2,119 research outputs found

    Sinusoidal-gust generation with a pitching and plunging airfoil

    Full text link
    The generation of uniform, periodic gust disturbances in an experimental context is demonstrated using a single oscillating airfoil. A pitching and heaving symmetric airfoil is suggested as a simpler alternative to existing gust-generation methods. The Theodorsen theory of unsteady aerodynamics is used as an analytical tool to dictate the kinematics necessary to produce well-defined sinusoidal gusts downstream of the airfoil. These analytic predictions improve the symmetry of fluctuations in the vertical velocity induced by the airfoil, as well as minimize the influence of vorticity shed by the oscillating airfoil. The apparatus is shown to produce smooth, repeatable gusts with high amplitudes and reduced frequencies compared to other gust-generation mechanisms in the literature. Furthermore, the control of downstream flow properties by airfoil motion kinematics has applications in experimental aerodynamics, the design of rotorcraft and light aerial vehicles, and biological propulsion.Comment: Under revie

    Inherent-Structure Dynamics and Diffusion in Liquids

    Full text link
    The self-diffusion constant D is expressed in terms of transitions among the local minima of the potential (inherent structure, IS) and their correlations. The formulae are evaluated and tested against simulation in the supercooled, unit-density Lennard-Jones liquid. The approximation of uncorrelated IS-transition (IST) vectors, D_{0}, greatly exceeds D in the upper temperature range, but merges with simulation at reduced T ~ 0.50. Since uncorrelated IST are associated with a hopping mechanism, the condition D ~ D_{0} provides a new way to identify the crossover to hopping. The results suggest that theories of diffusion in deeply supercooled liquids may be based on weakly correlated IST.Comment: submitted to PR

    Imaging internal flows in a drying sessile polymer dispersion drop using Spectral Radar Optical Coherence Tomography (SR-OCT)

    Get PDF
    In this work, we present the visualization of the internal flows in a drying sessile polymer dispersion drop on hydrophilic and hydrophobic surfaces with Spectral Radar Optical Coherence Tomography (SR-OCT).We have found that surface features such as the initial contact angle and pinning of the contact line, play a crucial role on the flow direction and final shape of the dried drop. Moreover, imaging through selection of vertical slices using optical coherence tomography offers a feasible alternative compared to imaging through selection of narrow horizontal slices using confocal microscopy for turbid, barely transparent fluids

    Temperature dependence of the slip length in polymer melts at attractive surfaces

    Full text link
    Using Couette and Poiseuille flow, we extract the temperature dependence of the slip length, δ\delta, from molecular dynamics simulations of a coarse-grained polymer model in contact with an attractive, corrugated surface. δ\delta is dictated by the ratio of bulk viscosity and surface mobility. At weakly attractive surfaces, a lubrication layer forms, δ\delta is large and increases upon cooling. Close to the glass transition temperature, TgT_ g, very large slip lengths are observed. At a more attractive surface, a``stick y surface layer" is build up, which gives rise to a small slip length. Upon cool ing, δ\delta decreases at high temperatures, passes through a minimum and grows upon approaching TgT_g. At strongly attractive surfaces, the Navier-slip condit ion fails to describe Couette and Poiseuille flow simultaneously. The simulation results are corroborated by a schematic, two-layer model suggesting that the ob servations do not depend on the details of the computational model.Comment: submitted to Phys. Rev. Let

    Leading edge vortex formation and detachment on a flat plate undergoing simultaneous pitching and plunging motion: Experimental and computational study

    Get PDF
    This study focuses on the formation and detachment of a leading edge vortex (LEV) appearing on an airfoil when its effective angle of attack is dynamically changed, inducing additional forces and moments on the airfoil. Experimental measurements of the time-resolved velocity field using Particle Image Velocimetry (PIV) are complemented by a computational study using an URANS (Unsteady Reynolds-Averaged Navier–Stokes) framework. In this framework a transition-sensitive Reynolds-stress model of turbulence, proposed by Maduta et al. (2018), which combines the near-wall Reynolds-Stress model by Jakirlic and Maduta (2015) and a phenomenological transition model governing the pre-turbulent kinetic energy by Walters and Cokljat (2008), is employed. Combined pitching and plunging kinematics of the investigated flat plate airfoil enable the effective inflow angle to be arbitrarily prescribed. A qualitative assessment of flow fields and a quantitative comparison of LEV characteristics in terms of its center position and circulation as well as an investigation of the mechanism causing the vortex to stop accumulating circulation revealed close agreement between the experimental and simulation results. Further considerations of the lift contribution from the pressure and suction side of the airfoil to the overall lift indicates that the qualitative lift evolution is reproduced even if the pressure side contribution is neglected. This reveals important characteristics of such airfoil dynamics, which can be exploited in future experimental studies, where direct aerodynamic force and moment measurements are greatly inhibited by dominating inertial forces

    A cost-reducing extracorporeal membrane oxygenation (ECMO) program model: a single institution experience.

    Get PDF
    BACKGROUND: The worldwide demand for ECMO support has grown. Its provision remains limited due to several factors (high cost, complicated technology, lack of expertise) that increase healthcare cost. Our goal was to assess if an intensive care unit (ICU)-run ECMO model without continuous bedside perfusionists would decrease costs while maintaining patient safety and outcomes. METHOD: A new ECMO program was implemented in 2010, consisting of dedicated ICU multidisciplinary providers (ICU-registered nurses, mid-level providers and intensivists). In year one, we introduced an education platform, new technology and dedicated space. In year two, continuous bedside monitoring by perfusionists was removed and new management algorithms designating multidisciplinary providers as first responders were established. The patient safety and cost benefit from the removal of the continuous bedside monitoring of the perfusionists of this new ECMO program was retrospectively reviewed and compared. RESULTS: During the study period, 74 patients (28 patients in year 1 and 46 patients in year 2) were placed on ECMO (mean days: 8 ± 5.7). The total annual hospital expenditure for the ECMO program was significantly reduced in the new model (234,000inyear2vs.234,000 in year 2 vs. 600,264 in year 1), showing a 61% decrease in cost. This cost decrease was attributed to a decreased utilization of perfusion services and the introduction of longer lasting and more efficient ECMO technology. We did not find any significant changes in registered nurse ratios or any differences in outcomes related to ICU safety events. CONCLUSION: We demonstrated that the ICU-run ECMO model managed to lower hospital cost by reducing the cost of continuous bedside perfusion support without a change in outcomes

    Influence of shock wave propagation on dielectric barrier discharge plasma actuator performance

    Get PDF
    Interest in plasma actuators as active flow control devices is growing rapidly due to their lack of mechanical parts, light weight and high response frequency. Although the flow induced by these actuators has received much attention, the effect that the external flow has on the performance of the actuator itself must also be considered, especially the influence of unsteady high-speed flows which are fast becoming a norm in the operating flight envelopes. The primary objective of this study is to examine the characteristics of a dielectric barrier discharge (DBD) plasma actuator when exposed to an unsteady flow generated by a shock tube. This type of flow, which is often used in different studies, contains a range of flow regimes from sudden pressure and density changes to relatively uniform high-speed flow regions. A small circular shock tube is employed along with the schlieren photography technique to visualize the flow. The voltage and current traces of the plasma actuator are monitored throughout, and using the well-established shock tube theory the change in the actuator characteristics are related to the physical processes which occur inside the shock tube. The results show that not only is the shear layer outside of the shock tube affected by the plasma but the passage of the shock front and high-speed flow behind it also greatly influences the properties of the plasma

    Viriot: A cloud of things that offers iot infrastructures as a service

    Get PDF
    Many cloud providers offer IoT services that simplify the collection and processing of IoT information. However, the IoT infrastructure composed of sensors and actuators that produces this information remains outside the cloud; therefore, application developers must install, connect and manage the cloud. This requirement can be a market barrier, especially for small/medium software companies that cannot afford the infrastructural costs associated with it and would only prefer to focus on IoT application developments. Motivated by the wish to eliminate this barrier, this paper proposes a Cloud of Things platform, called VirIoT, which fully brings the Infrastructure as a service model typical of cloud computing to the world of Internet of Things. VirIoT provides users with virtual IoT infrastructures (Virtual Silos) composed of virtual things, with which users can interact through dedicated and standardized broker servers in which the technology can be chosen among those offered by the platform, such as oneM2M, NGSI and NGSI-LD. VirIoT allows developers to focus their efforts exclusively on IoT applications without worrying about infrastructure management and allows cloud providers to expand their IoT services portfolio. VirIoT uses external things and cloud/edge computing resources to deliver the IoT virtualization services. Its open-source architecture is microservice-based and runs on top of a distributed Kubernetes platform with nodes in central and edge data centers. The architecture is scalable, efficient and able to support the continuous integration of heterogeneous things and IoT standards, taking care of interoperability issues. Using a VirIoT deployment spanning data centers in Europe and Japan, we conducted a performance evaluation with a two-fold objective: showing the efficiency and scalability of the architecture; and leveraging VirIoT’s ability to integrate different IoT standards in order to make a fair comparison of some open-source IoT Broker implementations, namely Mobius for oneM2M, Orion for NGSIv2, Orion-LD and Scorpio for NGSI-LD
    • …
    corecore