694 research outputs found

    Lymphangitic Retroperitoneal Carcinomatosis Occurring From Metastatic Sarcomatoid Chromophobe Renal Cell Carcinoma

    Get PDF
    AbstractA 45-year-old man with left renal mass underwent nephrectomy to reveal a 20-cm tumor diagnosed as sarcomatoid chromophobe renal cell carcinoma. Lymph node metastasis of chromophobe and sarcomatoid components, disseminated tumor in retroperitoneal fat, lymphatic vessels, and perirenal adipose tissue in lymphangitic carcinomatosis pattern were identified. Chromophobe epithelial cells were positive for epithelial membrane antigen, c-Kit, and cytokeratin 7; sarcomatoid cells were positive for CD10 and smooth muscle antigen with high proliferation index. Chromophobe epithelial cells had loss of heterozygosity in chromosomes 1p and 1q, whereas sarcomatoid cells had loss of heterozygosity in 3p, 1p, and 1q. In conclusion, sarcomatoid chromophobe renal cell carcinoma has aggressive biologic behavior and potential to metastasize in unusual patterns

    Modeling outcomes of soccer matches

    Get PDF
    We compare various extensions of the Bradley-Terry model and a hierarchical Poisson log-linear model in terms of their performance in predicting the outcome of soccer matches (win, draw, or loss). The parameters of the Bradley-Terry extensions are estimated by maximizing the log-likelihood, or an appropriately penalized version of it, while the posterior densities of the parameters of the hierarchical Poisson log-linear model are approximated using integrated nested Laplace approximations. The prediction performance of the various modeling approaches is assessed using a novel, context-specific framework for temporal validation that is found to deliver accurate estimates of the test error. The direct modeling of outcomes via the various Bradley-Terry extensions and the modeling of match scores using the hierarchical Poisson log-linear model demonstrate similar behavior in terms of predictive performance

    Decay accelerating factor (CD55) protects neuronal cells from chemical hypoxia-induced injury

    Get PDF
    Background: Activated complement system is known to mediate neuroinflammation and neurodegeneration following exposure to hypoxic-ischemic insults. Therefore, inhibition of the complement activation cascade may represent a potential therapeutic strategy for the management of ischemic brain injury. Decay-accelerating factor (DAF, also known as CD55) inhibits complement activation by suppressing the function of C3/C5 convertases, thereby limiting local generation or deposition of C3a/C5a and membrane attack complex (MAC or C5b-9) production. The present study investigates the ability of DAF to protect primary cultured neuronal cells subjected to sodium cyanide (NaCN)-induced hypoxia from degeneration and apoptosis. Methods: Cultured primary cortical neurons from embryonic Sprague-Dawley rats were assigned one of four groups: control, DAF treatment alone, hypoxic, or hypoxic treated with DAF. Hypoxic cultures were exposed to NaCN for 1 hour, rinsed, followed by 24 hour exposure to 200 ng/ml of recombinant human DAF in normal medium. Human DAF was used in the present study and it has been shown to effectively regulate complement activation in rats. Neuronal cell function, morphology and viability were investigated by measuring plateau depolarization potential, counting the number dendritic spines, and observing TUNEL and MTT assays. Complement C3, C3a, C3a receptor (R) production, C3a-C3aR interaction and MAC formation were assessed along with the generation of activated caspase-9, activated caspase-3, and activated Src. Results: When compared to controls, hypoxic cells had fewer dendritic spines, reduced plateau depolarization accompanied by increased apoptotic activity and accumulation of MAC, as well as up-regulation of C3, C3a and C3aR, enhancement of C3a-C3aR engagement, and elevated caspase and Src activity. Treatment of hypoxic cells with 200 ng/ml of recombinant human DAF resulted in attenuation of neuronal apoptosis and exerted significant protection against neuronal dendritic spine loss and plateau depolarization reduction. Furthermore, treatment with DAF resulted in decreased accumulation of C3a, MAC, C3a-C3aR interaction, caspase-9, activated caspase-3, and pTyr416-Src (activated Src) tyrosine kinase. Conclusion: DAF was found to reduce neuronal cell death and apoptosis in NaCN induced hypoxia. This effect is attributed to the ability of DAF to limit complement activation and inhibit the activity of Src and caspases 9 and 3. This study supports the inhibiting of complement as a neuroprotective strategy against CNS ischemia/reperfusion injury

    Parity breaking at high temperature and density

    Get PDF
    We investigate the question of parity breaking in three-dimensional Euclidean SU(2) gauge-Higgs theory by Monte Carlo simulations. We observe no sign of spontaneous parity breaking in the behaviour of both local and non-local gauge invariant operators. However, the presence of parity odd terms in the action can induce a phase transition to a parity odd ground state which is characterized by a Chern-Simons like condensate. The implications for various proposed scenarios of fermion number non-conservation is discussed.Comment: 20 pages, 13 figures not included, sorr

    The Role of Platelet Factor 4 in Local and Remote Tissue Damage in a Mouse Model of Mesenteric Ischemia/Reperfusion Injury

    Get PDF
    The robust inflammatory response that occurs during ischemia reperfusion (IR) injury recruits factors from both the innate and adaptive immune systems. However the contribution of platelets and their products such as Platelet Factor 4 (PF4; CXCL4), during the pathogenesis of IR injury has not been thoroughly investigated. We show that a deficiency in PF4 protects mice from local and remote tissue damage after 30 minutes of mesenteric ischemia and 3 hours of reperfusion in PF4-/- mice compared to control B6 mice. This protection was independent from Ig or complement deposition in the tissues. However, neutrophil and monocyte infiltration were decreased in the lungs of PF4-/- mice compared with B6 control mice. Platelet-depleted B6 mice transfused with platelets from PF4-/- mice displayed reduced tissue damage compared with controls. In contrast, transfusion of B6 platelets into platelet depleted PF4-/- mice reconstituted damage in both intestine and lung tissues. We also show that PF4 may modulate the release of IgA. Interestingly, we show that PF4 expression on intestinal epithelial cells is increased after IR at both the mRNA and protein levels. In conclusion, these findings demonstrate that may PF4 represent an important mediator of local and remote tissue damage

    The CD38/NAD/SIRTUIN1/EZH2 Axis Mitigates Cytotoxic CD8 T Cell Function and Identifies Patients with SLE Prone to Infections

    Get PDF
    Summary: Patients with systemic lupus erythematosus (SLE) suffer frequent infections that account for significant morbidity and mortality. T cell cytotoxic responses are decreased in patients with SLE, yet the responsible molecular events are largely unknown. We find an expanded CD8CD38high T cell subset in a subgroup of patients with increased rates of infections. CD8CD38high T cells from healthy subjects and patients with SLE display decreased cytotoxic capacity, degranulation, and expression of granzymes A and B and perforin. The key cytotoxicity-related transcription factors T-bet, RUNX3, and EOMES are decreased in CD8CD38high T cells. CD38 leads to increased acetylated EZH2 through inhibition of the deacetylase Sirtuin1. Acetylated EZH2 represses RUNX3 expression, whereas inhibition of EZH2 restores CD8 T cell cytotoxic responses. We propose that high levels of CD38 lead to decreased CD8 T cell-mediated cytotoxicity and increased propensity to infections in patients with SLE, a process that can be reversed pharmacologically. : Katsuyama et al. find that an expanded CD8CD38high T cell population in SLE patients is linked to infections. CD8CD38high T cells display decreased cytotoxic capacity by suppressing the expression of related molecules through an NAD+/Sirtuin1/EZH2 pathway. EZH2 inhibitors increase cytotoxicity offering a means to mitigate infection rates in SLE. Keywords: systemic lupus erythematosus, patients, CD8 T cell, CD38, cytotoxicity, infection, nicotinamide adenine dinucleotide, Sirtuin1, EZH

    Fermion Back-Reaction and the Sphaleron

    Full text link
    Using a simple model, a new sphaleron solution which incorporates finite fermionic density effects is obtained. The main result is that the height of the potential barrier (sphaleron energy) decreases as the fermion density increases. This suggests that the rate of sphaleron-induced transitions increases when the fermionic density increases. However the rate increase is not expected to change significantly the predictions from the standard sphaleron-induced baryogenesis scenarios.Comment: 11 pages, Revtex (2 figures available upon request), to appear in Phys. Rev. D (Rapid Communication
    corecore