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Functional genomic analyses uncover 
APOE-mediated regulation of brain 
and cerebrospinal fluid beta-amyloid levels 
in Parkinson disease
Laura Ibanez1,2, Jorge A. Bahena1,2, Chengran Yang1,2, Umber Dube1,2, Fabiana H. G. Farias1,2, John P. Budde1,2, 
Kristy Bergmann1,2, Carol Brenner‑Webster1,2, John C. Morris3,4,5, Richard J. Perrin3,4,5,6, Nigel J. Cairns3,4,5,6,7, 
John O’Donnell4, Ignacio Álvarez8,9, Monica Diez‑Fairen8,9, Miquel Aguilar8,9, Rebecca Miller4, Albert A. Davis3,4, 
Pau Pastor8,9, Paul Kotzbauer3,4, Meghan C. Campbell4,10, Joel S. Perlmutter3,4,10, Herve Rhinn11, 
Oscar Harari1,2,3,5, Carlos Cruchaga1,2,3,5,12 and Bruno A. Benitez1,2* 

Abstract 

Alpha‑synuclein is the main protein component of Lewy bodies, the pathological hallmark of Parkinson’s disease. 
However, genetic modifiers of cerebrospinal fluid (CSF) alpha‑synuclein levels remain unknown. The use of CSF levels 
of amyloid  beta1–42, total tau, and phosphorylated  tau181 as quantitative traits in genetic studies have provided novel 
insights into Alzheimer’s disease pathophysiology. A systematic study of the genomic architecture of CSF biomarkers 
in Parkinson’s disease has not yet been conducted. Here, genome‑wide association studies of CSF biomarker levels in 
a cohort of individuals with Parkinson’s disease and controls (N = 1960) were performed. PD cases exhibited signifi‑
cantly lower CSF biomarker levels compared to controls. A SNP, proxy for APOE ε4, was associated with CSF amyloid 
 beta1–42 levels (effect = − 0.5, p = 9.2 × 10−19). No genome‑wide loci associated with CSF alpha‑synuclein, total tau, or 
phosphorylated  tau181 levels were identified in PD cohorts. Polygenic risk score constructed using the latest Parkin‑
son’s disease risk meta‑analysis were associated with Parkinson’s disease status (p = 0.035) and the genomic archi‑
tecture of CSF amyloid  beta1–42  (R2 = 2.29%; p = 2.5 × 10−11). Individuals with higher polygenic risk scores for PD risk 
presented with lower CSF amyloid  beta1–42 levels (p = 7.3 × 10−04). Two‑sample Mendelian Randomization revealed 
that CSF amyloid  beta1–42 plays a role in Parkinson’s disease (p = 1.4 × 10−05) and age at onset (p = 7.6 × 10−06), an 
effect mainly mediated by variants in the APOE locus. In a subset of PD samples, the APOE ε4 allele was associated 
with significantly lower levels of CSF amyloid  beta1–42 (p = 3.8 × 10−06), higher mean cortical binding potentials 
(p = 5.8 × 10−08), and higher Braak amyloid beta score (p = 4.4 × 10−04). Together these results from high‑throughput 
and hypothesis‑free approaches converge on a genetic link between Parkinson’s disease, CSF amyloid  beta1–42, and 
APOE.
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Introduction
Parkinson’s disease (PD) is a neurodegenerative dis-
ease characterized by rest tremor, rigidity, bradykin-
esia, and postural instability [57]. It is the most common 
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neurodegenerative movement disorder, affecting more 
than six million people worldwide, with its prevalence 
projected to double in the next several decades [29]. 
Aggregated and phosphorylated alpha-synuclein (α-Syn) 
is the main protein component of Lewy bodies (LB) and 
neurites, the pathological hallmark of Lewy body dis-
eases. The gene dosage effect of the SNCA gene, which 
encodes α-Syn, correlates with cerebrospinal fluid (CSF) 
α-Syn levels and a more severe PD phenotype [30, 55]. 
Common variants in the SNCA promoter are among 
the top genome-wide association studies (GWAS) sig-
nals for PD [54], suggesting that genetic control of CSF 
α-Syn level plays a role in PD phenotype variability. A 
modest but significant decrease (~ 10% to 15%) in CSF 
α-Syn levels has been reported in PD cases compared to 
controls [33] and is correlated with disease progression 
[1, 13, 35]. CSF α-Syn is not currently used as a clinical 
biomarker [35, 53], but is a proxy for pathological brain 
α-Syn accumulation [64]. Therefore, identifying genetic 
modifiers of CSF α-Syn levels could provide insight into 
PD pathogenesis. To date, genetic modifiers of CSF 
α-Syn remain unknown.

The α-Syn accumulation in specific brain regions 
defines different subtypes of Lewy body diseases (LBD). 
However, pure α-Syn pathology is only found in 45% 
(brainstem), 32% (limbic) and 19% (neocortical) of LBD. 
Concomitant presence of amyloid beta (Aβ), tau, and 
TDP-43 are common findings in LBD. Thus, Aβ and 
tau pathology is present in up to 80% and 53% in cases 
of neocortical LBD, respectively [58]. LBD patients with 
concomitant Alzheimer’s disease (AD) pathology exhibit 
a faster cognitive decline [44]. CSF levels of amyloid 
 beta1–42 (Aβ42), total tau (t-tau), and phosphorylated 
 tau181 (p-tau181) are commonly used as proxies of Aβ 
and tau pathology in the brain [8]. A correlation between 
lower Aβ42 CSF levels and higher Braak stage scores of 
AD neuropathology was found in neuropathologically 
confirmed LBD cases [8]. In cross-sectional studies, PD 
cases exhibit lower CSF levels of Aβ42 compared to age 
and gender-matched healthy controls [14, 52]. CSF levels 
of Aβ42 and t-tau levels are also associated with cognitive 
decline progression [52]. Decreased CSF Aβ42 levels pre-
dict the development of dementia in PD patients [47, 63]. 
These results suggest that dementia-associated CSF bio-
marker profile signatures could be informative of brain 
pathology in PD patients. GWAS using CSF Aβ42, t-tau, 
and p-tau181 levels as quantitative traits have identified 
genes involved in AD pathogenesis [24]. However, a sys-
tematic study of the role of genetic modifiers of demen-
tia CSF biomarkers in PD has not yet been thoroughly 
evaluated.

This study aimed to uncover genetic modifiers of α-Syn, 
Aβ42, t-tau, and p-tau181 CSF levels in PD patients by 

performing a large (N = 1960) GWAS meta-analysis of 
CSF biomarkers in PD cohorts. Polygenic risk scores 
(PRS) and Mendelian randomization (MR) analyses were 
integrated with the latest PD risk meta-analysis (META-
PD) and CSF biomarker summary statistics to examine 
the causal relationship between CSF biomarkers and PD 
risk. This is the first comprehensive analysis of CSF bio-
markers using GWAS, PRS, and MR in PD.

Materials and methods
Study design
The goal of this study was to identify common genetic 
variants and genes associated with CSF α-Syn, Aβ42, 
tau, and p-tau181 in PD. A three-stage GWAS was used: 
discovery, replication, and meta-analysis. The discov-
ery phase included 729 individuals from the Protein and 
Imaging Biomarkers in Parkinson’s disease study (PIB-
PD) at the Washington University Movement Disorder 
Center [9] (n = 103) and the Knight ADRC [24] (n = 626). 
The replication phase included 1231 independent CSF 
samples obtained from PD cases and healthy elderly 
individuals from three additional studies [the Parkin-
son’s Progression Markers Initiative (PPMI), Alzheimer 
Disease Neuroimaging Initiative (ADNI), and Spain]. 
Meta-analyses were performed using a fixed-effects 
model. Genetic loci that passed the multiple test correc-
tion for GWAS (p < 5.0×10−8) were functionally anno-
tated using bioinformatics tools to identify variants and 
genes driving the GWAS signal. PRS were used to test 
the correlation between CSF biomarkers and PD genetic 
architecture. Instrumental variables were selected from 
the summary statistics of CSF biomarkers, and MR meth-
ods were applied to test causality.

Cohorts/datasets
This cross‐sectional multicenter study was performed 
using 1960 samples from non-Hispanic white (NHW) 
individuals from four cohorts: Washington University 
in Saint Louis (WUSTL) (N = 729), PPMI (N = 785), 
the University Hospital Mutua Terrassa (Spain, 
N = 130) and ADNI (N = 316). Cohorts included 
700 clinically diagnosed PD cases, 564 controls, and 
386 clinically-diagnosed AD cases. The remaining 
N = 310 individuals do not exhibit symptoms of neu-
rodegenerative disease (Table 1 and Additional file 2: 
Table  S1). PD clinical diagnoses were based on the 
UK Brain Bank criteria [39]. Clinical, biomarker, and 
genetic data from the PPMI and ADNI were obtained 
from the corresponding data repositories (www.ppmi-
info.org and http://adni.loni.usc.edu/), accessed most 
recently on April 2019. The demographic characteris-
tics of some of those cohorts have been published pre-
viously [4, 21, 28]. PPMI is a prospective study with 

http://www.ppmi-info.org
http://www.ppmi-info.org
http://adni.loni.usc.edu/
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ongoing recruitment. CSF samples were obtained at 
baseline (N = 510), 6  months (N = 385), and yearly 
after enrolment  (N1stYear = 428,  N2ndYear = 404, and 
 N3rdYear = 320). CSF α-Syn, Aβ42, t-tau, and p-tau181 
were available for all the mentioned time points in the 
PPMI cohort.

Biomarker measurements
α-Syn in CSF was measured in 107 samples from the 
WUSTL cohort [9] and the entire PPMI cohort, using a 
commercial ELISA kit (Covance, Dedham, MA) [45]. The 
additional samples (N = 622) from WUSTL were quanti-
fied using the SOMAScan platform (See below). Aβ42, 
t-tau, and p-tau181 were quantified using the INNOTEST 
assay (WUSTL) and xMAP-Luminex with INNOBIA 
AlzBio3 (PPMI). The immunoassay platform from Roche 
Elecsys cobas e 601 was used in the ADNI cohort to quan-
tify all four biomarkers. ELISA assays from Euroimmun 
(Germany) were used in the Spanish cohort to measure 
the CSF levels of α-Syn, Aβ42, t-tau, and p-tau181. The 
α-Syn levels were normalized by  log10 transformation. 
Aβ42, t-tau, and p-tau181 values were normalized and 
standardized by the Z score transformation. Individuals 
with biomarker levels outside three standard deviations of 
the mean were removed from the analysis (Table 1).

Amyloid beta imaging
[11C]-Pittsburgh Compound B (PIB) acquisition and 
analysis were performed according to published methods 
[34]. Briefly, 10-15 mCi of the radiotracer was injected via 
an antecubital vein, and a 60-min, a three-dimensional 
dynamic PET scan was collected in 53 frames. Emission 
data were corrected for scattering, randoms, attenuation, 

and dead time. Image reconstruction produced images 
with a final resolution of 6 mm full-width half-maximum 
at the center of the field of view. Frame alignment was 
corrected for head motion and co-registered to each 
person’s T1-weighted magnetization-prepared rapid 
gradient echo magnetic resonance scan [61]. For quan-
titative analyses, three-dimensional regions of interest 
(prefrontal cortex, gyrus rectus, lateral temporal cortex, 
precuneus, occipital lobe, caudate nucleus, brainstem, 
and cerebellum) were created by a blinded observer for 
each subject based on the individual’s MRI scans, with 
boundaries defined as previously described [50]. Binding 
potentials  (BPND) were calculated using Logan graphi-
cal analysis, with the cerebellum as the reference tissue 
input function [49, 50]. Mean cortical binding potentials 
(MCBP) were calculated for each subject as the average 
of all cortical regions except the occipital lobe.

Neuropathologic analysis
The neuropathological analysis was done at WUSTL, 
as previously reported [47]. Briefly, brains were fixed 
in 10% neutral buffered formalin for 2  weeks. Paraf-
fin-embedded sections were cut at 6  μm. Blocks were 
taken from the frontal, temporal, parietal, and occipital 
lobes (thalamus, striatum, including the nucleus basalis 
of Meynert, amygdala, hippocampus, midbrain, pons, 
medulla oblongata) and the cervical spinal cord. His-
tologic stains included hematoxylin–eosin and a modi-
fied Bielschowsky silver impregnation. The Alzheimer’s 
disease pathologic changes were rated using an amy-
loid plaque stage (range, 0 to A–C) [7] and diffuse and 
neuritic plaques were also assessed. Cases were classi-
fied according to the neuropathologic criteria of Kha-
chaturian [46], the Consortium to Establish a Registry 

Table 1 Summary demographics for the individuals with CSF measurements available

Concentration values have been standardized using ZScore for comparison purposes. Non-transformed values cannot be compared because there are several 
measuring methods: SomaScan platform, INNOTEST assay, xMAP-Luminex with INNOBIA AlzBio3, Roche Elecsys cobas e 601 and Euroimmun
a Includes individuals classified as not being Alzheimer’s disease, Parkinson’s disease or having dementia but neither controls such as essential tremor

All PD cases Controls AD cases Non-neurodegenerativea

N 1960 700 564 386 310

Age (years, 95% CI) 69.3
(62.0–75.0)

66.2
(59.6–73.3)

70.0
(64.9–74.3)

75.0
(70.0–80.0)

64.0
(55.0–73.0)

Males (N, %) 1107
(56.5%)

435
(62.1%)

297
(52.7%)

222
(57.5%)

153
(49.4%)

Alpha‑Synuclein
(ZScore(pg/mL))

− 0.02
(− 0.67 to 0.65)

− 0.03
(− 0.70 to 0.60)

0.02
(− 0.71 to 0.71)

0.14
(− 0.57 to 0.80)

− 0.23
(− 0.76 to 0.47)

Amyloid Beta
(ZScore(pg/mL))

− 0.20
(− 0.72 to 0.64)

− 0.20
(− 0.72 to 0.45)

0.11
(− 0.52 to 1.04)

− 0.63
(− 1.00 to − 0.25)

0.03
(− 0.49 to 0.90)

Total Tau
(ZScore(pg/mL))

− 0.27
(− 0.66 to 0.40)

− 0.27
(− 0.70 to 0.39)

− 0.34
(− 0.67 to 0.28)

0.22
(− 0.41 to 1.00)

− 0.50
(− 0.73 to − 0.08)

Phosphorylated Tau
(ZScore(pg/mL))

− 0.25
(− 0.69 to 0.42)

− 0.30
(− 0.72 to 0.35)

− 0.27
(− 0.70 to 0.35)

0.22
(− 0.42 to 0.95)

− 0.48
(− 0.81 to − 0.04)
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for Alzheimer Disease (CERAD) [51] and NIA-Reagan 
[18].

Genotyping
All cohorts, except PPMI, were genotyped using 
the  Global Screening Array (GSA) Illumina platform. 
Genotyping quality control and imputation were per-
formed using SHAPEIT [23] and IMPUTE2 [38] with 
the 1000 genomes as a reference panel. Single nucleotide 
polymorphisms (SNPs) with a call rate lower than 98% 
and autosomal SNPs that were not in Hardy–Weinberg 
equilibrium (p < 1.0×10−06) were excluded from down-
stream analyses. The X chromosome SNPs were used 
to determine sex based on heterozygosity rates. Sam-
ples in which the genetically inferred sex was discord-
ant with the reported sex were removed. Whole-genome 
sequence data from the PPMI cohort was merged with 
imputed genotyped data; only variants present in both 
files were included in further analyses. Pairwise genome-
wide estimates of proportion identity-by-descent tested 
the presence of unexpected duplicates and cryptically 
related samples (Pihat > 0.50). Unexpected duplicates 
were removed; the sample with a higher genotyping rate 
in the merged file was kept for those cryptically related 
samples. Finally, principal components were calculated 
using HapMap as an anchor. Only samples with Euro-
pean descent, an overall call rate higher than 95%, and 
variants with minor allele frequency (MAF) greater than 
5% were included in the analyses.

Single variant analysis
The three-stage single variant analysis was performed 
due to differences in time and platform for biomarker 
quantification. PLINK1.9 [16, 56] was used to perform 
the analysis of each cohort independently. A linear model 
using the normalized and standardized CSF levels and 
corrected by sex, age, and the first two principal compo-
nents, was used. Disease status was not included in the 
model [25]. Then, the results for each protein were meta-
analyzed using METAL [69]. For the α-Syn analyses, the 
WUSTL cohort was divided into two  subsets based on 
the quantification method (ELISA or SOMAscan).

Analysis of variance
The genome-wide complex traits analysis (GCTA) soft-
ware [71] was used to calculate the amount of variance 
explained by the APOE  locus. GCTA estimates the phe-
notypic variance explained by genetic variants for a com-
plex trait by fitting the effect of these SNPs as random 
effects in a linear mixed model.

Multi-tissue analysis
The levels of α-Syn were measured in CSF, plasma, and 
brain (parietal cortex) using an aptamer-based approach 
(SOMAScan platform) [70]. After stringent quality con-
trol, CSF (n = 835), plasma (n = 529), and brain (n = 380) 
samples were included in the downstream analyses (Addi-
tional file  2: Table  S2). The protein level was 10-based 
log-transformed to approximate the normal distribution 
and used as phenotype for the subsequent GWAS. The 
single variant analysis was performed in each tissue inde-
pendently using PLINK1.9 [56]. A multi-tissue analysis 
using the multi-trait analysis of GWAS (MTAG) [66] was 
applied to increase the power of detecting a no tissue-
specific protein quantitative trait loci for α-Syn. MTAG 
calculates the trait-specific effect estimate for each tis-
sue separately and then performs a  meta-analysis while 
accounting for sample overlap. Measurements of Aβ42, 
t-tau, and p-tau181 were not available in different tissues.

Polygenic risk score
PRS is constructed by summing all trait-associated alleles 
in a target sample (META-PD and CSF biomarkers sepa-
rately), weighted by the effect size of each allele in a base 
using different p-value thresholds. SNPs in linkage disequi-
librium  (LD) are grouped together to avoid extra weight 
into a single marker. The optimal threshold is considered 
the one that explains the maximum variance in the tar-
get sample. The association was tested using the default 
parameters and nine p-value cutoffs. The PRSice2 software 
[17] was used to calculate the PRS. Longitudinal measures 
of CSF α-Syn, Aβ42, t-tau, and p-tau181 were available for 
the PPMI cohort. A simplified PRS (detailed below) was 
used to test if the genetic architecture of PD was predic-
tive of biomarker level progression. The PD PRS using sen-
tinel SNPs from the META-PD [54] was modeled using 
the method previously described [19, 41, 42, 68]. Briefly, 
only genetic variants corresponding to the top hit on each 
GWAS locus (also known as sentinel SNP) available in the 
dataset with a minimum call rate of 85% were included in 
the PRS. If not possible, a proxy with  R2 > 0.90 was used. 
The weight of each variant was calculated using the binary 
logarithm transformation of the reported Odd ratios. The 
final PRS is the sum of the weighted values for the alternate 
allele of all the sentinel SNPs.

Mendelian randomization
MR requires that the genetic instruments are associ-
ated with the modifiable exposure of interest (GWAS 
of CSF biomarkers), and any association between the 
instruments and the outcome (PD risk) is mediated by 
the exposure [11]. A two-sample MR was used to esti-
mate causal effects using the Wald ratio for single vari-
ants along with an inverse-variance–weighted (IVW) 
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fixed-effects meta-analysis for an overall estimate [36]. 
The IVW estimate is the inverse variance weighted mean 
of ratio estimates from 2 or more instruments. Two-
sample MR provides an estimate of the causal effect of 
an exposure on an outcome, using independent samples 
to obtain the gene-exposure and gene-outcome associa-
tions, provided three key assumptions: (i) genetic vari-
ants are robustly associated with the exposure of interest 
(i.e. replicate in independent samples), (ii) genetic vari-
ants are not associated with potential confounders of 
the association between the exposure and the outcome 
and (iii) there are no effects of the genetic variants on 
the outcome, independent of the exposure (i.e. no hori-
zontal pleiotropy). To account for potential violations of 
the assumptions underlying the IVW analysis, a sensitiv-
ity analysis using MR-Egger regression and the weighted 
median estimator was performed [36]. MR Egger regres-
sion consists of a weighted linear regression of SNP 
META-PD against SNP biomarker effect estimates. 
Assuming that horizontal pleiotropic effects and SNP 
exposure associations are uncorrelated (i.e., the instru-
ment strength independent of direct effects assumption), 
MR Egger regression provides a valid effect estimate 
even if all SNPs are invalid instruments. Moreover, the 
MR Egger intercept can be interpreted as a test of over-
all unbalanced horizontal pleiotropy because one would 
expect a null y-intercept (i.e., the mean value of the SNP 
META-PD associations when the SNP biomarker asso-
ciation is zero) if there are no horizontal pleiotropic 
effects. Robust regression to downplay the contribution 
to the causal estimate of instrumental variables with het-
erogeneous ratio estimates were also performed [10, 12]. 
Heterogeneity (i.e., instrument strength) was tested using 
the  I2 statistic.  I2 statistic, instead of F statistic, is a bet-
ter indicator of instrument strength for the two-sample 
summary data approach [6]. The R package “Mendelian-
Randomization” [72] (version 0.4.1) was used for the MR 
analyses.

The latest and largest meta-analysis for PD genetic risk 
was used to perform the MR analyses [54]. Summary sta-
tistics from the largest GWAS of CSF Aβ42, t-tau, and 
p-tau181 were also used [25]. Deming et al. performed a 
one-stage GWAS for 3146 NHW individuals across nine 
independent studies [25]. None of these cohorts included 
PD affected individuals for each biomarker (Aβ42, t-tau, 
and p-tau181). Finally, the summary statistics of  the 
GWAS for α-Syn CSF levels generated in the current 
study were used. There was no overlap between CSF bio-
marker datasets and PD risk datasets. Instrumental vari-
ables for each GWAS were obtained by clumping each 
GWAS summary statistics based on the LD structure of 
the exposure (CSF biomarker  levels) and a significance 

threshold of 1.0x10−5 using PLINK1.9 [56]. Instrumental 
variables were restricted to those that are uncorrelated 
(in linkage equilibrium) by setting the –clump-r2 flag to 
0.0 and the –clump-kb flag to 1000 (1 Mb).

Results
Association of CSF biomarkers with disease status
A generalized linear model (CSF biomarker lev-
els ~ Age + Sex + Status) including PD cases (N = 700) 
and controls (N = 189) from two independent data-
sets (WUSTL and PPMI—Additional file 2: Table S1) in 
which α-Syn levels were measured with the same plat-
form revealed that all CSF biomarker levels were signifi-
cantly lower in PD cases compared to controls (α-Syn: 
 betaPD = − 0.05, p = 2.10 × 10−04; Aβ42:  betaPD = − 0.34, 
p = 4.38 × 10−05; t-tau:  betaPD = − 0.23, p = 4.58 × 10−03; 
and p-tau181:  betaPD = − 0.25, p = 2.46 × 10−03—
Fig.  1). All associations passed multiple test correction 
(p < 0.013). Using a longitudinal model adjusted by age 
at lumbar puncture, sex, and the first two principal com-
ponents, we found significant changes over time for CSF 
Aβ42 (p = 0.01) but not for α-Syn, t-tau, or p-tau181 in the 
PPMI cohort (N = 785). These results suggest that CSF 
dementia biomarkers are associated with PD status.

No significant loci were identified for CSF α-Syn, t-tau 
or p-tau181 in Parkinson’s disease cohorts
Within each cohort, a linear regression testing the addi-
tive genetic model of each SNP for association with CSF 
protein levels using age, gender, and two principal com-
ponent factors for population stratification as covariates 
did not reveal any genome-wide significant loci associ-
ated with CSF α-Syn. Although several suggestive loci 
(p < 10−6 to  10−8) were identified in these analyses (Addi-
tional file 1: Fig. S1 and Additional file 2: Table S3), none 
of them passed multiple test correction threshold when 
cohorts were combined in the meta-analysis (Fig. 2a and 
Additional file 2: Table S3).

Joint analysis for CSF α-Syn levels stratifying by PD 
cases (N = 700), PD cases and controls (N = 889), AD 
cases only (N = 386), AD cases and controls (N = 575) 
and controls only (N = 189) were also performed. None 
of these analyses revealed any genome-wide significant 
locus, suggesting that these sample sizes might be under-
powered to uncover the genetic modifiers of CSF α-Syn.

For t-tau, individual cohort analyses revealed four 
genome-wide significant loci (Additional file  1: Fig.  S3 
and Additional file 2: Table S5). However, none of them 
remained significant in the meta-analyses (Fig.  2b and 
Additional file  2: Table  S5). For p-tau181, individual 
cohort analyses revealed three genome-wide signifi-
cant loci (Additional file 1: Fig. S4 and Additional file 2: 
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Table  S6). However, none achieved significance in the 
meta-analyses (Fig. 1c and Additional file 2: Table S6).

Genetic analyses of multi-tissue α-Syn levels
In a subgroup of samples, α-Syn levels were meas-
ured in plasma (N = 529), brain (N = 380), and CSF 
(N = 835) using the SOMAScan platform (Additional 
file 2: Table S2). Single variant analysis was performed in 
each tissue separately (Additional file 1: Fig. S2A to 2C). 
Multi-tissue analysis was performed using MTAG [66]. 
Although two suggestive loci were observed in chromo-
somes 3 and 13 (Additional file  1: Fig.  S2D and Addi-
tional file  2: Table  S4) within genomic regions enriched 
with long intergenic non-protein coding (LINC) genes 
(Additional file 1: Fig. S2E and F), no genome-wide sig-
nificant locus was identified. These results suggest that 
the power boost of using MTAG is not enough to unveil 
the genetic architecture of α-Syn.

APOE locus is associated with Aβ42 CSF levels 
in Parkinson’s disease cohorts
A proxy SNP for APOE ε4, rs769449, was associated 
with CSF levels of Aβ42 in the WUSTL (effect = − 0.56, 
p = 4.15 × 10−19), and ADNI cohorts (effect = − 0.73, 
p = 1.25 × 10−15). This association did not pass the 
genome-wide multiple test correction threshold in the 
PPMI cohort (effect = − 0.43, p = 3.09 × 10−07) and was 
not significant in the Spanish cohort (Additional file  1: 
Fig. S5 and Additional file 2: Table S7). The APOE locus 
(effect = − 0.57, p = 4.46 × 10−43) and a locus in the 
HLA region (effect = 0.23, p = 2.88 × 10−08) remained 
significant in the meta-analysis (Fig.  2d–f). When the 
cohorts containing only PD cases and controls were ana-
lyzed jointly (WUSTL and PPMI – N = 700 cases and 
189 controls), the APOE locus was GWAS significant 
(effect = − 0.50, p = 9.25 × 10−19) but not the HLA region 
(effect = 0.22, p = 3.58 × 10−04). In the combined analysis 
of all cohorts (N = 1960), the APOE locus accounted for 
36.2% of the CSF Aβ42 levels variance (p = 2.35 × 10−03). 
Overall, these results revealed a strong and highly 

Fig. 1 CSF α‑Syn, Aβ42, t‑tau, and p‑tau181 levels are lower in Parkinson’s disease than in controls. Box plot of the normalized CSF levels of a α‑Syn. b 
total tau. c phosphorylated tau and d Aβ42 in controls (gray) and Parkinson’s disease cases (orange). Parkinson’s disease cases (N = 700) and controls 
(N = 189) from two independent datasets (WUSTL and PPMI). The means for each group are represented by a horizontal line. A generalized linear 
model (CSF biomarker levels ~ Age + Sex + Status) was used to calculate the statistical differences between the CSF protein levels in Parkinson’s 
disease cases and controls
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Fig. 2 Association plot of single variant analyses of CSF α‑Syn, t‑tau, p‑tau181 and Aβ42 levels. Manhattan plot shows negative  log10‑transformed 
p‑values from the meta‑analysis of a α‑Syn. b total tau. c phosphorylated tau and d Aβ42 CSF levels. The lowest p‑value on chr19 (APOE locus) was 
p = 4.5 × 10−43. The horizontal lines represent the genome‑wide significance threshold, p = 5×10−8 (red) and suggestive threshold, p = 1×10−5 
(blue). e, f Regional association plots of loci are shown for SNPs associated with CSF Aβ42 levels near HLA (e) and near APOE locus (f). The SNPs 
labeled on each regional plot had the lowest p‑value at each locus and are represented by a purple diamond. Each dot represents an SNP, and dot 
colors indicate linkage disequilibrium with the labeled SNP. Blue vertical lines show the recombination rate marked on the right‑hand y‑axis of each 
regional plot. Suggestive SNPs for α‑Syn, t‑tau, p‑tau181 can be found in Additional file 2: Tables S3 to S6
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significant association between APOE locus and lower 
CSF Aβ42 levels in PD cohorts.

Significant correlation of genomic architecture 
of Parkinson’s disease risk and CSF Aβ42
PRS at different p-value thresholds were used to test if 
the genetic variants associated with dementia biomarkers 
were associated with the genomic architecture of PD. PRS 
calculated using the META-PD [54] were associated with 
PD status in the WUSTL cohort (N = 108; p = 0.035). 
The PPMI cohort was excluded from this analysis due 
to overlap with META-PD. No correlation was observed 
between the genetic architecture of PD and that of CSF 
α-Syn, t-tau, or p-tau181 levels (Fig.  3). In contrast, the 
genetic architecture of CSF Aβ42 was correlated with PD, 
with the best fit when collapsing independent SNPs with 
p-value < 0.01 (p = 2.50 × 10−11) with a correlation coef-
ficient  (R2) of 2.29%. In PD cases and controls only, the 
correlation remained significant (p = 4.78 × 10−08), with 
an  R2 of 2.36%. In PD patients with both GWAS and CSF 
biomarker data, the CSF levels of each biomarker were 
analyzed by quartiles of the PRS calculated from META-
PD risk. A significant difference (p = 7.30 × 10−04) was 
found among the top and the bottom quartiles; higher 
PRS values exhibit lower levels of CSF Aβ42 (Additional 
file 1: Fig. S6). No association between PD PRS and lon-
gitudinal changes of α-Syn, Aβ42, t-tau, and p-tau181 
levels was found in the PPMI dataset. These results indi-
cate that PD and Aβ42 CSF levels have a shared genomic 
architecture.

Mendelian randomization suggest a causal link 
between CSF Aβ42 and Parkinson’s disease
Robust regression with the MR-Egger method found 
no association for t-tau or p-tau181 levels but revealed 
a trend for CSF α-Syn levels  (effect = − 1.40; p = 0.06), 
and a significant causal effect for CSF Aβ42 on PD 
(effect = 0.43; p = 1.44 × 10−05) (Fig. 4a–c and Additional 
file 2: Table S7; Table 2 and Additional file 2: Table S8). 
When each cohort included in the META-PD was tested 
separately, CSF Aβ42 showed a causal effect in Nalls 
et  al., 2014 and 2019 (p = 1.54 × 10−07 and 8.74 × 10−05 
,  respectively), but not in Chang et  al., 2017 (Table  2 
and Additional file  2: Table  S8). Additionally, a signifi-
cant causal effect for CSF Aβ42 on PD age-at-onset was 
found using the data from Blauwendraat et  al., 2019 
(effect = 7.75; p = 7.65 × 10−06—Table  2 and Additional 
file  2: Table  S8). A leave-one-out sensitivity analysis on 
CSF Aβ42 revealed that the proxy SNP for APOE ε4, 
rs769449 is the strongest instrumental variable of this 
analysis  (I2 is greater than 90% except when this variant 
was removed) and the main driver of the causal effect 
of CSF Aβ42 on PD. Other SNPs contribute in a smaller 

proportion to the causal effect (Fig. 4d). Altogether these 
results suggest a causal role of SNPs on the APOE locus 
and CSF Aβ42 on PD. 

APOE ε4 is associated with Aβ deposition in brains 
of Parkinson’s disease individuals
CSF Aβ42 and APOE genotype data were available for 
134 participants  (NControls = 26 and  NCases = 108). No dif-
ference in the APOE ε4 frequency was found between 
cases (0.14%) and controls (0.11%). However, the CSF 
Aβ42 levels were significantly different between controls 
(p = 3.00 × 10−02) and cases (p = 3.80 × 10−06) when strat-
ifying by the presence of APOE ε4 allele (Fig. 5a) [9].

PET PiB analysis (N = 108) revealed that MCBP 
increased with age-at-onset (r = 0.20, p = 3.00 × 10−02) 
and number of APOE ε4 alleles (r = 0.22, p = 8.00 × 10−03) 
(Fig.  5a), but decreased CSF Aβ42 (r = − 0.55, 
p = 3.33 × 10−12). A linear regression model indicated 
that CSF Aβ42 and APOE ε4, explain 48% of the vari-
ance of MCBP. APOE ε4 is also significantly associated 
with MCBP (β = 0.14, p = 1.40 × 10−06) in analysis with 
200 participants that included sex and age as covari-
ates. APOE ε4 and age at onset explain 20% of the MCBP 
variance in this larger cohort. The presence of APOE ε4 
did not affect the MCBP in controls (p = 0.19). How-
ever, PD patients carrying APOE ε4 exhibit significantly 
(p = 5.80 × 10−08) higher levels of MCBP than non-carri-
ers (Fig. 5b).

Neuropathological data and APOE genotype were 
available from 92 PD cases. Individuals carrying an 
APOE ε4 allele had significantly (p = 4.40 × 10−04) 
higher Braak Aβ stage (Fig.  5c). APOE ε4 correlated 
with Braak Aβ stage (r = 0.33, p = 1.00 × 10−03) and dif-
fuse plaques (r = 0.42, p = 5.00 × 10−03), but not with 
neuritic plaques (r = 0.42, p = 0.12). The best multiple 
linear regression model for the Braak Aβ stage, which 
included age at onset and APOE ε4, explained 42% of 
the variance of the Braak Aβ stage. Altogether, these 
results suggest that APOE ε4 drives the Aβ deposition 
in PD participants.

Discussion
CSF α-Syn, Aβ42, t-tau, and p-tau181 levels were signifi-
cantly lower in PD cases compared with controls, as we 
previously reported with a smaller sample size [9]. GWAS 
were performed using CSF biomarker levels as quantita-
tive traits in a large cohort (N = 1,960). With the current 
sample size, no signal was below the GWAS significant 
threshold for CSF α-Syn, t-tau, or p-tau181. A SNP proxy 
for APOE ε4 was genome-wide associated with CSF Aβ42 
levels. The PRS calculated using META-PD was associ-
ated with PD status and correlated with the genomic 
architecture of CSF Aβ42; in fact, individuals with higher 
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PRS scores exhibit lower CSF Aβ42 levels. Two-sample 
MR analysis revealed that CSF Aβ42 probably plays a role 
in PD and PD age-at-onset, an effect mainly mediated by 
variants in the APOE locus. Using a subset of participants 
from the WUSTL cohort with additional clinical and 

neuropathological data, we found that the APOE ε4 allele 
was associated with lower levels of CSF Aβ42, higher cor-
tical binding of PiB PET and higher Braak Aβ score.

This is the first comprehensive analysis of CSF α-Syn 
and AD biomarkers using GWAS, PRS, and MR in PD. 

Fig. 3 Genetic architecture correlations of Parkinson’s disease risk with CSF α‑Syn, t‑tau, p‑tau181 and Aβ42 levels. PRSice bar plots for Parkinson’s 
disease risk and CSF biomarkers. Nagelkerke pseudo‑R‑squared fit for the model of a CSF α‑Syn levels PRS and Parkinson’s disease risk. b CSF t‑tau 
levels PRS and Parkinson’s disease risk. c CSF p‑tau181 PRS and Parkinson’s disease risk. d CSF Aβ42 levels PRS and Parkinson’s disease risk. Total 
variance explained by the PRS for multiple p‑value thresholds for the inclusion of SNPs, with the red bar indicating the optimal p‑value threshold 
 (PT), explaining the maximum amount of variance  (R2) in Parkinson’s disease risk in the target sample
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We found lower levels of CSF α-Syn in PD cases com-
pared to controls in a cross-sectional analysis but no 
significant differences in the longitudinal study (PPMI). 
CSF α-Syn, as measured with ELISA-based assays, is not 
a clinically useful diagnostic marker for PD, and utility as 
an outcome measure for clinical trials or progression is 
still controversial [35, 53]. CSF biomarkers in AD used 
as quantitative endophenotypes have provided insights 

into AD pathophysiology [24]. Here, we used a large CSF 
α-Syn cohort (N = 1920) to identify its genetic modifiers. 
However, we did not find any locus associated with CSF 
α-Syn levels. Recently, a GWAS on CSF α-Syn using the 
ADNI cohort (N = 209) reported a genome-wide signifi-
cant locus [73] (rs7072338). In the present meta-analyses 
(N = 1960), the p-value for rs7072338 was not signifi-
cant (0.99). In the ADNI cohort, we found a nominal 

Fig. 4 MR regressions on Parkinson’s disease risk genetic architecture and CSF α‑Syn and Aβ42 levels. a Association between META‑PD risk and CSF 
α‑Syn levels (four variants). Robust regression MR‑Egger method effect = ‑1.40 and p = 0.06, which is not consistent with causality. b Association 
between Parkinson’s disase risk and CSF Aβ42 levels (twelve variants). Robust regression with MR‑Egger method effect = 0.43 and p = 1.44 × 10−05, 
which is consistent with causality. Each dot corresponds to one genetic variant, with a 95% confidence interval (CI) of its genetic association with 
the exposure (α‑Syn and Aβ42 levels) and the outcome (Parkinson’s disease risk). Regression lines correspond to the robust MR‑Egger method 
regression; numerical results are given for all tested methods in Additional file 2: Table S8. c CSF Aβ42 regression using multiple MR methods. Each 
dot is one of the twelve variants included in this test; the effect of CSF Aβ42 levels on the x‑axis and Parkinson’s disease risk on the y‑axis. Each line 
represents the regression of one MR‑method of CSF Aβ42 levels on Parkinson’s disease risk with one MR method. Additional details on the data 
sources and analysis methods to generate these figures are provided in Additional file 2: Table S8. d The forest plot illustrates the leave‑one‑out 
sensitivity analysis between CSF Aβ42 and META‑PD risk. MR analysis without rs769449 decreased the  I2 statistic  (I2 = 0.0%) and increased the 
p‑value to non‑significant levels, suggesting that the association is mainly driven by this variant
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association for this SNP (p = 0.50 × 10−3). No correla-
tion was found between the genetic architecture of PD 
with cross-sectional or longitudinal CSF α-Syn levels, 
consistent with what we have previously reported [41]. 
Using MR methods, we found a trend for the association 
between the CSF α-Syn levels and the risk of developing 
PD. However, sensitivity analyses showed limited power 
due to the small number of variants included in the 
analyses.

MR analyses suggest that Aβ42 could play a causal role 
in PD. Our MR results consistently identified a causal 
correlation between the APOE locus, CSF Aβ levels, and 
PD. MR is used to test if the genetic variation associated 
with a trait has a causal relationship with a health out-
come [20]. MR is not affected by confounding factors or 
reverse causation, like in observational studies. However, 
the proper implementation of MR depends on several 
assumptions [20]. Here, instrumental variables (SNPs) 
relevant to CSF Aβ were previously and consistently 
identified [24]. A second MR assumption is independ-
ence; SNPs associated with the trait (e.g. APOE locus 

with CSF Aβ) should not be associated with the outcome 
(PD risk). The third MR assumption is the exclusion 
restriction, which means that SNPs do not affect PD risk 
except through CSF Aβ levels. The two sample MR used 
here requires two additional criteria: both cohorts must 
have similar genetic background but no overlap with 
each other. Here, samples used for the MR analysis, sum-
mary statistics from Deming, et al. [24] and Nalls, et al. 
[54], met both criteria. We could not rule out a horizon-
tal pleiotropic effect of all the SNPs associated with CSF 
Aβ with PD, but our study is powered to detect the causal 
association with the APOE locus. Thus, we inferred that 
the lifetime effect of the APOE locus is causal in relation 
to PD.

The APOE locus and CSF Aβ42 levels were GWAS 
significant in the meta-analysis. The association of the 
APOE locus with CSF Aβ42 levels has been previously 
reported in AD [48] but not in PD cohorts. Interest-
ingly, the direction of the effect was the same as what 
has been reported in AD but with a higher effect size 
(− 0.57 in PD compared to − 0.10 in AD) [25]. The 
APOE locus is the most significant locus associated 
with sporadic LBD, [59, 60], and cognitive decline in 
PD [40], but not with PD risk [54]. Here, we also found 
for the first time that patients with higher PRS from PD 
risk exhibit lower levels of CSF Aβ42, suggesting that 
similar genes or pathways predispose individuals to an 
accumulation of Aβ in the brain and to develop PD. This 
is in agreement with a recent report suggesting that the 
PD  genes from the PRS analysis are enriched for AD 
genes [2].

The results from unbiased analyses like GWAS, PRS 
and MR demonstrated a link between PD genetic risk 
with CSF Aβ42 levels and the APOE locus. Here, we 

Table 2 Mendelian randomization results for  the  causal 
role of  α-Syn, Aβ42, tau, and  t-tau in  Parkinson’s disease 
using the robust regression MR-Egger method with robust 
regression

Biomarker PD Risk1 PD age at Onset2

Effect P-value Effect P-value

Alpha‑synuclein − 1.389 0.064 − 11.018 0.835

Amyloid‑beta 0.430 1.44 × 10−05 7.746 7.65 × 10−06

Total tau − 0.338 0.246 11.276 0.069

Phosphorylated tau − 0.096 0.785 − 0.298 0.912

Fig. 5 APOE ε4 is associated with Aβ42 deposition in the brains of Parkinson’s disease individuals. a Comparison of the levels of CSF Aβ42 in control 
(N = 26) and PD (N = 108) participants stratified by the presence (ε4 + ; green) or absence (ε4‑; blue) of the APOE ε4 allele. b Effect of APOE ε4 allele 
on the levels of mean cortical binding potentials (MCBP) in controls (N = 44) and Parkinson’s disease (N = 156). c PD patients carrying the APOE ε4 
allele exhibit a higher Braak Aβ score than non‑carriers (N = 92). Differences between APOE ε4 carriers and non‑carriers were statistically significant 
by the Mann–Whitney U test
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also provided further evidence by showing that PD 
patients carrying the APOE ε4 allele presented with 
lower levels of CSF Aβ42 (p = 3.8 × 10−06), higher 
MCBP (p = 5.80 × 10−08) and higher Braak Aβ scores 
(p = 4.40 × 10−04). These results support the synergistic 
relationship between α-Syn and Aβ pathology in AD, PD 
and LBD brains [43], and the effect of Aβ plaques exac-
erbating the propagation of α-Syn pathology in mouse 
models [3]. It is known that APOE ε4 drives the produc-
tion of Aβ, the accumulation of Aβ fibrils in AD patients 
[37], exacerbates tau-mediated neurodegeneration in 
a mouse model of tauopathy [62] and affects CSF αSyn 
levels in the prodromal phase of sporadic and familial 
AD [67]. However, the role of APOE in human synucle-
inopathies is probably more complex. In LBD patients, 
the APOE ε4 effect on α-Syn pathology could be depend-
ent on concurrent Aβ and/or tau pathology [58], however 
APOE ε4 also promotes α-Syn pathology independently 
[27, 65] and affects CSF αSyn levels [67]. We recently 
showed that APOE ε4 increased the α-Syn phosphoryla-
tion, worsened motor impairment, and increased neuro-
inflammation and neurodegeneration in different mouse 
models [22].

This is the largest sample size used for discovering 
CSF α-Syn genetic modifiers to date and yet no GWAS 
significant locus was found. It is possible that the com-
plexity of α-Syn genetic architecture makes the cur-
rent sample size insufficiently powered to detect signals 
with a smaller effect. Here, we found lower levels of 
CSF α-Syn in PD patients, which aligns with previous 
reports. However, neither PRS nor MR analysis revealed 
evidence of the causal link of CSF α-Syn with PD risk. 
In fact, it has been reported that α-Syn aggregation is 
neither necessary nor sufficient for neurodegeneration 
or clinical parkinsonism [31, 32]. The cohorts used in 
this study rely on clinical diagnosis rather than neuro-
pathological confirmation, which precludes analyses of 
a correlation between CSF α-Syn levels and pathologic 
brain accumulation of brain α-Syn. Factors that may 
have contributed to the lack of power to detect genetic 
modifiers of CSF α-Syn include participant characteris-
tics (PD subtypes, misdiagnosis, comorbidities, medi-
cations, disease duration), preanalytical factors (blood 
contamination at lumbar puncture), and differences in 
assays (measuring various abnormal pathological or 
normal forms of α-Syn) [26].

PD is a heterogeneous disorder with different iden-
tifiable clinical-pathological subtypes based on symp-
tom severity and predominance [15]. It is conceivable 
that more homogeneous PD subtypes could be defined 
using biomarker-driven, clinical-molecular phenotyp-
ing approaches. This study, with 1960 samples with CSF 
α-Syn levels, showed that the genomic architecture of 

α-Syn is complex and not correlated with the genomic 
landscape of PD. Additional studies with larger sample 
sizes and standardized methods to quantify α-Syn in 
both CSF and brain are needed to uncover genetic modi-
fiers of α-Syn levels. Our results using high-throughput 
and hypothesis-free, unbiased approaches demonstrated 
a link between PD genetic risk, CSF Aβ42 levels and 
APOE locus. These findings were further validated by 
strong significant associations of APOE ε4 with Aβ dep-
osition in cortical regions of living and postmortem PD 
patients.
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