148 research outputs found

    Complex Wave Numbers in the Vicinity of the Schwarzschild Event Horizon

    Full text link
    This paper is devoted to investigate the cold plasma wave properties outside the event horizon of the Schwarzschild planar analogue. The dispersion relations are obtained from the corresponding Fourier analyzed equations for non-rotating and rotating, non-magnetized and magnetized backgrounds. These dispersion relations provide complex wave numbers. The wave numbers are shown in graphs to discuss the nature and behavior of waves and the properties of plasma lying in the vicinity of the Schwarzschild event horizon.Comment: 21 pages, 9 figures, accepted for publication Int. J. Mod. Phys.

    Acetaldehyde and hexanaldehyde from cultured white cells

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Noninvasive detection of innate immune function such as the accumulation of neutrophils remains a challenge in many areas of clinical medicine. We hypothesized that granulocytes could generate volatile organic compounds.</p> <p>Methods</p> <p>To begin to test this, we developed a bioreactor and analytical GC-MS system to accurately identify and quantify gases in trace concentrations (parts per billion) emitted solely from cell/media culture. A human promyelocytic leukemia cell line, HL60, frequently used to assess neutrophil function, was grown in serum-free medium.</p> <p>Results</p> <p>HL60 cells released acetaldehyde and hexanaldehyde in a time-dependent manner. The mean ± SD concentration of acetaldehyde in the headspace above the cultured cells following 4-, 24- and 48-h incubation was 157 ± 13 ppbv, 490 ± 99 ppbv, 698 ± 87 ppbv. For hexanaldehyde these values were 1 ± 0.3 ppbv, 8 ± 2 ppbv, and 11 ± 2 ppbv. In addition, our experimental system permitted us to identify confounding trace gas contaminants such as styrene.</p> <p>Conclusion</p> <p>This study demonstrates that human immune cells known to mimic the function of innate immune cells, like neutrophils, produce volatile gases that can be measured <it>in vitro </it>in trace amounts.</p

    Cold Plasma Dispersion Relations in the Vicinity of a Schwarzschild Black Hole Horizon

    Full text link
    We apply the ADM 3+1 formalism to derive the general relativistic magnetohydrodynamic equations for cold plasma in spatially flat Schwarzschild metric. Respective perturbed equations are linearized for non-magnetized and magnetized plasmas both in non-rotating and rotating backgrounds. These are then Fourier analyzed and the corresponding dispersion relations are obtained. These relations are discussed for the existence of waves with positive angular frequency in the region near the horizon. Our results support the fact that no information can be extracted from the Schwarzschild black hole. It is concluded that negative phase velocity propagates in the rotating background whether the black hole is rotating or non-rotating.Comment: 27 pages, 11 figures accepted for publication in Gen. Relat. & Gravi

    Mapping human serum induced gene networks as a basis for the creation of biomimetic periosteum for bone repair

    Get PDF
    The periosteum is a highly vascularised, collagen-rich tissue that plays a crucial role in directing bone repair. This is orchestrated primarily by its resident progenitor cell population. Indeed, preservation of periosteum integrity is critical for bone healing. Cells extracted from the periosteum retain their osteochondrogenic properties and as such are a promising basis for tissue engineering strategies for the repair of bone defects. However, the culture expansion conditions, and the way in which the cells are reintroduced to the defect site are critical aspects of successful translation. Indeed, expansion in human serum and implantation on biomimetic materials has previously been shown to improve in vivo bone formation. As such, this study aimed to develop a protocol to allow for the expansion of human periosteum derived cells (hPDCs) in a biomimetic periosteal-like environment. The expansion conditions were defined through the investigation of the bioactive cues involved in augmenting hPDC proliferative and multipotency characteristics, based on transcriptomic analysis of cells cultured in human serum. Master regulators of transcriptional networks were identified and an optimised periosteal derived-growth factor cocktail (PD-GFC; containing β-Estradiol, FGF2, TNFα, TGFβ, IGF-1 and PDGF-BB) was generated. Expansion of hPDCs in PD-GFC resulted in serum mimicry with regards to the cell morphology, proliferative capacity and chondrogenic differentiation. When incorporated into a 3D collagen-type-1 matrix and cultured in PD-GFC, the hPDCs migrated to the surface that represented the matrix topography of the periosteum cambium layer. Furthermore, gene expression analysis revealed a downregulated Wnt and TGFβ signature and an upregulation of CREB, which may indicate the hPDCs are recreating their progenitor cell signature. This study highlights the first stage in the development of a biomimetic periosteum which may have applications in bone repair

    Cold Plasma Wave Analysis in Magneto-Rotational Fluids

    Full text link
    This paper is devoted to investigate the cold plasma wave properties. The analysis has been restricted to the neighborhood of the pair production region of the Kerr magnetosphere. The Fourier analyzed general relativistic magnetohydrodynamical equations are dealt under special circumstances and dispersion relations are obtained. We find the xx-component of the complex wave vector numerically. The corresponding components of the propagation vector, attenuation vector, phase and group velocities are shown in graphs. The direction and dispersion of waves are investigated.Comment: 22 pages, 18 figures, accepted for publication in Astrophys. Space Sc

    Maternal Characteristics Affect Fetal Growth Response in the Women First Preconception Nutrition Trial.

    Get PDF
    The objective of this secondary analysis was to identify maternal characteristics that modified the effect of maternal supplements on newborn size. Participants included 1465 maternal-newborn dyads in Guatemala, India, and Pakistan. Supplementation commenced before conception (Arm 1) or late 1st trimester (Arm 2); Arm 3 received usual care. Characteristics included body mass index (BMI), stature, anemia, age, education, socio-economic status (SES), parity, and newborn sex. Newborn outcomes were z-scores for length (LAZ), weight (WAZ), and weight to length ratio-for-age (WLRAZ). Mixed-effect regression models included treatment arm, effect modifier, and arm * effect modifier interaction as predictors, controlling for site, characteristics, and sex. Parity (para-0 vs. para ≥1), anemia (anemia/no anemia), and sex were significant effect modifiers. Effect size (95% CI) for Arm 1 vs. 3 was larger for para-0 vs. ≥1 for all outcomes (LAZ 0.56 (0.28, 0.84, p \u3c 0.001); WAZ 0.45 (0.20, 0.07, p \u3c 0.001); WLRAZ 0.52 (0.17, 0.88, p \u3c 0.01) but only length for Arm 2 vs. 3. Corresponding effects for para ≥1 were \u3e0.02. Arm 3 z-scores were all very low for para-0, but not para ≥1. Para-0 and anemia effect sizes for Arm 1 were \u3e Arm 2 for WAZ and WLRAZ, but not LAZ. Arm 1 and 2 had higher WAZ for newborn boys vs. girls. Maternal nulliparity and anemia were associated with impaired fetal growth that was substantially improved by nutrition intervention, especially when commenced prior to conception

    Functional genomic analyses uncover APOE-mediated regulation of brain and cerebrospinal fluid beta-amyloid levels in Parkinson disease

    Get PDF
    Alpha-synuclein is the main protein component of Lewy bodies, the pathological hallmark of Parkinson\u27s disease. However, genetic modifiers of cerebrospinal fluid (CSF) alpha-synuclein levels remain unknown. The use of CSF levels of amyloid bet

    Blinded, multi-centre evaluation of drug-induced changes in contractility using human induced pluripotent stem cell-derived cardiomyocytes

    Get PDF
    Animal models are 78% accurate in determining whether drugs will alter contractility of the human heart. To evaluate the suitability of human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) for predictive safety pharmacology, we quantified changes in contractility, voltage, and/or Ca2+ handling in 2D monolayers or 3D engineered heart tissues (EHTs). Protocols were unified via a drug training set, allowing subsequent blinded multicenter evaluation of drugs with known positive, negative, or neutral inotropic effects. Accuracy ranged from 44% to 85% across the platform-cell configurations, indicating the need to refine test conditions. This was achieved by adopting approaches to reduce signal-to-noise ratio, reduce spontaneous beat rate to ≤ 1 Hz or enable chronic testing, improving accuracy to 85% for monolayers and 93% for EHTs. Contraction amplitude was a good predictor of negative inotropes across all the platform-cell configurations and of positive inotropes in the 3D EHTs. Although contraction- and relaxation-time provided confirmatory readouts forpositive inotropes in 3D EHTs, these parameters typically served as the primary source of predictivity in 2D. The reliance of these “secondary” parameters to inotropy in the 2D systems was not automatically intuitive and may be a quirk of hiPSC-CMs, hence require adaptations in interpreting the data from this model system. Of the platform-cell configurations, responses in EHTs aligned most closely to the free therapeutic plasma concentration. This study adds to the notion that hiPSC-CMs could add value to drug safety evaluation
    corecore