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Abstract
We compare various extensions of the Bradley–Terry model and a hierarchical Poisson log-
linear model in terms of their performance in predicting the outcome of soccer matches (win,
draw, or loss). The parameters of the Bradley–Terry extensions are estimated by maximizing
the log-likelihood, or an appropriately penalized version of it, while the posterior densities
of the parameters of the hierarchical Poisson log-linear model are approximated using inte-
grated nested Laplace approximations. The prediction performance of the various modeling
approaches is assessed using a novel, context-specific framework for temporal validation that
is found to deliver accurate estimates of the test error. The direct modeling of outcomes via
the various Bradley–Terry extensions and themodeling ofmatch scores using the hierarchical
Poisson log-linear model demonstrate similar behavior in terms of predictive performance.

Keywords Bradley–Terry model · Poisson log-linear hierarchical model · Maximum
penalized likelihood · Integrated nested laplace approximation · Temporal validation

1 Introduction

The current paper stems from our participation in the 2017 Machine Learning Journal
(Springer) challenge on predicting outcomes of soccer matches from a range of leagues
around the world (MLS challenge, in short). Details of the challenge and the data can be
found in Berrar et al. (2017).
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We consider two distinct modeling approaches for the task. The first approach focuses on
modeling the probabilities of win, draw, or loss, using various extensions of Bradley–Terry
models (Bradley and Terry 1952). The second approach focuses on directly modeling the
number of goals scored by each team in each match using a hierarchical Poisson log-linear
model, building on the modeling frameworks in Maher (1982), Dixon and Coles (1997),
Karlis and Ntzoufras (2003) and Baio and Blangiardo (2010).

The performance of the various modeling approaches in predicting the outcomes of
matches is assessed using a novel, context-specific framework for temporal validation that is
found to deliver accurate estimates of the prediction error. The direct modeling of the out-
comes using the various Bradley–Terry extensions and the modeling of match scores using
the hierarchical Poisson log-linear model deliver similar performance in terms of predicting
the outcome.

The paper is structured as follows: Sect. 2 briefly introduces the data, presents the nec-
essary data-cleaning operations undertaken, and describes the various features that were
extracted. Section 3 presents the various Bradley–Terry models and extensions we consider
for the challenge and describes the associated estimation procedures. Section 4 focuses on
the hierarchical Poisson log-linear model and the Integrated Nested Laplace Approximations
(INLA; Rue et al. 2009) of the posterior densities for the model parameters. Section 5 intro-
duces the validation framework and the models are compared in terms of their predictive
performance in Sect. 6. Section 7 concludes with discussion and future directions.

2 Pre-processing and feature extraction

2.1 Data exploration

The data contain matches from 52 leagues, covering 35 countries, for a varying number of
seasons for each league. Nearly all leagues have data since 2008, with a few having data
extending as far back as 2000. There are no cross-country leagues (e.g. UEFA Champions
League) or teams associated with different countries. The only way that teams move between
leagues is within each country by either promotion or relegation.

Figure 1 shows the number of available matches for each country in the data set. England
dominates the data in terms of matches recorded, with the available matches coming from 5
distinct leagues. The other highly-represented countries are Scotlandwith data from 4 distinct
leagues, and European countries, such as Spain, Germany, Italy and France, most probably
because they also have a high UEFA coefficient (Wikipedia 2018).

Figure 2 shows the number of matches per number of goals scored by the home (dark grey)
and away (light grey) teams. Home teams appear to score more goals than away teams, with
home teams having consistently higher frequencies for two or more goals and away teams
having higher frequencies for no goal and one goal. Overall, home teams scored 304,918
goals over the whole data set, whereas away teams scored 228,293 goals. In Section 1 of the
Supplementary Material, the trend shown in Fig. 2 is also found to be present within each
country, pointing towards the existence of a home advantage.

2.2 Data cleaning

Upon closer inspection of the original sequence of matches for the MLS challenge, we found
and corrected the following three anomalies in the data. The complete set of matches from
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Fig. 1 Number of available matches per country in the data

0 1 2 3 4 5 6 7 8 9 10 11

Home team
Away team

Number of goals

N
um

be
r o

f m
at

ch
es

 (t
ho

us
an

ds
)

0
20

40
60

Fig. 2 The number of matches per number of goals scored by the home (dark grey) and away team (light grey)

the 2015–2016 season of the Venezuelan league was duplicated in the data. We kept only
one instance of these matches. Furthermore, 26 matches from the 2013–2014 season of the
Norwegian league were assigned the year 2014 in the date field instead of 2013. The dates
for these matches were modified accordingly. Finally, one match in the 2013–2014 season of
theMoroccan league (Raja Casablanca vsMaghrib de Fes) was assigned the month February
in the date field instead of August. The date for this match was corrected, accordingly.

2.3 Feature extraction

The features that were extracted can be categorized into team-specific, match-specific and/or
season-specific. Match-specific features were derived from the information available on each
match. Season-specific features have the same value for all matches and teams in a season
of a particular league, and differ only across seasons for the same league and across leagues.
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Table 1 gives short names, descriptions, and ranges for the features that were extracted.
Table 2 gives an example of what values the features take for an artificial data set with
observations on the first 3 matches of a season for team A playing all matches at home. The
team-specific features are listed only for TeamA to allow for easy tracking of their evolution.

The features we extracted are proxies for a range of aspects of the game, and their choice
was based on common sense and our understanding of what is important in soccer, and
previous literature. Home (feature 1 in Table 2) can be used for including a home advantage
in the models; newly promoted (feature 2 in Table 2) is used to account for the fact that a
newly promoted team is typically weaker than the competition; days since previous match
(feature 3 in Table 2) carries information regarding fatigue of the players and the team,
overall; form (feature 4 in Table 2) is a proxy for whether a team is doing better or worse
during a particular period in time compared to its general strength; matches played (feature
5 in Table 2) determines how far into the season a game occurs; points tally, goal difference,
and points per match (features 6, 7 and 10 in Table 2) are measures of how well a team is
doing so far in the season; goals scored per match and goals conceded per match (features
8 and 9 in Table 2) are measures of a team’s attacking and defensive ability, respectively;
previous season points tally and previous season goal difference (features 11 and 12 in
Table 2) are measures of how well a team performed in the previous season, which can be a
useful indicator of how well a team will perform in the early stages of a season when other
features such as points tally do not carry much information; finally, team rankings (feature
13 in Table 2) refers to a variety of measures that rank teams based on their performance in
previous matches, as detailed in Section 2 of the Supplementary Material.

In order to avoid missing data in the features we extracted, we made the following con-
ventions. The value of form for the first match of the season for each team was drawn from
a Uniform distribution in (0, 1). The form for the second and third match were a third of the
points in the first match, and a sixth of the total points in the first two matches, respectively.
Days since previous match was left unspecified for the very first match of the team in the
data. If the team was playing its first season then we treated it as being newly promoted. The
previous season points tally was set to 15 for newly promoted teams and to 65 for newly
relegated teams, and the previous season goal difference was set to − 35 for newly promoted
teams and 35 for newly relegated teams. These values were set in an ad-hoc manner prior
to estimation and validation, based on our sense and experience of what is a small or large
value for the corresponding features. In principle, the choice of these values could be made
more formally by minimizing a criterion of predictive quality, but we did not pursue this
as it would complicate the estimation-prediction workflow described later in the paper and
increase computational effort significantly without any guarantee of improving the predictive
quality of the models.

3 Modeling outcomes

3.1 Bradley–Terry models and extensions

The Bradley–Terry model (Bradley and Terry 1952) is commonly used to model paired
comparisons, which often arise in competitive sport. For a binary win/loss outcome, let

yi j t =
{
1 , if team i beats team j at time t
0 , if team j beats team i at time t

(i, j = 1, . . . , n; i �= j; t ∈ �+),
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Table 1 Short names, descriptions, and ranges for the features that were extracted

Number Short name Description Range

Team-specific features

1 Home 1 if the team is playing at home, and
0 otherwise

{0, 1}

2 Newly promoted 1 if the team is newly promoted to
the league for the current season,
and 0 otherwise

{0, 1}

3 Days since previous
match

Number of days elapsed since the
previous match of the team

{1, 2, . . .}

4 Form A ninth of the total points gained in
the last three matches in the current
season

(0, 1)

5 Matches played Number of matches played in the
current season and before the
current match

{1, 2, . . .}

6 Points tally The points accumulated during the
current season and before the
current match

{0, 1, . . .}

7 Goal difference The goals that a team has scored
minus the goals that it has
conceded over the current season
and before the current match

{. . . ,−1, 0, 1, . . .}

8 Goals scored per
match

Total goals scored per match played
over the current season and before
the current match

�+

9 Goals conceded per
match

Total goals conceded per match over
the current season and before the
current match

�+

10 Points per match Total points gained per match played
over the current season and before
the current match

[0, 3]

11 Previous season
points tally

Total points accumulated by the team
in the previous season of the same
league

{0, 1, . . .}

12 Previous season goal
difference

Total goals scored minus total goals
conceded for each team in the
previous season of the same league

{. . . ,−1, 0, 1, . . .}

13 Team rankings A variety of team rankings, based on
historical observations; See
Section 2 of the Supplementary
Material

�

Season-specific features

14 Season The league season in which each
match is played

Labels

15 Season window Time period in calendar months of
the league season

labels

Match-specific features

16 Quarter Quarter of the calendar year based on
the match date

labels
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Table 2 Feature values for artificial data showing the first 3 matches of a season with team A playing all
matches at home

Match 1 Match 2 Match 3

Match attributes and outcomes

League Country1 Country1 Country1

Date 2033-08-18 2033-08-21 2033-08-26

Home team Team A Team A Team A

Away team Team B Team C Team D

Home score 2 2 0

Away score 0 1 0

Team-specific features (Team A)

Newly promoted 0 0 0

Days since previous match 91 3 5

Form 0.5233 1 1

Matches played 0 1 2

Points tally 0 3 6

Goal difference – 2 3

Goals scored per match 0 2 2

Goals conceded per match 0 0 0.5

Points per match 0 3 3

Previous season points tally 72 72 72

Previous season goal difference 45 45 45

Season-specific features

Season 33–34 33–34 33–34

Season window August–May August–May August–May

Match-specific features

Quarter 3 3 3

where n is the number of teams present in the data. The Bradley–Terry model assumes that

p(yi j t = 1) = πi

πi + π j
,

where πi = exp(λi ), and λi is understood as the “strength” of team i . In the original Bradley–
Terry formulation, λi does not vary with time.

For the purposes of the MLS challenge prediction task, we consider extensions of the
original Bradley–Terry formulation where we allow λi to depend on a p-vector of time-
dependent features xi t for team i at time t as λi t = f (xi t ) for some function f (·). Bradley–
Terry models can also be equivalently written as linking the log-odds of a team winning to
the difference in strength of the two teams competing. Some of the extensions below directly
specify that difference.

3.1.1 BL: baseline

The simplest specification of all assumes that

λi t = βhit , (1)
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where hit = 1 if team i is playing at home at time t , and hit = 0 otherwise. The only
parameter to estimate with this specification is β, which can be understood as the difference
in strength when the team plays at home.We use this model to establish a baseline to improve
upon for the prediction task.

3.1.2 CS: constant strengths

This specification corresponds to the standard Bradley–Terrymodel with a home-field advan-
tage, under which

λi t = αi + βhit . (2)

The above specification involves n + 1 parameters, where n is the number of teams. The
parameter αi represents the time-invariant strength of the i th team.

3.1.3 LF: linear with features

Suppose now that we are given a vector of features xi t associated with team i at time t . A
simple way to model the team strengths λi t is to assume that they are a linear combination
of the features. Hence, in this model we have

λi t =
p∑

k=1

βk xitk, (3)

where xitk is the kth element of the feature vector xi t .
Note that the coefficients in the linear combination are shared between all teams, and so

the number of parameters to estimate is p, where p is the dimension of the feature vector.
This specification is similar to the one implemented in the R packageBradleyTerry (Firth
2005), but without the team specific random effects.

3.1.4 TVC: time-varying coefficients

Some of the features we consider, like points tally season (feature 6 in Table 1) vary during
the season. Ignoring any special circumstances such as teams being punished, the points
accumulated by a team is a non-decreasing function of the number of matches the team has
played.

It is natural to assume that the contribution of points accumulated to the strength of a
team is different at the beginning of the season than it is at the end. In order to account for
such effects, the parameters for the corresponding features can be allowed to vary with the
matches played. Specifically, the team strengths can be modeled as

λi t =
∑
k∈V

γk(mit )xitk +
∑
k /∈V

βk xitk, (4)

wheremit denotes the number of matches that team i has played within the current season at
time t and V denotes the set of coefficients that are allowed to vary with the matches played.
The functions γk(mit ) can be modeled non-parametrically, but in the spirit of keeping the
complexity low we instead set γk(mit ) = αk + βkmit . With this specification for γk(mit ),
TVC is equivalent to LF with the inclusion of an extra set of features {mit xitk}k∈V .

123



Machine Learning

3.1.5 AFD: additive feature differences with time interactions

For the LF specification, the log-odds of team i beating team j is

λi t − λ j t =
p∑

k=1

βk(xitk − x jtk).

Hence, the LF specification assumes that the difference in strength between the two teams
is a linear combination of differences between the features of the teams. We can relax the
assumption of linearity, and include non-linear time interactions, by instead assuming that
each difference in features contributes to the difference in strengths through an arbitrary
bivariate smooth function gk that depends on the feature difference and the number ofmatches
played. We then arrive at the AFD specification, which can be written as

λi t − λ j t =
∑
k∈V

gk(xitk − x jtk,mit ) +
∑
k /∈V

fk(xitk − x jtk), (5)

where for simplicity we take the number of matches played to be the number of matches
played by the home team.

3.2 Handling draws

The extra outcome of a draw in a soccer match can be accommodated within the Bradley–
Terry formulation in two ways.

The first is to treat win, loss and draw asmultinomial ordered outcomes, in effect assuming
that “win” � “draw” � “loss”, where � denotes strong transitive preference. Then, the
ordered outcomes can be modeled using cumulative link models (Agresti 2015) with the
various strength specifications. Specifically, let

yi j t =

⎧⎪⎨
⎪⎩
2 , if team i beats team j at time t,

1 , if team i and j draw at time t,

0 , if team j beats team i at time t .

and assume that yi j t has

p(yi j t ≤ y) = eδy+λi t

eδy+λi t + eλ j t
, (6)

where −∞ < δ0 ≤ δ1 < δ2 = ∞, and δ0, δ1 are parameters to be estimated from the data.
Cattelan et al. (2013) and Király and Qian (2017) use this approach for modeling soccer
outcomes.

Another possibility for handling draws is to use the Davidson (1970) extension of the
Bradley–Terry model, under which

p(yi j t = 2 | yi j t �= 1) = πi t

πi t + π j t
,

p(yi j t = 1) = δ
√

πi tπ j t

πi t + π j t + δ
√

πi tπ j t
,

p(yi j t = 0 | yi j t �= 1) = π j t

πi t + π j t
.

where δ is a parameter to be estimated from the data.

123



Machine Learning

3.3 Estimation

3.3.1 Likelihood-based approaches

The parameters of the Bradley–Terry model extensions presented above can be estimated by
maximizing the log-likelihood of the multinomial distribution.

The log-likelihood about the parameter vector θ is

�(θ) =
∑

{i, j,t}∈M

∑
y

I[yi j t=y] log
(
p(yi j t = y)

)
,

where IA takes the value 1 if A holds and 0 otherwise, and M is the set of triplets {i, j, t}
corresponding to the matches whose outcomes have been observed.

For estimating the functions involved in the AFD specification, we represent each fk
using thin plate splines (Wahba 1990, Section 2.4), and enforce smoothness constraints on
the estimate of fk by maximizing a penalized log-likelihood of the form

�pen(θ) = �(θ) − 1

2

∑
k

dkθ
T Pkθ

where Pk are penalty matrices and dk are tuning parameters. For penalized estimation we
only consider ordinal models through the R package mgcv (Wood 2006), and select dk by
optimizing the Generalized Cross Validation criterion (Golub et al. 1979). Details on the
fitting procedure for specifications like AFD and the implementation of thin plate spline
regression in mgcv can be found in Wood (2003).

The parameters of the Davidson extensions of the Bradley–Terry model are estimated by
using the BFGS optimization algorithm (Byrd et al. 1995) to minimize −�(θ).

3.3.2 Identifiability

In the CS model, the team strengths are identifiable only up to an additive constant, because
λi −λ j = (λi +d)−(λ j +d) for any d ∈ �. This unidentifiability can be dealt with by setting
the strength of an arbitrarily chosen team to zero. The CS model was fitted league-by-league
with one identifiability constraint per league.

The parameters δ0 and δ1 in (6) are identifiable only if the specification used for λi − λ j

does not involve an intercept parameter. An alternative is to include an intercept parameter
in λi −λ j and fix δ0 at a value. The estimated probabilities are invariant to these alternatives,
and we use the latter simply because this is the default in the mgcv package.

3.3.3 Other data-specific considerations

The parameters in the LF, TVC, and AFD specifications (which involve features) are shared
across the leagues and matches in the data. For computational efficiency we restrict the
fitting procedures to use the 20,000 most recent matches, or less if less is available, at the
time of the first match that a prediction needs to be made. The CS specification requires
estimating the strength parameters directly. For computational efficiency, we estimate the
strength parameters independently for each league within each country, and only consider
matches that took place in the past calendar year from the date of the first match that a
prediction needs to be made.
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4 Modeling scores

4.1 Model structure

Every league consists of a number of teams T , playing against each other twice in a season
(once at home and once away). We indicate the number of goals scored by the home and the
away team in the gth match of the season (g = 1, . . . ,G) as yg1 and yg2, respectively.

The observed goal counts yg1 and yg2 are assumed to be realizations of conditionally
independent random variables Yg1 and Yg2, respectively, with

Ygj | θg j ∼ Poisson(θg j ) .

The parameters θg1 and θg2 represent the scoring intensity in the gth match for the home and
away team, respectively.

We assume that θg1 and θg2 are specified through the regression structures

ηg1 = log(θg1) =
p∑

k=1

βk zg1k + αhg + ξag + γhg ,Seag + δag,Seag ,

ηg2 = log(θg2) =
p∑

k=1

βk zg2k + αag + ξhg + γag,Seag + δhg ,Seag .

(7)

The indices hg and ag determine the home and away team for match g respectively, with
hg, ag ∈ {1, . . . , T }. The parameters β1, . . . , βp represent the effects corresponding to the
observedmatch- and team-specific features zg j1, . . . , zg jp , respectively, collected in aG×2p
matrix Z. The other effects in the linear predictor ηg j reflect assumptions of exchangeability
across the teams involved in the matches. Specifically, αt and ξt represent the latent attacking
and defensive ability of team t and are assumed to be distributed as

αt | σα ∼ Normal
(
0, σ 2

α

)
and ξt | σξ ∼ Normal

(
0, σ 2

ξ

)
.

We used vague log-Gamma priors on the precision parameters τα = 1/σ 2
α and τξ = 1/σ 2

ξ .
In order to account for the time dynamics across the different seasons, we also include the
latent interactions γts and δts between the team-specific attacking and defensive strengths
and the season s ∈ {1, . . . , S}, which were modeled using autoregressive specifications with

γt1 | σε, ργ ∼ Normal
(
0, σ 2

ε

(
1 − ρ2

γ

))
,

γts = ργ γt,s−1 + εs,

εs | σε ∼ Normal
(
0, σ 2

ε

)
(s = 2, . . . , S),

and

δt1 | σε, ρδ ∼ Normal
(
0, σ 2

ε (1 − ρ2
δ )

)
,

δts = ρδδt,s−1 + εs,

εs | σε ∼ Normal(0, σ 2
ε ) (s = 2, . . . , S).

For the specification of prior distributions for the hyperparameters ργ , ρδ, σε we used the
default settings of the R-INLA package (Lindgren and Rue 2015, version 17.6.20), which
we also use to fit the model (see Sect. 4.2). Specifically, R-INLA sets vague Normal priors
(centred at 0with large variance) on suitable transformations (e.g. log) of the hyperparameters
with unbounded range.
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4.2 Estimation

The hierarchical Poisson log-linear model (HPL) of Sect. 4.1 was fitted using INLA (Rue
et al. 2009). Specifically, INLA avoids time-consuming MCMC simulations by numerically
approximating the posterior densities for the parameters of latent Gaussian models, which
constitute a wide class of hierarchical models of the form

Yi | φ,ψ ∼ p(yi | φ,ψ),

φ | ψ ∼ Normal
(
0, Q−1(ψ)

)
,

ψ ∼ p(ψ),

where Yi is the random variable corresponding to the observed response yi , φ is a set of
parameters (which may have a large dimension) and ψ is a set of hyperparameters.

The basic principle is to approximate the posterior densities for ψ and φ using a series of
nested Normal approximations. The algorithm uses numerical optimization to find the mode
of the posterior, while the marginal posterior distributions are computed using numerical
integration over the hyperparameters. The posterior densities for the parameters of the HPL
model are computed on the available data for each league.

To predict the outcome of a future match, we simulated 1000 samples from the joint
approximated predictive distribution of the number of goals Ỹ1, Ỹ2, scored in the future match
by the home and away teams respectively, given features z̃ j = (z̃ j1, . . . , z̃ j2)
. Sampling
was done using the inla.posterior.sample method of the R-INLA package. The
predictive distribution has a probability mass function of the form

p
(
ỹ1, ỹ2 | y1, y2, z̃1, z̃2, Z

) =
∫

p
(
ỹ1, ỹ2 | ν, z̃1, z̃2

)
p

(
ν | y1, y2, Z

)
dν ,

where the vector ν collects all model parameters. We then compute the relative frequencies
of the events Ỹ1 > Ỹ2, Ỹ1 = Ỹ2, and Ỹ1 < Ỹ2, which correspond to home win, draw, and loss
respectively.

5 Validation framework

5.1 MLS challenge

The MLS challenge consists of predicting the outcomes (win, draw, loss) of 206 soccer
matches from 52 leagues that take place between 31st March 2017 and 10th April 2017.
The prediction performance of each submission was assessed in terms of the average ranked
probability score (seeSect. 5.2) over thosematches. Topredict the outcomes of thesematches,
the challenge participants have access to over 200,000 matches up to and including the 21st
March 2017, which can be used to train a classifier.

In order to guide the choice of the model that is best suited to make the final predictions,
we designed a validation framework that emulates the requirements of the MLS Challenge.
We evaluated the models in terms of the quality of future predictions, i.e. predictions about
matches that happen after the matches used for training. In particular, we estimated the model
parameters using data from the period before 1st April of each available calendar year in the
data, and examined the quality of predictions in the period between 1st and 7th April of that
year. For 2017, we estimated the model parameters using data from the period before 14th
March 2017, and examined the quality of predictions in the period between 14th and 21st
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Fig. 3 The sequence of experiments that constitute the validation framework, visualizing their corresponding
training and prediction periods

March 2017. Figure 3 is a pictorial representation of the validation framework, illustrating
the sequence of experiments and the duration of their corresponding training and validation
periods.

5.2 Validation criteria

The main predictive criterion we used in the validation framework is the ranked probability
score, which is also the criterion that was used to determine the outcome of the challenge.
Classification accuracy was also computed.

5.2.1 Ranked probability score

Let R be the number of possible outcomes (e.g. R = 3 in soccer) and p be the R-vector of
predicted probabilities with j-th component p j ∈ [0, 1] and p1 + · · · + pR = 1. Suppose
that the observed outcomes are encoded in an R-vector a with j th component a j ∈ {0, 1}
and a1 + · · · + ar = 1. The ranked probability score is defined as

RPS = 1

r − 1

r−1∑
i=1

⎧⎨
⎩

i∑
j=1

(
p j − a j

)
⎫⎬
⎭

2

. (8)

The rankedprobability scorewas introducedbyEpstein (1969) (see also,Gneiting andRaftery
2007, for a general review of scoring rules) and is a strictly proper probabilistic scoring rule,
in the sense that the true odds minimize its expected value (Murphy 1969).
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Table 3 Illustration of the calculation of the ranked probability score and classification accuracy on artificial
data

Observed outcome Predicted probabilities Predicted outcome RPS Accuracy

a1 a2 a3 p1 p2 p3 o1 o2 o3

1 0 0 1 0 0 1 0 0 0 1

1 0 0 0 1 0 0 1 0 0.5 0

1 0 0 0 0 1 0 0 1 1 0

1 0 0 0.8 0.2 0 1 0 0 0.02 1

0 1 0 0.33 0.33 0.34 0 0 1 0.11 0

5.2.2 Classification accuracy

Classification accuracy measures how often the classifier makes the correct prediction, i.e.
how many times the outcome with the maximum estimated probability of occurence actually
occurs.

Table 3 illustrates the calculations leading to the ranked probability score and classification
accuracy for several combinations of p and a. The left-most group of three columns gives
the observed outcomes, the next group gives the predicted outcome probabilities, and the
third gives the predicted outcomes using maximum probability allocation. The two columns
in the right give the ranked probability scores and classification accuracies. As shown, a
ranked probability score of zero indicates a perfect prediction (minimum error) and a ranked
probability score of one indicates a completely wrong prediction (maximum error).

The ranked probability score and classification accuracy for a particular experiment in the
validation framework are computed by averaging over their respective values over thematches
in the prediction set. The uncertainty in the estimates from each experiment is quantified using
leave-one-match out jackknife (Efron 1982), as detailed in step 9 of Algorithm 1.

5.3 Meta-analysis

The proposed validation framework consists of K = 17 experiments, one for each calendar
year in the data. Each experiment results in pairs of observations (si , σ̂i

2
), where si is the

ranked probability score or classification accuracy from the i th experiment, and σ̂i
2 is the

associated jackknife estimate of its variance (i = 1, . . . , K ).
We synthesized the results of the experiments using meta-analysis (DerSimonian and

Laird 1986). Specifically, we make the working assumptions that the summary variances
σ̂i

2 are estimated well-enough to be considered as known, and that s1, . . . , sK are realiza-
tions of random variables S1, . . . , SK , respectively, which are independent conditionally on
independent random effects U1, . . . ,UK , with

Si | Ui ∼ Normal
(
α +Ui , σ̂i

2
)

,

and

Ui ∼ Normal(0, τ 2).

The parameter α is understood here as the overall ranked probability score or classification
accuracy, after accounting for the heterogeneity between the experiments.
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The maximum likelihood estimate of the overall ranked probability or classification accu-
racy is then the weighted average

α̂ =
∑

wi si∑
wi

,

where wi = (σ̂i
2 + τ̂ 2)−1 and τ̂ 2 is the maximum likelihood estimate of τ 2. The estimated

standard error for the estimator of the overall score α̂ can be computed using the square root
of the inverse Fisher information about α, which ends up being (

∑K
i=1 wi )

−1/2.
The assumptions of the random-effects meta-analysis model (independence, normality

and fixed variances) are all subject to direct criticism for the validation framework depicted
in Fig. 3 and the criteria we consider; for example, the training and validation sets defined in
the sequence of experiments in Fig. 3 are overlapping and ordered in time, so the summaries
resulting from the experiment are generally correlated. We proceed under the assumption
that these departures are not severe enough to influence inference and conclusions about α.

5.4 Implementation

Algorithm 1 is an implementation of the validation framework in pseudo-code. Each model
is expected to have a training method which trains the model on data, and a prediction
method which returns predicted outcome probabilities for the prediction set. We refer to
these methods as train and predict in the pseudo-code.

Algorithm 1 Pseudo-code for the validation framework
Input:

x1, . . . , xG � feature vectors for all G matches in the data set
d1 ≤ . . . ≤ dG � dg is the match date of match g ∈ {1, . . . ,G}
o1, . . . , oG � match outcomes
train: {xg, og : g ∈ A} → f (·) � Training algorithm
predict: {xg : g ∈ B}, f (·) → {ōg : g ∈ B} � Prediction algorithm
criterion: {og, ōg : g ∈ B} → {vg : g ∈ B} � observation-wise criterion values
D1, . . . , DT � Cut-off dates for training for experiments
meta-analysis: {si , σ̂ 2

i : i ∈ {1, . . . , T }} → α̂ � Meta-analysis algorithm

Output: α̂ � Overall validation metric

1: for i ← 1 to T do
2: A ← {g : dg ≤ Dt }
3: B ← {g : Dt < dg ≤ Dt + 10days}
4: nB ← dim(B)

5: f (·) ← train({xg, og : g ∈ A}) � fit the model
6: {ōg : g ∈ B} ← predict({xg : g ∈ B}, f (·)) � get predictions
7: {vg : g ∈ B} ← criterion({og, ōg : g ∈ B})
8: si ← 1

nB

∑
g∈B vg

9: σ̂ 2
i ← nB

nB−1
∑

g∈B
(∑

h∈B/{g} vh
nB−1 − si

)2

10: end for

11: α̂ ← meta-analysis({si , σ̂ 2
i : i ∈ {1, . . . , T })
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Table 4 Description of each model in Section 3 and Section 4 in terms of features used, the handling of draws,
the distribution whose parameters are modeled, and the estimation procedure that was used

Model Draws Features Distribution Estimation

BL (1) Davidson 1 Multinomial ML

BL (1) Ordinal 1 Multinomial ML

CS (2) Davidson 1 Multinomial ML

CS (2) Ordinal 1 Multinomial ML

LF (3) Davidson 1, 6, 7, 12, 13 Multinomial ML

LF (3) Ordinal 1, 6, 7, 12, 13 Multinomial ML

TVC (4) Davidson 1, 6(t), 7(t), 12(t), 13 Multinomial ML

TVC (4) Ordinal 1, 6(t), 7(t), 12(t), 13 Multinomial ML

AFD (5) Davidson 1, 6(t), 7(t), 12(t), 13 Multinomial MPL

HPL (7) 1, 2, 4, 6, 15, 16 Poisson INLA

(†) TVC (4) Ordinal 1, 2, 3, 4, 6(t), 7(t), 11(t) Multinomial ML

The suffix (t) indicates features with coefficients varying with matches played (feature 5 in Table 1)
The model indicated by † is the one we used to compute the probabilities for the submission to the MLS
challenge
The acronyms are as follows: BL, Baseline (home advantage); CS, Bradley–Terry with constant strengths; LF,
Bradley–Terry with linear features; TVC, Bradley–Terry with time-varying coefficients; AFD, Bradley–Terry
with additive feature differences and time interactions; HPL, Hierarchical Poisson log-linear model

6 Results

In this section we compare the predictive performance of the variousmodels we implemented
as measured by the validation framework described in Sect. 5. Table 4 gives the details of
each model in terms of features used, the handling of draws (ordinal and Davidson, as in
Sect. 3.2), the distribution whose parameters are modeled, and the estimation procedure that
has been used.

The sets of features that were used in the LF, TVC, AFD and HPL specifications in
Table 4 resulted from ad-hoc experimentation with different combinations of features in
the LF specification. All instances of feature 13 refer to the least squares ordinal rank (see
Subsection 2.5 of the supplementary material). The features used in the HPL specification
in (7) have been chosen prior to fitting to be home and newly promoted (features 1 and 2 in
Table 1), the difference in form and points tally (features 4 and 6 in Table 1) between the two
teams competing in match g, and season and quarter (features 15 and 16 in Table 1) for the
season that match g takes place.

For each of the models in Tables 4 and 5 presents the ranked probability score and classifi-
cation accuracy as estimated from the validation framework in Algorithm 1, and as calculated
for the matches in the test set for the challenge.

The results in Table 5 are indicative of the good properties of the validation framework of
Sect. 5 in accurately estimating the performance of the classifier on unseen data. Specifically,
and excluding the baseline model, the sample correlation between overall ranked probability
score and the average ranked probability score from the matches on the test set is 0.973. The
classification accuracy seems to be underestimated by the validation framework.

The TVC model that is indicated by † in Table 5 is the model we used to compute the
probabilities for our submission to the MLS challenge. Figure 4 shows the estimated time-
varying coefficients for the TVC model. The remaining parameter estimates are 0.0410 for
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Table 5 Ranked probability score and classification accuracy for the models in Table 4, as estimated from the
validation framework of Section 5 (standard errors are in parentheses) and from the matches in the test set of
the challenge

Model Ranked probability score Accuracy Test

Draws Validation Test Validation

BL Davidson 0.2242 (0.0024) 0.2261 0.4472 (0.0067) 0.4515

BL Ordinal 0.2242 (0.0024) 0.2261 0.4472 (0.0067) 0.4515

CS Davidson 0.2112 (0.0028) 0.2128 0.4829 (0.0073) 0.5194

CS Ordinal 0.2114 (0.0028) 0.2129 0.4779 (0.0074) 0.4951

LF Davidson 0.2088 (0.0026) 0.2080 0.4849 (0.0068) 0.5049

LF Ordinal 0.2088 (0.0026) 0.2084 0.4847 (0.0068) 0.5146

TVC Davidson 0.2081 (0.0026) 0.2080 0.4898 (0.0068) 0.5049

TVC Ordinal 0.2083 (0.0025) 0.2080 0.4860 (0.0068) 0.5097

AFD Ordinal 0.2079 (0.0026) 0.2061 0.4837 (0.0068) 0.5194

�HPL 0.2073 (0.0025) 0.2047 0.4832 (0.0067) 0.5485

†TVC Ordinal 0.2085 (0.0025) 0.2087 0.4865 (0.0068) 0.5388

The model indicated by † is the one we used to compute the probabilities for the submission to the MLS
challenge, while the one indicated by ∗ is the one that achieves the lowest estimated ranked probability score
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Fig. 4 Plots of the time-varying coefficients in the TVC model that is indicated by † in Table 5, which is the
model we used to compute the probabilities for our submission to the MLS challenge

the coefficient of form,− 0.0001 for the coefficient of days since previous match, and 0.0386
for the coefficient of newly promoted. Of all the features included, only goal difference and
point tally last season had coefficients for which we found evidence of difference from zero
when accounting for all other parameters in the model (the p values from individual Wald
tests are both less than 0.001).

After the completion of the MLS challenge we explored the potential of new models and
achieved even smaller ranked probability scores than the one obtained from the TVC model.
In particular, the best performing model is the HPL model in Sect. 4.1 (starred in Table 5),
followed by the AFD model which achieves a marginally worse ranked probability score. It
should be noted here that the LF models are two simpler models that achieve performance
that is close to that of HPL and AFD, without the inclusion of random effects, time-varying
coefficients, or any non-parametric specifications.
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The direct comparison between the ordinal and Davidson extensions of Bradley–Terry
type models indicates that the differences tend to be small, with the Davidson extensions
appearing to perform better.

We also tested the performance of HPL in terms of predicting actual scores of matches
using the validation framework, comparing to a baseline method that always predicts the
average goals scored by home and away teams respectively in the training data it receives.
Using root mean square error as an evaluation metric, HPL achieved a score of 1.0011 with
estimated standard error 0.0077 compared to the baseline which achieved a score of 1.0331
with estimated standard error 0.0083.

7 Conclusions and discussion

We compared the performance of various extensions of Bradley–Terry models and a hier-
archical log-linear Poisson model for the prediction of outcomes of soccer matches. The
best performing Bradley–Terry model and the hierachical log-linear Poisson model deliv-
ered similar performance, with the hierachical log-linear Poisson model doing marginally
better.

Amongst the Bradley–Terry specifications, the best performing one is AFD, which mod-
els strength differences through a semi-parametric specification involving general smooth
bivariate functions of features and season time. Similar but lower predictive performance
was achieved by the Bradley–Terry specification that models team strength in terms of lin-
ear functions of season time. Overall, the inclusion of features delivered better predictive
performance than the simpler Bradley–Terry specifications. In effect, information is gained
by relaxing the assumption that each team has constant strength over the season and across
feature values. The fact that the models with time varying components performed best within
the Bradley–Terry class of models indicates that enriching models with time-varying speci-
fications can deliver substantial improvements in the prediction of soccer outcomes.

All models considered in this paper have been evaluated using a novel, context-specific
validation framework that accounts for the temporal dimension in the data and tests the
methods under gradually increasing information for the training. The resulting experiments
are then pooled together using meta-analysis in order to account for the differences in the
uncertainty of the validation criterion values by weighing them accordingly.

The meta analysis model we employed operates under the working assumption of inde-
pendence between the estimated validation criterion values from each experiment. This is at
best a crude assumption in cases like the abovewhere data for trainingmay be shared between
experiments. Furthermore, the validation framework was designed to explicitly estimate the
performance of each method only for a pre-specified window of time in each league, which
we have set close to the window where the MLS challenge submissions were being evalu-
ated. As a result, the conclusions we present are not generalizable beyond the specific time
window that was considered. Despite these shortcomings, the results in Table 5 show that the
validation framework delivered accurate estimates of the actual predictive performance of
each method, as the estimated average predictive performances and the actual performances
on the test set (containingmatches between 31stMarch and 10th April 2017) were very close.

Themain focus of this paper is to provide aworkflow for predicting soccer outcomes, and to
propose various alternative models for the task. Additional feature engineering and selection,
and alternative fitting strategies can potentially increase performance and are worth pursuing.
For example, ensemble methods aimed at improving predictive accuracy like calibration,
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boosting, bagging, or model averaging (for an overview, see Dietterich (2000)) could be
utilized to boost the performance of the classifiers that were trained in this paper.

A challenging aspect ofmodeling soccer outcomes is devisingways to borrow information
across different leagues. The two best performing models (HPL and AFD) are extremes in
this respect; HPL is trained on each league separately while AFD is trained on all leagues
simultaneously, ignoring the league that teams belong to. Further improvements in predictive
quality can potentially be achieved by using a hierarchicalmodel that takes into accountwhich
league teams belong to but also allows for sharing of information between leagues.

8 Supplementarymaterial

The supplementary material document contains two sections. Section 1 provides plots of the
number of matches per number of goals scored by the home and away teams, by country, for
a variety of arbitrarily chosen countries. These plots provide evidence of a home advantage.
Section 2 details approaches for obtaining team rankings (feature 13 in Table 2) based on the
outcomes of the matches they played so far.
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