 ≤ ε1 +
∑

j>1

(|aj |+ |bj |)2 =

ε1 + 4
∑

j>1

|aj |2 = 5ε1.

Consequently,

M(|fτ1(t)− h(t)|2) < 5ε1.

Similarly, take ε2 =
∑

j>2 |aj |2 > 0, then Theorem 1 assures the existence of
τ2 > τ1 such that

2
∑

j=1

∣

∣

∣aje
iλj(t+τ2) − bje

iλjt
∣

∣

∣ <
√
ε2,

which implies




2
∑

j=1

∣

∣aje
iλjτ2 − bj

∣

∣





2

< ε2. (16)

Therefore, from (16) and |aj | = |bj | for any j ≥ 1, we have

∑

j≥1

|ajeiλ1τ2 − bj |2 = |a1eiλ1τ2 − b1|2 + |a2eiλ1τ2 − b2|2 +
∑

j>2

|ajeiλjτ2 − bj|2 ≤

(|a1eiλ1τ2 − b1|+ |a2eiλ1τ2 − b2|)2 +
∑

j>2

|ajeiλjτ2 − bj |2 ≤

≤ ε2 +
∑

j>2

(|aj |+ |bj |)2 = ε2 + 4
∑

j>2

|aj |2 = 5ε2.

Consequently,

M(|fτ2(t)− h(t)|2) < 5ε2.

In general, by repeating this process, we can construct an increasing sequence
{τn}n≥1 such that each τn satisfies that

n
∑

j=1

∣

∣

∣aje
iλj(t+τn) − bje

iλj t
∣

∣

∣ <
√
εn,

which implies




n
∑

j=1

∣

∣aje
iλjτn − bj

∣

∣





2

< εn. (17)
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with εn =
∑

j>n |aj |2. Thus, from (17) we have

M(|fτn(t)− h(t)|2) =
∑

j≥1

|ajeiλ1τn − bj |2 =

n
∑

j=1

|ajeiλjτn − bj|2 +
∑

j>n

|ajeiλjτn − bj |2 ≤





n
∑

j=1

|ajeiλjτn − bj|





2

+
∑

j>n

|ajeiλjτn − bj|2 ≤

≤ εn +
∑

j>n

(|aj |+ |bj |)2 = εn + 4
∑

j>n

|aj |2 = 5εn.

Note that
∑

j≥1 |aj |2 < ∞, then
∑

j>n |aj |2 tends to 0 when n goes to ∞.

Consequently, the sequence of functions {f(t+ τn)}n≥1 converges in B2(R,C)
to h(t), and the result holds.

Corollary 5 Let f ∈ B2(R,C) and f1
∗∼f . There exists an increasing un-

bounded sequence {τn}n≥1 of positive numbers such that the sequence of func-
tions {f(t+ τn)}n≥1 converges in B2(R,C) to f1(t). In fact, given ε > 0 there
exists a satisfactorily uniform set of positive numbers τ such that

M(|f(t+ τ)− f1(t)|2) < ε.

Proof Let f ∈ B2(R,C), then f ∈ FB2,Λ for some set Λ of exponents. Let G
be the equivalence class in FB2,Λ/

∗∼ so that f ∈ G and let f1
∗∼f . Thus, by

Theorem 2 (see also its proof), there exists an increasing unbounded sequence
{τn}n≥1 of positive numbers such that the sequence of functions {f(t+τn)}n≥1

converges in B2(R,C) to f1(t). Equivalently, given ε > 0 there exists n0 ∈ N

such that

M(|f(t+ δn)− f1(t)|2) < ε/2 ∀n ≥ n0.

Moreover, since f(t) is almost periodic in the sense of Besicovitch, there exist
a set S = {τk} ⊂ R and l = l(ε) > 0 such that the ratio of the maximum
number of elements of S included in an interval (a, a + l) to the minimum
number is less than 2 and satisfy

M(|f(t+ τk)− f(t)|2) < ε/2.

Hence any τk satisfies

M(|f(t+ δn + τk)− f1(t)|2) ≤M(|f(t+ δn + τk)− f(t+ δn)|2)+
+M(|f(t+ δn)− f1(t)|2) < ε ∀n ≥ n0,

which proves the result.
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It is known that the almost periodic functions in the Besicovitch spaces
Bp(R,C), 1 ≤ p < ∞, satisfy the Bochner-type property consisting of the
relative compactness of the set {f(t+ τ)}, τ ∈ R, associated with an arbitrary
function f ∈ Bp(R,C) (see [1, Theorem 5.34] or [8, Section 3.4]). As an im-
portant consequence of Theorem 2, we next refine this property for the case
of B2(R,C) in the sense that we show that the condition of almost periodic-
ity, in the sense of Besicovitch, of a function f(t) implies that every sequence
{f(t+ τn)}, τn ∈ R, of translates of f has a subsequence that converges with
the topology of B2(R,C) to a function which is equivalent to f .

Corollary 6 If f ∈ B2(R,C), then the compact closure of its set of translates
coincides with its equivalence class.

Proof First of all, we recall that any function f ∈ B(R,C) has an associated
Fourier series. Let f ∈ B2(R,C), then f ∈ FB2,Λ for some set Λ of exponents.

Now, let G be the equivalence class in FB2,Λ/
∗∼ so that f ∈ G. By Theorem

2, all the limit points of the translates of f are exponential sums which are
included in G and, in fact, the compact closure of the set of the translates of
f coincides with G.

Remark 1 Given Λ = {λ1, λ2, . . . , λj , . . .} a set of exponents, consider A1(p)
and A2(p) two exponential sums in the class SΛ, say A1(p) =

∑

j≥1 aje
λjp and

A2(p) =
∑

j≥1 bje
λjp. Let V be the Q-vector space generated by Λ. We will

say that A1 is B-equivalent to A2 if there exists a Q-linear map ψn : V → R

such that
bj = aje

iψn(λj), j = 1, 2, . . . .

It is easy to prove that, fixed a basis GΛ for Λ, A1 is B-equivalent to A2

if and only if there exists x0 = (x0,1, x0,2, . . . , x0,k, . . .) ∈ R♯GΛ such that
bj = aje

<rj,x0>i for every j ≥ 1, where the rj ’s are the vectors of rational
components verifying (4).

From this and Proposition 1, it is worth noting that Definition 2 and defi-
nition of B-equivalence are equivalent in the case that it is possible to obtain
an integral basis for the set of exponents Λ. Consequently, all the results of
this paper which can be formulated in terms of an integral basis are also valid
under the B-equivalence. (in particular, those related to the finite exponential
sums in Section 3).
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