
sensors

Article

VirIoT: A Cloud of Things That Offers IoT Infrastructures
as a Service

Andrea Detti 1,†,* , Hidenori Nakazato 2,†, Juan Antonio Martínez Navarro 3, Giuseppe Tropea 1,
Ludovico Funari 1 , Luca Petrucci 1 , Juan Andrés Sánchez Segado 3 and Kenji Kanai 2

����������
�������

Citation: Detti, A.; Nakazato, H.;

Martínez Navarro, J.A; Tropea, G.;

Funari, L.; Petrucci, L.; Sánchez

Segado, J.A; Kanai, K. VirIoT: A

Cloud of Things That Offers IoT

Infrastructures as a Service. Sensors

2021, 21, 6546. https://doi.org/

10.3390/s21196546

Academic Editor: Naveen

Chilamkurti

Received: 18 August 2021

Accepted: 27 September 2021

Published: 30 September 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 CNIT—Electronic Engineering Department, University of Rome “Tor Vergata”, 00133 Rome, Italy;
giuseppe.tropea@cnit.it (G.T.); ludovico.funari@uniroma2.it (L.F.); luca.petrucci@uniroma2.it (L.P.)

2 Department of Communications and Computer Engineering, Waseda University, Tokyo 169-0072, Japan;
nakazato@waseda.jp (H.N.); k.kanai@aoni.waseda.jp (K.K.)

3 Odin Solutions, Alcantarilla, 30820 Murcia, Spain; jamartinez@odins.es (J.A.M.N.);
jasanchez@odins.es (J.A.S.S.)

* Correspondence: andrea.detti@uniroma2.it
† All authors contributed equally to this work.

Abstract: Many cloud providers offer IoT services that simplify the collection and processing of
IoT information. However, the IoT infrastructure composed of sensors and actuators that produces
this information remains outside the cloud; therefore, application developers must install, connect
and manage the cloud. This requirement can be a market barrier, especially for small/medium
software companies that cannot afford the infrastructural costs associated with it and would only
prefer to focus on IoT application developments. Motivated by the wish to eliminate this barrier,
this paper proposes a Cloud of Things platform, called VirIoT, which fully brings the Infrastructure
as a service model typical of cloud computing to the world of Internet of Things. VirIoT provides
users with virtual IoT infrastructures (Virtual Silos) composed of virtual things, with which users
can interact through dedicated and standardized broker servers in which the technology can be
chosen among those offered by the platform, such as oneM2M, NGSI and NGSI-LD. VirIoT allows
developers to focus their efforts exclusively on IoT applications without worrying about infrastructure
management and allows cloud providers to expand their IoT services portfolio. VirIoT uses external
things and cloud/edge computing resources to deliver the IoT virtualization services. Its open-source
architecture is microservice-based and runs on top of a distributed Kubernetes platform with nodes in
central and edge data centers. The architecture is scalable, efficient and able to support the continuous
integration of heterogeneous things and IoT standards, taking care of interoperability issues. Using
a VirIoT deployment spanning data centers in Europe and Japan, we conducted a performance
evaluation with a two-fold objective: showing the efficiency and scalability of the architecture; and
leveraging VirIoT’s ability to integrate different IoT standards in order to make a fair comparison
of some open-source IoT Broker implementations, namely Mobius for oneM2M, Orion for NGSIv2,
Orion-LD and Scorpio for NGSI-LD.

Keywords: IoT; cloud computing; test-bed; interoperability

1. Introduction

Nowadays ubiquitous, cloud computing decouples infrastructure providers from
application developers by offering the “computing” infrastructure as a service. The huge
proliferation of web, mobile and machine-to-machine applications is undeniably an effect
of this decoupling. It allows software companies to focus their efforts solely on the develop-
ment of applications without needing to worry about managing the supporting computing
infrastructure.

This paper proposes a Cloud of Things platform, named VirIoT (from “Virtual IoT”),
that brings the infrastructure as a service model to the world of the Internet of Things,

Sensors 2021, 21, 6546. https://doi.org/10.3390/s21196546 https://www.mdpi.com/journal/sensors

https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0002-0803-1392
https://orcid.org/0000-0002-2225-2124
https://orcid.org/0000-0003-3559-2838
https://orcid.org/0000-0003-4415-0548
https://doi.org/10.3390/s21196546
https://doi.org/10.3390/s21196546
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/s21196546
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s21196546?type=check_update&version=1

Sensors 2021, 21, 6546 2 of 27

precisely matching an equivalent goal. The platform offers sensor/actuator virtualisation,
as well as interoperability and support to current IoT standards, to create the concept
of virtual IoT infrastructures in the cloud that improves the current state of the art [1,2].
Indeed, although cloud computing providers (e.g., Amazon AWS [3] or Microsoft Azure [4])
offer IoT services, they only help with the collection, distribution and processing of IoT data,
but the IoT infrastructure that produces and consumes that data is currently outside the
cloud and must usually be deployed, connected and managed by application developers
themselves [5,6]. The need to own infrastructure can be a market barrier, especially
for small/medium software companies that cannot afford the related costs. For these
companies, it might be beneficial to focus only on IoT application development and
possibly rent the necessary IoT sensors and actuators. Accordingly, the proposed Cloud
of Things platform can be used by a cloud provider to extend its portfolio of IoT services,
offering developers the possibility of renting tailored IoT virtual infrastructures.

In order to introduce our work, in what follows we first provide a background on
how IoT applications these days are tightly coupled to their supporting infrastructure.
Then, we discuss how our Cloud of Things evolves this scenario by decoupling application
developers from infrastructure providers.

1.1. Background

Figure 1 shows a typical scenario used nowadays to run IoT applications [7]. There
is an IoT infrastructure, also known as IoT Silo, composed of (Real) Things, Controllers
and Brokers. Controllers are software components that act as adapters of interfaces and
data gateway between the things and upstream endpoints that are either the destination
IoT Applications or intermediate brokers providing data integration services and often
supporting more advanced functionality that is transversal to IoT Applications, such as
data aggregation and querying, storage and publish/subscribe/notify and access-control.
Applications, which live outside of the Silo, can be implemented from scratch or may lever-
age IoT “computing” services offered by cloud providers. In this scenario, the application
developer must usually manage not only the application but the IoT Silo infrastructure as
well, thus playing the additional role of infrastructure provider.

In Figure 1, we consider two kinds of brokers, HTTP and IoT, which manage access to
two classes of IoT information: generic contents and context data, respectively.

Generic contents are heterogeneous (large) data pieces, such as images or video
streams, produced by the Silo’s things and exposed as HTTP resources. Applications
access these contents either directly or through the mediation of an HTTP Broker (or proxy)
that provides access-control and other features, such as data caching and API gateway
functions.

Context data pieces are a few bytes long and digitally represent an entity with its
properties, such as the status of a lamp or the temperature of a room. Silo’s things manage
such context data, and applications access it either directly or through a server, usually
called IoT Broker. The IoT Broker is a kind of integration platform that manages the life-cycle
of context data and offers generic back-end services such as the following: data storage,
updates, queries, subscriptions, access control, etc. For the services to be successfully
delivered, context data must be homogeneous, i.e., compliant with a specific information
model. When a Silo’s thing does not natively conform to the IoT broker information model
and API, a Controller (or agent) is required to provide the necessary adaptation.

Sensors 2021, 21, 6546 3 of 27

Application developer and
Infrastructure provider

IoT Broker
(oneM2M, NGSI, NGSI-LD)

Real Things

IoT Silo

HTTP Broker

IoT
Applications

Controllers

Figure 1. IoT applications based on IoT Silos.

Many IoT standardization efforts precisely focus on defining the information model
and API of their IoT Brokers, and some representative standards are oneM2M [8] and
FIWARE NGSIv2 [9], which are evolving towards ETSI NGSI-LD [10] where there are better
supported linked data and semantics.

The information models of these standards are based on generic concepts that allow
representing the context data of a wide range of use cases. For example, the NGSI-LD
information model’s main concepts are Entities, with Properties and Relationships with
other Entities (we use the upper case notation for Entity, Property and Relationship when
referring specifically to NGSI-LD concepts). It is based on the JSON-LD syntax and its
idea of Linked Data. Listing 1 shows a NGSI-LD Entity that digitally represents a “person
counter”. Its Properties are as follows: daily persons, for which its value is the number of
people that have passed through the counter; and location, which contains a description
of the gate where the counter is located. The Entity also has a unique id, a type and a
@context semantic annotation typical of JSON-LD.

Listing 1. NGSI-LD Entity representing a person counter’s data.

Sensors 2021, 1, 0 3 of 27

Application developer and
Infrastructure provider

IoT Broker
(oneM2M, NGSI, NGSI-LD)

Real Things

IoT Silo

HTTP Broker

IoT
Applications

Controllers

Figure 1. IoT applications based on IoT Silos.

Many IoT standardization efforts precisely focus on defining the information model
and API of their IoT Brokers, and some representative standards are oneM2M [8] and
FIWARE NGSIv2 [9], which are evolving towards ETSI NGSI-LD [10] where there are better
supported linked data and semantics.

The information models of these standards are based on generic concepts that allow
representing the context data of a wide range of use cases. For example, the NGSI-LD
information model’s main concepts are Entities, with Properties and Relationships with
other Entities (we use the upper case notation for Entity, Property and Relationship when
referring specifically to NGSI-LD concepts). It is based on the JSON-LD syntax and its
idea of Linked Data. Table 1 shows a NGSI-LD Entity that digitally represents a “person
counter”. Its Properties are as follows: daily persons, for which its value is the number of
people that have passed through the counter; and location, which contains a description
of the gate where the counter is located. The Entity also has a unique id, a type and a
@context semantic annotation typical of JSON-LD.

Table 1. NGSI-LD Entity representing a person counter’s data.

1 {"id": "urn:ngsi -ld:person -counter:counter1",
2 "type": "counter",
3 "daily -persons" : {
4 "type": "Property",
5 "value": 30},
6 "location" : {
7 "type": "Property",
8 "value": "Entrance Gate 1"},
9 "@context":["https://uri.etsi.org /..."]}

1.2. Proposed Evolution

Overall, commercial solutions and many studies in literature (see [11–15] for instance)
involving cloud and IoT focus primarily on computing functionality, such as the following:
efficient virtualization of computing and network resources, analytics, flow programming,
data collection and so on. Our Cloud of Things platform, VirIoT, is complementary to this
state of the art because it focuses on virtualizing IoT infrastructures (Silos) that contain
things that can in turn be connected to the aforementioned computing capabilities, such as
the IoT services offered by Microsoft Azure or Amazon Web Services.

1.2. Proposed Evolution

Overall, commercial solutions and many studies in literature (see [11–15] for instance)
involving cloud and IoT focus primarily on computing functionality, such as the following:
efficient virtualization of computing and network resources, analytics, flow programming,
data collection and so on. Our Cloud of Things platform, VirIoT, is complementary to this
state of the art because it focuses on virtualizing IoT infrastructures (Silos) that contain
things that can in turn be connected to the aforementioned computing capabilities, such as
the IoT services offered by Microsoft Azure or Amazon Web Services.

Figure 2 shows how VirIoT evolves the scenario in Figure 1. The application devel-
oper is no longer alone, but a Cloud of Things provider and IoT infrastructure provider

Sensors 2021, 21, 6546 4 of 27

also join the scene. The Cloud of Things provider runs VirIoT on top of a cloud/edge
computing platform to create Virtual Things (vThings) and Virtual Silos (vSilos). A vThing
is an emulation of a real thing, and the emulation process is carried out by a software com-
ponent named ThingVisor that interacts with external things offered by IoT Infrastructure
providers. A ThingVisor can implement one or more vThings, and many ThingVisors can
be executed in the platform. vSilos are isolated IoT infrastructures created at the request of
application developers (tenants) and to which they can connect the vThings needed for
their applications in a “drag-and-drop” fashion. The services of the connected vThings,
such as the provision of sensor data or the execution of actions, can be accessed by the
applications through the mediation of dedicated IoT and HTTP Broker servers running
in the vSilos. A tenant has freedom in choosing the technology of her vSilo’s IoT Broker,
among a portfolio of possible ones (e.g., Brokers implementing the oneM2M standard,
Brokers for NGSIv2, etc.). Therefore, VirIoT is able to integrate different IoT standards
into a single virtualization platform. A vSilo also contains an HTTP Controller and an
IoT Controller, which takes care of the specific data+control plane functionality for their
related Brokers.

IoT Infrastructure
Providers

Application
developers

(tenants)

Cloud/Edge
Computing

Virtual Things

Real Things IoT
Applications

IoT Broker
(oneM2M, NGSI, NGSI-LD)

HTTP Broker

ThingVisor

ThingVisors

IoT
Controller

HTTP
Controller

Distribution
System

Virtual Silo

Cloud of Things
Provider

VirIoT

Figure 2. IoT Applications based on VirIoT services.

Thus, in a nutshell, VirIoT completely decouples IoT infrastructure providers from
application developers through a full virtualization of Things and Silos in the cloud
(or edge).

Figure 3 shows a parallelism between the concepts of server virtualization, specific
to Cloud Computing, and IoT virtualization, specific to VirIoT. Server virtualization uses
a pool of real hardware to offer virtual machines made of a configurable set of virtual
hardware (virtual memory, disks, CPUs, etc.) that applications can access through a
guest operating system that each tenant can chose. The virtualization process is made
by an Hypervisor, a software that interacts with real hardware to create the virtual one.
Similarly, the VirIoT virtualization stack uses a pool of real things to offer vSilos made of a
configurable set of vThings that can be accessed through two Brokers working in synergy
for which its IoT technology can be chosen by each tenant. The thing virtualization process
is performed by a ThingVisor.

Sensors 2021, 21, 6546 5 of 27

Making an explicit comparison, real things are akin to real hardware, ThingVisor to
Hypervisor, vThings to virtual hardware, the Brokers to the operating system and the vSilo
to the virtual machine.

ThingVisor

Real
Hardware

Hypervisor

Virtual
Hardware

Operative
System

Real
Things

ThingVisor

Virtual
Things

IoT
 Broker

Virtual
Machine

Virtual
Silo

sensorsactuators

Server
Virtualization

IoT
Virtualization

HTTP
HTTP
 Broker

Figure 3. Server Virtualization vs. IoT Virtualization.

A use case of VirIoT involves the development of large-scale IoT applications, such
as those in smart cities, that require broad infrastructure (for example, those consisting
of thousands of cameras or sensors). Software companies that cannot afford high instal-
lation costs can simply rent a virtualized (possibly scaled-down and much more easily
manageable) version of these things from a VirIoT-enabled Cloud of Things provider.
At the same time, the large companies or agencies that have deployed and own the IoT
infrastructure can partially recoup their upfront costs by selling access to their things to the
VirIoT-enabled Cloud of Things provider, which uses them to create many Virtual Things
to sell to multiple tenants.

Another use case involves running VirIoT in your own IoT infrastructure, similar to a
private cloud where the infrastructure provider, cloud provider and application developer
are one and the same. This model allows different applications to use different vSilos, thus
being completely isolated from each other because they do not share any Brokers, and
this increases the reliability of the system because no application, malicious or benign, can
affect data in a Broker that is used by other applications. In addition, the developer of an
application can choose the IoT Broker that best suits its needs: for example, a faster IoT
Broker with a limited API if the application needs low latency; or a slower IoT Broker but
with a powerful API if it needs complex queries based on the semantic aspect of the data,
for instance.

All in all, the novelty of the proposed IoT virtualization is two fold: first, the in-
troduction of a new virtualization model for IoT applications, which fully exploits the
cloud, efficiently multiplexes resources and minimally impacts the consolidated devel-
opment workflow. It simplifies their deployment and expands the service portfolio of
cloud providers. Second, the design and implementation of an open-sourced cloud-native
architecture; it leverages existing technologies to deliver the above virtualization model at
scale through micro-services that virtualize all components of the typical IoT application.
In the following sections, we review related works, we present the VirIoT architecture
and we report a performance evaluation of a wide area VirIoT instance that involves data
centers in Europe and Japan. Finally, we draw conclusions.

Sensors 2021, 21, 6546 6 of 27

2. Related Works

Regarding infrastructure-based technologies, investigations such as the one from
Usman et al. [2] propose a pure infrastructure-based approach where they use a Data
Center based on OpenStack. In this manner, thanks to the deployment of a specific
OpenStack component in the IoT device, as well as with using what they call a Sensor Data
Transfer Service, the information coming from an IoT device can be introduced into the
OpenStack Controller Node by using an IoT Data Acquisition Server, which stores the data
coming from the devices into an centralized InfluxDB. Stack4Things, by Longo et al. [16],
also goes in this direction regarding infrastructure management. This proposal adopts
OpenStack as well, introducing a novel component for provisioning configurations, tasks
for board-hosted sensing and actuation resources. Finally, as mentioned in Section 1, the
industry has also moved to the Cloud IoT paradigm because of the high potential it brings
regarding both heterogeneity, the high quantity of information which can be processed
and the business potential. Examples are Google Cloud IoT, Amazon Web Services for IoT
and Microsoft Azure. They have been compared in terms of features and performance by
Pierleoni et al. [17]. Nevertheless, they are more focused on how IoT information coming
from devices is integrated or processed and do not consider cross-domain interoperability
or virtualisation of Things within the infrastructure as a primary goal.

Concepts such as IoT virtualization or cloud of sensors have already been discussed in
literature. One of the first works was by Kabadayi et al. [18] in 2006, where they envisioned
the idea of virtualizing sensors with the objective of decoupling the acquisition of the
information from the use of this information by end users. Within this scope, we also
find works from Alam et al. [19] where they proposed a layered architecture where the
information obtained from IoT devices is enriched by using semantic representations.
Nevertheless, since this work does not use any established data-modeling international
standards for representing the information, a specific set of concepts was defined. Thus, it
was possible to represent a limited set of type of things only, making this work not easily
scalable or extensible concerning this aspect.

In 2014, Aazam et al. [20] addressed the importance of the IoT and the combination
of IoT information with cloud computing. In the architecture they propose, they not only
provide remarks on the use of a middleware layer with the purpose of storing data but also
of performing some processing tasks over the information gathered from the IoT level. This
aspect is also considered by Madria et al. [21] where they also introduced the possibility of
having different configurations, such as one-to-many, many-to-one or many-to-many, for
the use of a virtual sensor representation where an intermediate processing task could be
performed too.

Other works in IoT virtualization were made by Dar et al. [22], for instance, where the
main focus was the inherent properties of IoT devices regarding link instability, availability
and the likes so that a platform could provide this information to the users through the
creation of different services, which receive users requests, and these services are the ones
receiving information coming from the sensors.

More recently, in 2019, Alam et al. [23] provided a survey for software definition and
function virtualization. In this paper, the authors address the issue of IoT virtualization
from the point of view of technologies such as Software Defined Networks and Network
Function Virtualization. Basically, they provide an architecture where these concepts are
integrated so that IoT data can be processed dynamically.

Unlike the works we reference above, our position is novel in that it extends the scope
of virtualization from the data acquisition (in the ThingVisor) up to the vSilo, employing
also a standard representation of information based on NGSI-LD. VirIoT includes in a single
virtualization instance (the vSilo) not only sensors but also a data integration platform
whose technology can be a user’s choice. Therefore, the resulting solution embraces
many IoT standards into a single platform and consequently addresses the inevitable
interoperability issues. Moreover, VirIoT offers Things as a Service, i.e., not only virtual

Sensors 2021, 21, 6546 7 of 27

sensors but also virtual actuators while handling an efficient distribution of context data
and generic heterogeneous contents.

Other aspects we would like to highlight concern the different networking and com-
puting technologies, which can be found in the literature, that are also inspired the design
of our VirIoT platform, especially for vSilos, so that virtual things could be offered to
end-users, tailoring the information according to their specific needs.

The NIST [24] has defined the term cloud computing in 2011 as a model for provisioning
and releasing a shared pool of computing resources in a quick manner with minimal effort
or service provider interaction. This definition also talks about some essential characteristics
such as on-demand self-service, broad network access or rapid elasticity.

In addition, more recent works such as Petrakis et al. [11], developed an “as a Service”
framework, based on micro-services, for the IoT. Unlike other proposed solutions they also
consider a framework covering edge and cloud services, where an IoT gateway may collect
information and send it to a cloud back end to support data sharing, storage and processing.

Samaniego et al. [15] also relies on the same idea of taking advantage of edge nodes
and their performance capabilities so that IoT services could be more efficiently provided.
For this purpose, they proposed an architecture for virtual systems comprising sensor, fog
and cloud layers that collaborate to provide IoT services at the edge.

Li et al. [12] exploits object virtualization by using network function virtualization as a
flexible mean for network service provisioning. The authors propose a layered framework
encompassing smart objects, fog and cloud to overcome the obstacles resulting from
resource constraints on sensory-level nodes. This work considers the idea of exploiting
not only cloud services but also having a flexible approach to distribute processing tasks
to other planes/levels such as edge or fog. In this manner, the resources dedicated to
the processing tasks can be virtualized and dynamically deployed, optimizing them for
better performance, thus making for a scalable approach. These ideas are also used in
the solution we propose thanks to the dynamic deployment and orchestration capabilities
of Kubernetes, but we also devised a data distribution system that is able to follow the
network topology of the dynamic deployment of ThingVisors and vSilos.

Table 1 summarizes the related-works analysis we carried out.

Table 1. Summary of related works.

Ref. Platform Main Idea Comparison

[2] IoT-IaaS Sensor sharing No actuation; IoT data moved to
centralized database

[16] Stack4Things Sensing and actuation as a
service

No conversion to “neutral
format”; hence, no cross-domain
interoperability

[3] AWS
Greengrass

Tight integration of IoT devices
with the cloud

Does not provide IoT
infrastructure itself or permit
sharing of IoT infrastructure by
multiple tenants

[18] Virtual Sensors Abstracting data from physical
sensors

No containerized approach; no
actuation

[19]

An event-driven
sensor
virtualization
approach

Information obtained from IoT
devices is enriched using
semantic representations

No standards-based data model
is used; custom concepts were
defined

[20] Cloud of Things Use of a middleware layer for
storing and processing IoT data

No actuation; no virtualization
of services; no conversion to
“neutral format”; hence, no
cross-domain interoperability

Sensors 2021, 21, 6546 8 of 27

Table 1. Cont.

Ref. Platform Main Idea Comparison

[21] Sensor Cloud

Sensors spread in a huge
geographical area can connect
together and be employed
simultaneously by multiple users
in a many-to-many configuration

No actuation; focus on
integrating distributed Wireless
Sensor Networks of
homogeneous type

[22]

Enhancing
Dependability
of Cloud-based
IoT Services
through
Virtualization

Enhancing two desired service
dependability features, reliability
and availability, at the
application layer

Narrow focus on dependability

[11] iTaaS

Solution based on micro-services
to support data collection from
IoT devices to a gateway on a
real time basis and data sharing,
storage and processing

No actuation; no support for
bulk HTTP data streams

[15]
Smart
Virtualization
for IoT

Builds distributed virtual
systems that include the benefits
of the cloud, fog and dew
computing to provide services
directly at the edge level

No conversion to “neutral
format”; hence, no cross-domain
interoperability

[12] Virtual Fog

A layered framework grounded
on object virtualization, network
function virtualization and
service virtualization

No conversion to “neutral
format”; hence, no cross-domain
interoperability

3. VirIoT Architecture and Services

VirIoT is an open-source microservices architecture [25] whose services (ThingVi-
sors, vThings, vSilos, Master Controller, etc.) are implemented as Docker containers.
Their deployment is managed by an underlying Kubernetes (k8s) cluster [26], possibly
spreading over a wide geographical area of central and edge data centers. VirIoT offers
edge-computing functionality, meaning that it is possible to control where ThingVisors and
vSilos can be deployed. In this manner, tenants can deploy their vSilos at a specific data
center closer to the final applications, with obvious advantage in terms of latency and
bandwidth consumption. For the same reason, the administrator can deploy ThingVisors
near the real things that interact with them.

Figure 4 shows the architecture of VirIoT and its relationship with an underlying k8s
cluster used for the dynamic deployment of VirIoT services. The k8s cluster is organized in
zones where VirIoT services run. A zone can be a central or edge data center for which its
nodes have specific k8s labels (viriot-zone) that allow discriminating them and control-
ling which zone to install each service. An MQTT-based [27] distribution system and an
HTTP-based distribution system, consisting of MQTT brokers and HTTP proxies, are used
to efficiently transport context data and generic contents among ThingVisors/vThings and
vSilos with low latency. In addition to this “data plane” information, VirIoT services also
exchange control information by using the MQTT distribution system. The main service of
the “control plane” is the Master Controller, which exposes a REST API to control the life
cycle of ThingVisors and vSilos, and it stores the system status in a NoSQL System Database
that is MongoDB.

Sensors 2021, 21, 6546 9 of 27

ThingVisor 1

Master Controller

System Database

Tenant
Tenant

MQTT
broker

HTTP proxy

VirIoT zone 1

VirIoT zone 2

HTTP
Distribution system

MQTT
broker

HTTP proxy

ThingVisor 2vThing 2.a

vThing 2.b

vThing 2.c

Real Things Real Things
vThing 1.a

vThing 1.b

vThing 1.c

ThingVisor 1

IoT Broker

HTTP Broker

vSilo 2

IoT Broker

HTTP Borker

Administrator,
Tenants

Kubernetes nodes of zone1 Kubernetes nodes of zone2

Context data (NGSI-LD)
Control messages

Generic Contents
(video, images, etc.)

vThing 1.a

vThing 1.b

vThing 1.c

ThingVisor 1

MQTT Distribution System

control plane
data plane

IoT Controller

HTTP Controller

IoT Controller

HTTP Controller

vSilo 1

Figure 4. VirIoT system architecture.

The platform installation requires labeling the involved k8s nodes with specific labels
and the manual deployment of Master Controller, System Database and MQTT/HTTP
Distribution Systems through specific k8s YAML files. After that, resource discovery and
platform configuration operations can be performed either through the REST API exposed
by the Master Controller or a command-line interface tool (CLI) (see [25,28]). For example,
the list of vSilos types (Docker images named Flavour) that a tenant can instantiate, and
the list of available vThings can be displayed; moreover, ThingVisors can be added and
configured, and vSilos can be instantiated and configured.

Regarding the security aspects, we currently considered as trusted the infrastructure
within a data center, so we did not apply any encryption for internal data transfer. Data
encryption is used on VPN links connecting cloud/edge sites to each other. Regarding
external communications between ThingVisors and real things and between vSilos and
applications, we leverage the security mechanisms (e.g., HTTPs with digital certificate)
offered by real things and vSilos IoT Brokers, respectively, as we do not want to change
them but integrate them as they are. In terms of platform configuration control, the Master
Controller includes “basic” access control functionality based on JSON Web Tokens, which
classifies clients as administrators and tenants. Tenants can control and see only their
vSilos, while the administrator can enrich the portfolio of vSilos and ThingVisors that the
platform can offer. Finer access control schemes can be placed on top of the basic one as
discussed in [29].

The following subsections describe some key concepts about the internal information
model and interoperability, and then we proceed deeper into the main services of the
architecture: ThingVisors, vSilos and Distribution Systems.

3.1. Information Models and Interoperability

Within VirIoT, we used the NGSI-LD information model [10]. A vThing exposes its
context data by NGSI-LD Entities with Properties whose values change over time. Entities
are encapsulated and continuously transferred from a vThing to all vSilos connected to it
so that they have a copy of the latest version of the Entities.

A tenant accesses vThing’s context data through the vSilo’s IoT Broker, which may
adopt different technologies from NGSI-LD. Therefore, there is an interoperability issue,
i.e., a need for a NGSI-LD to X “translation”, where X is the information model used by
the destination IoT Broker. As shown in Figure 5, this translation between information
models is handled within the vSilos. The context data are translated from NGSI-LD into the
IoT Broker’s information model upon arrival by the IoT Controller. We depict a scenario
where two vSilos use two different Brokers: a oneM2M IoT Broker and an NGSIv2 IoT
Broker. Tenants have connected the same vThing to their vSilos, for instance, a virtual
person counter. The person counter’s context data are represented by the NGSI-LD Entity

Sensors 2021, 21, 6546 10 of 27

in Listing 1. The data reaches the vSilos, and it is thereby translated to oneM2M (Listing 2)
and NGSIv2 (Listing 3), respectively, by the IoT Controllers.

Thus, we addressed this issue of interoperability between IoT information models
through the mediation of NGSI-LD as a kind of neutral-format that makes it easy to translate
to other information models with negligible loss of information. This approach allows
decoupling between ThingVisors’ and vSilos’ developers, who only need to take care of
translation to/from NGSI-LD; this simplifies the continuous integration and evolution of
the platform towards new types of vSilos, ThingVisors and vThings.

ThingVisor
vThing NGSI-LD

Entity

Translated
Entity

Translated
Entity

Virtual Silo #1 (e.g oneM2M)

IoT BrokerIoT Controller

Translated
Entity

Translated
Entity

Virtual Silo #2 (e.g. NGSIv2)

IoT BrokerIoT Controller

Figure 5. Interoperability.

Listing 2. Context data. from Listing 1 translated to oneM2M.

Sensors 2021, 1, 0 10 of 27

in Table 1. The data reaches the vSilos, and it is thereby translated to oneM2M (Table 3)
and NGSIv2 (Table 4), respectively, by the IoT Controllers.

Thus, we addressed this issue of interoperability between IoT information models
through the mediation of NGSI-LD as a kind of neutral-format that makes it easy to translate
to other information models with negligible loss of information. This approach allows
decoupling between ThingVisors’ and vSilos’ developers, who only need to take care of
translation to/from NGSI-LD; this simplifies the continuous integration and evolution of
the platform towards new types of vSilos, ThingVisors and vThings.

ThingVisor
vThing NGSI-LD

Entity

Translated
Entity

Translated
Entity

Virtual Silo #1 (e.g oneM2M)

IoT BrokerIoT Controller

Translated
Entity

Translated
Entity

Virtual Silo #2 (e.g. NGSIv2)

IoT BrokerIoT Controller

Figure 5. Interoperability.

Table 3. Context data. from Table 1 translated to oneM2M.

1 {"m2m:ae": [
2 {"pi": "oUIIogi2a", "ri": "SlSIzGbQ8Ug",
3 "rn": "vpc:c1",...}],
4 "m2m:cnt":[
5 {"pi": "SlSIzGbQ8Ug", "ri": "DAA2_Ki9XD",
6 "rn": "virtual -person -counter:counter1",...},
7 {"pi": "DAA2_Ki9XD", "ri": "L62CeIP5FI",
8 "rn": "daily -persons",...},
9 {"pi": "DAA2_Ki9XD", "ri": "K65CeIFHPD",

10 "rn": "location",...},
11 {"pi": "DAA2_Ki9XD", "ri": "gJyNr1L9yfL",
12 "rn": "@context",...}],
13 "m2m:cin":[
14 {"con": {"type": "Property", "value": 30},
15 "pi": "L62CeIP5FI", ...},
16 {"con": {"type": "Property", "value": "Entrance Gate 1"},
17 "pi": "K65CeIFHPD",...},
18 {"con":["https://uri.etsi.org /..."],
19 "pi": "gJyNr1L9yfL",...}]}

Table 4. Context data from Table 1 translated to NGSIv2.

1 {"id": "urn:ngsi -ld:virtual -person -counter:counter1",
2 "type": "counter",
3 "daily -persons": {
4 "type": "Number",
5 "value": 30},
6 "location": {
7 "type": "Text",
8 "value": "Entrance Gate 1"},
9 "@context": {

10 "type": "StructuredValue",
11 "value": ["https://uri.etsi.org /..."]}}

Concerning the choice of NGSI-LD as neutral-format, our experience from several real-
life IoT applications and data (models), plus the current state of IoT standardization initiatives
pushing NGSI-LD as a layer on top of existing standards [30], leads us to that choice. Moreover,
we have been able to develop mapping rules, shown in Table 5, between NGSI-LD and two

Listing 3. Context data from Listing 1 translated to NGSIv2.

Sensors 2021, 1, 0 10 of 27

in Table 1. The data reaches the vSilos, and it is thereby translated to oneM2M (Table 3)
and NGSIv2 (Table 4), respectively, by the IoT Controllers.

Thus, we addressed this issue of interoperability between IoT information models
through the mediation of NGSI-LD as a kind of neutral-format that makes it easy to translate
to other information models with negligible loss of information. This approach allows
decoupling between ThingVisors’ and vSilos’ developers, who only need to take care of
translation to/from NGSI-LD; this simplifies the continuous integration and evolution of
the platform towards new types of vSilos, ThingVisors and vThings.

ThingVisor
vThing NGSI-LD

Entity

Translated
Entity

Translated
Entity

Virtual Silo #1 (e.g oneM2M)

IoT BrokerIoT Controller

Translated
Entity

Translated
Entity

Virtual Silo #2 (e.g. NGSIv2)

IoT BrokerIoT Controller

Figure 5. Interoperability.

Table 3. Context data. from Table 1 translated to oneM2M.

1 {"m2m:ae": [
2 {"pi": "oUIIogi2a", "ri": "SlSIzGbQ8Ug",
3 "rn": "vpc:c1",...}],
4 "m2m:cnt":[
5 {"pi": "SlSIzGbQ8Ug", "ri": "DAA2_Ki9XD",
6 "rn": "virtual -person -counter:counter1",...},
7 {"pi": "DAA2_Ki9XD", "ri": "L62CeIP5FI",
8 "rn": "daily -persons",...},
9 {"pi": "DAA2_Ki9XD", "ri": "K65CeIFHPD",

10 "rn": "location",...},
11 {"pi": "DAA2_Ki9XD", "ri": "gJyNr1L9yfL",
12 "rn": "@context",...}],
13 "m2m:cin":[
14 {"con": {"type": "Property", "value": 30},
15 "pi": "L62CeIP5FI", ...},
16 {"con": {"type": "Property", "value": "Entrance Gate 1"},
17 "pi": "K65CeIFHPD",...},
18 {"con":["https://uri.etsi.org /..."],
19 "pi": "gJyNr1L9yfL",...}]}

Table 4. Context data from Table 1 translated to NGSIv2.

1 {"id": "urn:ngsi -ld:virtual -person -counter:counter1",
2 "type": "counter",
3 "daily -persons": {
4 "type": "Number",
5 "value": 30},
6 "location": {
7 "type": "Text",
8 "value": "Entrance Gate 1"},
9 "@context": {

10 "type": "StructuredValue",
11 "value": ["https://uri.etsi.org /..."]}}

Concerning the choice of NGSI-LD as neutral-format, our experience from several real-
life IoT applications and data (models), plus the current state of IoT standardization initiatives
pushing NGSI-LD as a layer on top of existing standards [30], leads us to that choice. Moreover,
we have been able to develop mapping rules, shown in Table 5, between NGSI-LD and two

Concerning the choice of NGSI-LD as neutral-format, our experience from several real-
life IoT applications and data (models), plus the current state of IoT standardization initiatives
pushing NGSI-LD as a layer on top of existing standards [30], leads us to that choice. Moreover,
we have been able to develop mapping rules, shown in Table 2, between NGSI-LD and two
widespread IoT standards: oneM2M and NGSIv2. We used these rules in the IoT Controllers

Sensors 2021, 21, 6546 11 of 27

we implemented. Listing 2 (some keys removed for clarity) and Listing 3 show how NGSI-LD-
based context data of a vThing are translated to oneM2M and an NGSIv2 by the respective
set of rules.

Table 2. NGSI-LD to NGSIv2 and oneM2M. For oneM2M, the Application Entity (AE) name is equal
to the vThing name.

NGSI-LD NGSIv2 oneM2M

Entity Entity Top-level Container (cnt)

Property/Relationship Attribute Sub Container

Entity ID Entity ID Top-level Container resourceName (rn)

Entity Type Entity Type Top-level Container Labels (lbl)

Property/Relationship Name Attribute Name Sub Container resourceName

Property/Relationship Block Attribute block Content Instance (cin) of the sub Container

3.2. ThingVisors, vThings and Thing Virtualization Concept

Thing virtualization is a core concept of VirIoT, and our position is that the virtualiza-
tion of a thing is about the following:

Creating the illusion that a thing is present by producing the data and
provoking the actions it would have produced or provoked if it was real.

Figure 6 illustrates an example of our concept of thing virtualization. We observe a
single ThingVisor that implements a set of vThings by interacting with real things living in
the external environment. A real thing can be a sensor (as a camera) that sends data to the
ThingVisor, and the data are used to generate data of one or more vThings. A real thing
can also be an actuator (such as a drone or a lamp) that is controlled by the ThingVisor in
order to create the data or perform the actions of one or more vThings.

Analytics

Analytics

Drone
controller

Data/Service
Copy

ThingVisor
Real

Things vThings

vThings'
data

Figure 6. ThingVisor and vThings.

In Figure 6, the vThings are a face detector that a tenant can configure by passing to it
the parameters of a target face to be detected, a person counter that monitors the number
of people passing through a gate, a pool of cameras placed in specific locations of interest
that take pictures at a slow rate (e.g., one every 15 min) and a lamp for which its on/off
status can be actuated. Thing virtualization is made by different functionalities (analytics,
drone controller, etc.) running in the ThingVisor. Starting with the virtualization of the
lamp, this is an example of “transparent” virtualization whereby the services and data
of a real thing are one-to-one twinned with those of a vThing. In this manner, any thing
that can be connected to the VirIoT platform can be virtualized and used by tenants. The

Sensors 2021, 21, 6546 12 of 27

person counter and face detector virtualizations are achieved by processing images coming
from the same camera. Thus, a single real thing can be used for many vThings. Finally,
the virtualization of the pool of cameras is achieved by controlling the path of a drone to
periodically take a picture over the locations where virtual cameras would be placed if
they were real. Therefore, these examples have shown that the thing virtualisation concept
that we are considering in the scope of this paper may go beyond a fetch-and-process data
modus-operandi [21] since it can also involve the control of real things, such as drones or
more generic actuators.

Now that we have explained our concept of Virtual Thing and illustrated how virtu-
alization can be performed, we describe the interactions among vThings and vSilos. We
differentiate two main classes of vThings: Virtual Sensor and Virtual Actuator. A Virtual
Sensor is a vThing that only has sensing capabilities. A Virtual Actuator is a vThing that
has actuation capabilities too. Indeed, many actuators also have properties that can be
monitored, such as the current on/off status of a lamp. For this reason, we consider that
actuators may also include sensing functions.

3.2.1. Virtual Sensors

A Virtual Sensor produces context data and, possibly, also generic contents such
as JPEG images. The vSilos pull generic contents via HTTP as soon as tenants request
them. For context data, Virtual Sensors promptly push context data to vSilos by using an
incremental approach, as shown in Figure 7, where there are two vSilos that use the “person
counter” Virtual Sensor. Initially, only vSilo2 is connected to the Virtual Sensor. Then,
using the Master Controller, vSilo1’s tenant adds (connects) the same Virtual Sensor to his
vSilo too (step 1). As a result, the complete set of context data shown in Listing 1 is fetched
by vSilo1 as a consequence of the GET full context request control message sent to the
vThing by the IoT Controller (steps 2 and 3); subsequently, when an internal Property
of the Virtual Sensor changes, e.g., the value of daily-persons increases from 30 to 35,
the Virtual Sensor sends a kind of context update message to the connected vSilos, called
NGSI-LD PATCH message (step 4). As shown in Listing 4, the payload of this message
contains the modified Properties only.

ThingVisor

IoT BrokervSilo1

virtual person
counter

IoT BrokervSilo2

virtual person
counter

Add vThing

NGSI-LD PATCH message
daily-persons = 35

location

daily-persons

virtual person
counter

location

daily-persons

Master
ControllerGET full context

NGSI-LD Entity

daily-persons
30

daily-persons
35

Camera

IoT
Controller

IoT
Controller

1

2

3

4

Figure 7. Virtual Sensor workflow.

Sensors 2021, 21, 6546 13 of 27

Listing 4. NGSI-LD PATCH message updating the daily-person Property of the Entity in Listing 1
from 30 to 35.

Sensors 2021, 1, 0 13 of 27

Table 6. NGSI-LD PATCH message updating the daily-person Property of the Entity in Table 1
from 30 to 35.

1 {"id": "urn:ngsi -ld:person -counter:counter1",
2 "type": "counter",
3 "daily -persons" : {
4 "type": "Property",
5 "value": 35}}

3.2.2. Virtual Actuators

In addition to producing generic contents and context data representing its properties,
a Virtual Actuator also performs actions whenever it receives actuation-commands. Let
us explain how tenants trigger actuation by using a generic example involving a simple
“virtual lamp” Virtual Actuator.

Table 7 shows the context data associated with a virtual lamp, which includes two
Properties: on, whose value is the status of the lamp (false means lamp off); and commands,
whose value is a list of possible actuation-commands. In this case, this list is composed of
set-on and token-req commands that can be used to configure the on status of the lamp
and to request an authorization token, respectively.

Table 7. NGSI-LD of a lamp.

1 {"id": "urn:ngsi -ld:lamp:light1",
2 "type": "lamp",
3 "on": {
4 "type": "Property",
5 "value": false},
6 "commands": {
7 "type": "Property",
8 "value": ["set -on","token -req"]},
9 "@context":["https://uri.etsi.org /..."]}

Figure 8 shows the interaction between tenants and the virtual lamp, resulting in the
twinned real lamp changing its state from off to on. We have two tenants who have the
virtual lamp in their vSilos whose its initial state is off (on=false). For each actuation-
command, a vSilo exposes its IoT Broker three actuation-pipes used by the tenant to inject the
actuation-command and receive feedback messages (the implementation of an actuation-
pipe depends on the IoT Broker, for example: in oneM2M, an actuation-pipe is implemented
by a oneM2M container; and in NGSIv2/NGSI-LD, an actuation pipe is implemented by
an Entity. The IoT Controller is made aware of the actuation-pipes to be created via the
commands Property).

To switch on the lamp, the tenant of vSilo1 obtains an authorization token to execute
the command as discussed later on (steps 1 and 2) and then injects the actuation-command
into the set-on actuation pipe, shown in Table 8. The command is immediately received by
the IoT Controller and then transferred to the ThingVisor that implements the virtual lamp
(step 3). When the virtual lamp receives the message, the actuation-command is accepted
and the virtual lamp starts the actuation process of the real lamp by using the proprietary
API the lamp provides.

When the actuation-command is accepted, a status feedback is sent to vSilo1 only
to inform the tenant that the actuation is in progress (step 4). The feedback message is
received by the IoT Controller and relayed to the set-on-status actuation-pipe of the IoT
Broker from which it can be observed by the tenant.

At the end of the actuation, when the lamp is switched on, a result feedback is sent
to vSilo1 only to inform the tenant that the actuation is complete (step 5). This feedback
message is relayed from the IoT Controller to the set-on-result actuation-pipe of the IoT
Broker. Moreover, since the context Property on is changed, as a result of the actuation
from False to True, a context update message is sent to all vSilos, as previously explained
(step 6).

3.2.2. Virtual Actuators

In addition to producing generic contents and context data representing its properties,
a Virtual Actuator also performs actions whenever it receives actuation-commands. Let
us explain how tenants trigger actuation by using a generic example involving a simple
“virtual lamp” Virtual Actuator.

Listing 5 shows the context data associated with a virtual lamp, which includes two
Properties: on, whose value is the status of the lamp (false means lamp off); and commands,
whose value is a list of possible actuation-commands. In this case, this list is composed of
set-on and token-req commands that can be used to configure the on status of the lamp
and to request an authorization token, respectively.

Listing 5. NGSI-LD of a lamp.

Sensors 2021, 1, 0 13 of 27

Table 6. NGSI-LD PATCH message updating the daily-person Property of the Entity in Table 1
from 30 to 35.

1 {"id": "urn:ngsi -ld:person -counter:counter1",
2 "type": "counter",
3 "daily -persons" : {
4 "type": "Property",
5 "value": 35}}

3.2.2. Virtual Actuators

In addition to producing generic contents and context data representing its properties,
a Virtual Actuator also performs actions whenever it receives actuation-commands. Let
us explain how tenants trigger actuation by using a generic example involving a simple
“virtual lamp” Virtual Actuator.

Table 7 shows the context data associated with a virtual lamp, which includes two
Properties: on, whose value is the status of the lamp (false means lamp off); and commands,
whose value is a list of possible actuation-commands. In this case, this list is composed of
set-on and token-req commands that can be used to configure the on status of the lamp
and to request an authorization token, respectively.

Table 7. NGSI-LD of a lamp.

1 {"id": "urn:ngsi -ld:lamp:light1",
2 "type": "lamp",
3 "on": {
4 "type": "Property",
5 "value": false},
6 "commands": {
7 "type": "Property",
8 "value": ["set -on","token -req"]},
9 "@context":["https://uri.etsi.org /..."]}

Figure 8 shows the interaction between tenants and the virtual lamp, resulting in the
twinned real lamp changing its state from off to on. We have two tenants who have the
virtual lamp in their vSilos whose its initial state is off (on=false). For each actuation-
command, a vSilo exposes its IoT Broker three actuation-pipes used by the tenant to inject the
actuation-command and receive feedback messages (the implementation of an actuation-
pipe depends on the IoT Broker, for example: in oneM2M, an actuation-pipe is implemented
by a oneM2M container; and in NGSIv2/NGSI-LD, an actuation pipe is implemented by
an Entity. The IoT Controller is made aware of the actuation-pipes to be created via the
commands Property).

To switch on the lamp, the tenant of vSilo1 obtains an authorization token to execute
the command as discussed later on (steps 1 and 2) and then injects the actuation-command
into the set-on actuation pipe, shown in Table 8. The command is immediately received by
the IoT Controller and then transferred to the ThingVisor that implements the virtual lamp
(step 3). When the virtual lamp receives the message, the actuation-command is accepted
and the virtual lamp starts the actuation process of the real lamp by using the proprietary
API the lamp provides.

When the actuation-command is accepted, a status feedback is sent to vSilo1 only
to inform the tenant that the actuation is in progress (step 4). The feedback message is
received by the IoT Controller and relayed to the set-on-status actuation-pipe of the IoT
Broker from which it can be observed by the tenant.

At the end of the actuation, when the lamp is switched on, a result feedback is sent
to vSilo1 only to inform the tenant that the actuation is complete (step 5). This feedback
message is relayed from the IoT Controller to the set-on-result actuation-pipe of the IoT
Broker. Moreover, since the context Property on is changed, as a result of the actuation
from False to True, a context update message is sent to all vSilos, as previously explained
(step 6).

Figure 8 shows the interaction between tenants and the virtual lamp, resulting in the
twinned real lamp changing its state from off to on. We have two tenants who have the
virtual lamp in their vSilos whose its initial state is off (on=false). For each actuation-
command, a vSilo exposes its IoT Broker three actuation-pipes used by the tenant to inject the
actuation-command and receive feedback messages (the implementation of an actuation-
pipe depends on the IoT Broker, for example: in oneM2M, an actuation-pipe is implemented
by a oneM2M container; and in NGSIv2/NGSI-LD, an actuation pipe is implemented by
an Entity. The IoT Controller is made aware of the actuation-pipes to be created via the
commands Property).

To switch on the lamp, the tenant of vSilo1 obtains an authorization token to execute
the command as discussed later on (steps 1 and 2) and then injects the actuation-command
into the set-on actuation pipe, shown in Listing 6. The command is immediately received
by the IoT Controller and then transferred to the ThingVisor that implements the virtual
lamp (step 3). When the virtual lamp receives the message, the actuation-command is
accepted and the virtual lamp starts the actuation process of the real lamp by using the
proprietary API the lamp provides.

When the actuation-command is accepted, a status feedback is sent to vSilo1 only
to inform the tenant that the actuation is in progress (step 4). The feedback message is
received by the IoT Controller and relayed to the set-on-status actuation-pipe of the IoT
Broker from which it can be observed by the tenant.

At the end of the actuation, when the lamp is switched on, a result feedback is sent
to vSilo1 only to inform the tenant that the actuation is complete (step 5). This feedback
message is relayed from the IoT Controller to the set-on-result actuation-pipe of the IoT
Broker. Moreover, since the context Property on is changed, as a result of the actuation
from False to True, a context update message is sent to all vSilos, as previously explained
(step 6).

Sensors 2021, 21, 6546 14 of 27

ThingVisor

 IoT

Controller

IoT BrokervSilo1

IoT BrokervSilo2

virtual lamp

set-on = True

on = true

set-on status = accepted

set-on result = OK

switch
lamp on

lamp

on = false

on = true

NGSI-LD PATCH
messages

IoT
Controller

token-req = "tenant-id"

token-req-result = 0x2ff..

token-req

token-req-status

token-req-result

virtual lamp

on

set-on

set-on-status

set-on-result

token-req

token-req-status

token-req-result

virtual lamp

on

set-on

set-on-status

set-on-result
1

2

3

4

5

6

Figure 8. Virtual Actuator workflow; QoS = 2.

Listing 6. set-on actuation-command.

Sensors 2021, 1, 0 14 of 27

ThingVisor

 IoT

Controller

IoT BrokervSilo1

IoT BrokervSilo2

virtual lamp

set-on = True

on = true

set-on status = accepted

set-on result = OK

switch
lamp on

lamp

on = false

on = true

NGSI-LD PATCH
messages

IoT
Controller

token-req = "tenant-id"

token-req-result = 0x2ff..

token-req

token-req-status

token-req-result

virtual lamp

on

set-on

set-on-status

set-on-result

token-req

token-req-status

token-req-result

virtual lamp

on

set-on

set-on-status

set-on-result
1

2

3

4

5

6

Figure 8. Virtual Actuator workflow; QoS = 2.

Table 8. set-on actuation-command.

1 {"id": "urn:ngsi -ld:lamp:light1",
2 "type": "lamp",
3 "set -on" : {
4 "type": "Property",
5 "value": {
6 "cmd -value":true,
7 "cmd -id":"123456",
8 "cmd -qos":"1",
9 "cmd -token":"0x23456",

10 "cmd -nuri ":"viriot:/vSilo/tenant1_vSilo1/data_in"}}}

Actuation commands and status/result feedback are simple messages, and they are
encoded by NGSI-LD PATCH messages. For example, the message in Table 8 represents
the set-on actuation-command as a NGSI-LD Property whose value is a JSON object
containing the following attributes:

• cmd-value contains the arguments of the command;
• cmd-id is a unique ID of the command;
• cmd-qos is a concept of “actuation QoS” we introduced to differentiate the types of

feedback messages sent by a Virtual Actuator: 0 = no feedback; 1 = result message at
the end of the actuation; 2 = one or more status messages during the actuation and a
result message at the end of the actuation. The value QoS = 0 is useful for use cases
where actuation commands are issued at such a high rate that waiting for feedback is
useless. The value QoS = 1 is useful for fast and reliable actuation. The value QoS =
2 is useful for a long lasting actuation that requires feedback during execution. For
example, for the virtual face detector, an actuation-command set-face-feature is
used to send the parameters of the face to be detected, QoS is set to 2 and status
messages are sent to the requesting vSilo each time the face is detected. We used QoS
= 2 for the lamp example for completeness, but QoS = 1 is more appropriate for this
use case;

• cmd-token is an authorization token optionally used to manage conflicting commands,
as discussed below;

• cmd-nuri is a notification URI (nuri) where to send the actuation feedback, and it is
the data_in topic of the vSilo by default (see Section 3.4.1) so that only the requesting
vSilo will receive feedback messages.

Actuation commands and status/result feedback are simple messages, and they are
encoded by NGSI-LD PATCH messages. For example, the message in Listing 6 represents
the set-on actuation-command as a NGSI-LD Property whose value is a JSON object
containing the following attributes:

• cmd-value contains the arguments of the command;
• cmd-id is a unique ID of the command;
• cmd-qos is a concept of “actuation QoS” we introduced to differentiate the types of

feedback messages sent by a Virtual Actuator: 0 = no feedback; 1 = result message at
the end of the actuation; 2 = one or more status messages during the actuation and a
result message at the end of the actuation. The value QoS = 0 is useful for use cases
where actuation commands are issued at such a high rate that waiting for feedback is
useless. The value QoS = 1 is useful for fast and reliable actuation. The value QoS = 2
is useful for a long lasting actuation that requires feedback during execution. For
example, for the virtual face detector, an actuation-command set-face-feature is
used to send the parameters of the face to be detected, QoS is set to 2 and status
messages are sent to the requesting vSilo each time the face is detected. We used
QoS = 2 for the lamp example for completeness, but QoS = 1 is more appropriate for
this use case;

• cmd-token is an authorization token optionally used to manage conflicting commands,
as discussed below;

• cmd-nuri is a notification URI (nuri) where to send the actuation feedback, and it is
the data_in topic of the vSilo by default (see Section 3.4.1) so that only the requesting
vSilo will receive feedback messages.

Sensors 2021, 21, 6546 15 of 27

Status/result feedback messages are identical to the actuation-command they refer to,
but they have additional cmd-status/cmd-result keys.

We note that Virtual Actuators can receive conflicting commands from different
tenants. The access-control policy that handles conflicts obviously depends on the type
of actuator. For example, if a group of tenants rent a room where there is a lamp exposed
as a vThing, the control of this virtual lamp is granted equally to all tenants in the group.
Thus, the ThingVisor of the virtual lamp implements a group-oriented access-control policy.
Differently, other Virtual Actuators may need priority-oriented access-control policies for
which many tenants can send actuation-commands, but those commands may or may not
be accepted by the ThingVisor depending on the tenant’s priority and the current state of
the Virtual Actuator. For example, if a tenant has been granted permission to control a
virtual drone, any other tenant with lower or equal priority cannot receive this permission,
while any other tenant with higher priority can override the previously granted permission
and start controlling the drone. These examples show that different Virtual Actuators may
need different access-control policies. Consequently, we preferred to include in VirIoT
only the means to carry access-control policy decisions (i.e., the cmd-token) but left the
implementation of the necessary policy within the specific ThingVisor and, thus, in the
hands of the Virtual Actuator developer. This makes VirIoT flexible in terms of including
actuators with heterogeneous (and unforeseen) policies.

The procedure for obtaining an authorization to execute an actuation-command, or
more broadly to control a Virtual Actuator, is (again) a ThingVisor implementation choice,
since the information needed to obtain the authorization depends on the specific access-
control policy. Figure 8 shows a possible example of this procedure that follows a token-
based access control scheme [31]. The virtual lamp exposes a specific actuation-command
token-req, which is used by a tenant to request a token to be used in any subsequent
actuation-command (e.g., set-on) in the cmd-token field (step 1). Information about the
tenant, for example, the tenant ID, is included in the cmd-value field of token-req. When
the ThingVisor receives the token-req, the access-control policy is used, and eventually
a token is sent back with the token-req-result message (step 2). To some extent, VirIoT
reuses the same approach as HTTP in which the authorization header is the means of
carrying the result of an access-control policy actually implemented in the web server and
outside the scope of the HTTP protocol.

As a proof-of-concept of the proposed actuation-model, we successfully virtualized
Philips Hue lamp systems and a virtual face detector by using specific ThingVisors in the
current implementation of VirIoT [25]. Demonstrative videos of VirIoT can be found at [32].

3.3. Virtual Silos

VirIoT tenants can instantiate vSilos and connect to them any vThing offered by
ThingVisors on-demand. A vSilo includes two internal Controllers (IoT and HTTP) and
the two corresponding Brokers (Figure 2). The Controllers configure their relative Brokers
and the IoT Broker also carries out information model translation for context data.

When a vThing is connected to a vSilo, the IoT Controller begins to receive context
data, and it begins translating and inserting such data into the IoT Broker. At the same
time, the HTTP Controller configures the access policy of the HTTP Broker so as to unlock
forwarding of HTTP requests for vThing’s generic contents into the platform.

The current implementation of VirIoT allows instantiating oneM2M vSilos that in-
ternally use a Mobius IoT Broker [33], NGSIv2 vSilos that internally use an Orion IoT
Broker [34] and many NGSI-LD vSilos that use different NGSI-LD brokers [35,36]. Each
Broker offers both publish-subscribe and request-response APIs so the tenant can use
a vSilo to develop both event-driven and synchronous (e.g., on demand data sensing)
IoT applications.

Sensors 2021, 21, 6546 16 of 27

3.4. MQTT and HTTP Distribution Systems

The internal communications among VirIoT services use a data distribution system
that implements topology routing, in-network caching and multicasting to reduce latency
and wide area network traffic. Communication concerns both the control and data planes.
Control plane communications involve the exchange of control messages used to config-
ure VirIoT services (see documentation in [25]); data plane communications involve the
exchange of messages carrying context data and generic HTTP contents of vThings.

VirIoT adopts two mechanisms for the internal communications: publish-subscribe
message distribution for control data and context data and HTTP-based request/response
mechanism for the retrieval of generic contents.

3.4.1. MQTT Distribution System

Control plane messages and data plane messages carrying the context data of vThings
are exchanged via a topic-based publish-subscribe distribution system that uses the MQTT
technology [27]. As shown in Table 3, each service is associated with an input (c_in) and an
output control topic (c_out). An input control topic is used by a service to receive control
messages. An output control topic is used by a service to send control messages to all other
interested services. Context data are transferred on input (data_in) and output (data_out)
data topics, similarly to the control plane, but for data flows. For instance, the context data
pieces produced by a vThing are sent on the data output topic of the vThing. vSilos that
contain the vThing are subscribers of this data output topic, therefore, they receive the
context data and insert them in their Brokers. A data input topic is, for instance, used by a
vThing associated with an actuator to receive actuation-commands sent by vSilos.

Table 3. System Topics.

Topic Description

vThing/<vThingID>/
{c_in,c_out,data_in,data_out}

Used by a ThingVisor to send (c_out) and receive (c_in)
control messages related to the vThing (e.g., removal, change of
configuration parameters, etc.) or to publish context data items
of a vThing data_out or to receives actuation command
data_in.

TV/<TVID>/{c_in,c_out}
Used by a ThingVisor to send (c_out) or receive (c_in) control
messages related to the whole ThingVisor (e.g., pause, remove,
activate vThing, etc.).

vSilo/<vSiloID>/{c_in,c_out,data_in}

Used by the vSilo controller to send (c_out) or receive (c_in)
control messages related to the specific Virtual Silo (e.g., add
vThing, remove vThing, etc.) or to receive (data_in) Virtual
Silo specific data (e.g., actuation feedback, initial context
synchronization, etc.).

master/{c_in,c_out} Used by the master-control to send (c_out) or receive (c_in)
control messages related to the system configuration.

Now that we have briefly described how MQTT is used by the services, we present
our implementation and the advantages brought up by this implementation. The MQTT
distribution system consists of a set of MQTT Brokers that form a single (distributed) MQTT
cluster [37]. There is one Broker per VirIoT zone, i.e., per data center or edge node used
by the platform (Figure 4). Each VirIoT service (ThingVisor, vSilo, etc.) is connected to
the MQTT Broker of its zone, and we exploited the k8s service topology routing feature to
properly steer MQTT connections.

When any VirIoT service publishes a message to a topic, the MQTT Broker of the zone
forwards a copy to (i) connected services of the zone that are subscribers of the topic and
(ii) to remote MQTT Brokers of other zones that have at least one interested subscriber. The
remote MQTT Brokers, in turn, forward a copy of the message to all connected subscribers.
Overall, the message delivery follows a topology-based multicast distribution tree rooted at
the publisher; intermediate nodes are the MQTT Brokers; and leafs are the subscribers.

Sensors 2021, 21, 6546 17 of 27

The use of such a MQTT-based distribution system for context data and control
messages coupled with our approach of combining MQTT clustering and k8s topology
routing offers many advantages:

• Decoupling publishers (e.g., ThingVisors) from subscribers (e.g., vSilos) supports
the highly dynamic nature of VirIoT, where vSilos are created/destroyed, vThings
added/removed and ThingVisors added/removed, etc.;

• Data latency among ThingVisors and vSilos is very low due to the push-based delivery
model and the persistence of MQTT connections;

• Inter-zone traffic is reduced due to topology-based multicasting.

We used the VerneMQ Broker [38] to implement the MQTT cluster, and although
the cluster configuration is designed to work with Brokers located in a single data center,
VirIoT uses Brokers running in different data centers/zones.

3.4.2. HTTP Distribution System

The HTTP Distribution System allows tenants to access the generic contents offered
by vThings. The system consists of a single (distributed) cluster of HTTP proxies, and
there is a proxy for each VirIoT zone (Figure 4). When a tenant wants to access a generic
content offered by a vThing (e.g., a JPEG image from a virtual camera), she sends an
HTTP GET to a vThing-specific endpoint exposed by the HTTP Broker of her vSilo. The
HTTP Broker forwards this requests to the HTTP proxy of its zone. In turn, the HTTP
proxy relays the request to the vThing. If allowed by the HTTP cache-control headers,
the returning content is cached by the zone HTTP proxy to speed up subsequent requests
for the same content and to reduce inter-zone traffic. In the case of concurrent requests,
only one of them is forwarded by the HTTP proxy to the ThingVisor, thus implementing a
multicast distribution for concurrent accesses to the same content, such as a MPEG DASH
live streaming session.

We used the NGINX proxy with collapsed forwarding and caching to implement the
HTTP Distribution System and (again) the k8s service topology routing feature to route the
vSilo HTTP GETs to the HTTP proxy of the zone.

4. Performance Evaluation

The main objective of VirIoT is to provide tenants with vSilos, which represent our
concept of IoT Infrastructures offered as-a-service while supporting many IoT standards
and handling related interoperability issues. These “functional” capabilities are shown by
a demonstration video in [28]. In this section, we focus on performance aspects and report
a performance evaluation that has two goals: first, to show the efficiency and scalability of
VirIoT in providing vThing data to vSilos; second, to assess VirIoT’s ability to integrate
different IoT standards into a single platform while also carrying out a fair comparison of
current open source implementations of various IoT Brokers.

We have deployed an instance of the VirIoT platform that involves k8s nodes located
in two data centers: one in Europe (EU zone) and one in a Japan (JP zone), both belonging
to Microsoft Azure Cloud. The nodes of the two data centers are interconnected by a
EU-JP virtual private network link, and the supporting virtual machines have (nearly)
synchronized clocks. This deployment is that of Figure 4, assuming zone 1 is within the EU
data center and zone 2 is within the JP data center.

To measure performance, we used a producer that sends context data and generic
contents to a set of consumers. Producer and consumers are interconnected by VirIoT as
follows.

The producer is an application that periodically generates context data items (2 msg/s)
containing a sequence number and a timestamp and sends them to a ThingVisor named
Relay-ThingVisor by using an HTTP REST API. Furthermore, a HTTP server connected
to the Relay-ThingVisor is also part of the producer and offers two generic contents: a
100 MB dummy file and a 2 Mbit/s MPEG DASH encoded video (Big Buck Bunny) having
a 4 s segment length. The Relay-ThingVisor implements a simple Virtual Sensor, called

Sensors 2021, 21, 6546 18 of 27

Relay-vThing, which relays back into the system context data received from the producer.
In addition, the Relay-vThing also provides the HTTP access to generic contents hosted by
the producer’s HTTP server.

A consumer is an application that connects to a vSilo, which contains a Relay-vThing.
A consumer is able to (i) receive context data and compute the end-to-end transfer delay,
(ii) download the 100MB dummy file and (iii) participate in a live streaming session of the
MPEG DASH video. We have developed several consumer applications for the different
types of IoT Brokers (NGSIv2, NGSI-LD and oneM2M) offered by the vSilos of VirIoT.

4.1. Efficiency and Scalability of Data Distribution

Figure 9 describes the test scenario we used to perform this analysis. We deployed
a Relay-ThingVisor-JP in the JP data center and we connected a producer application to
it; its vThing is the Relay-vThing-JP. We deployed 11 Mosquitto vSilos: 10 vSilos located
in the EU data center (vSiloi-EU with 1 ≤ i ≤ 10) and one vSilo (vSilo1-JP) in the JP data
center. These vSilos contain an IoT Broker which is a simple MQTT Mosquitto server,
which transmits the NGSI-LD context data received from the vThings to external MQTT
topics that tenant applications can subscribe to. Finally, we have connected to each vSilo’s
IoT Broker a consumer application located in the same data center as the vSilo.

vSilo1-EU (Mosquitto)

vSilo10-EU (Mosquitto)

vSilo1-JP (Mosquitto)Cons.1 - EU

Cons. 10 - EU

Cons. 1 - JP

Relay-ThingVisor-JP
(Relay-vThing-JP)

......

MQTT/HTTP
Distribution System

MQTT Broker and HTTP
proxy of EU zone

MQTT Broker and HTTP
proxy of JP zone

Producer

VirIoT VirIoT

Europe Japan

Figure 9. Test scenario 1.

We connect Relay-vThing-JP to vSilo1-JP at the beginning of the test. Then, we connect
Relay-vThing-JP to EU vSilos (vSiloi-EU) in a time sequence to monitor the impact of
these configuration changes on the inter-zone (EU-JP link) network traffic of context data.
Specifically, Relay-vThing-JP is connected to the ith EU vSilo at time 60 + 20i sec.

Figure 10 shows the end-to-end delay between the production and the consumption
of a context data item. To simplify the plot, on the EU side, we have only included the
performance measured by Consumer 1 (attached to vSilo1-EU) and Consumer 5 (attached
to vSilo5-EU); performance through the other EU vSilos is similar. Data flowing through
vSilo1-JP experiences a latency on the order of 10 ms because Relay-vThing-JP is located
in the JP data center; therefore, both services are automatically connected to the MQTT
Broker of the JP zone (Figure 9) making the latency very low. On the contrary, the EU
vSilos experience a data latency on the order of 130 ms because the context data pieces
pass through the JP MQTT Broker and then through the EU MQTT Broker before finally
reaching vSilos.

Figure 11 shows the bitrate of different traffic flows measured at the EU MQTT Broker
during the test. The JP-to-EU traffic begins to grow when Relay-vThing-JP is connected
to the first EU vSilo (at sec. 80), and consequently context data begin to be transferred
between the two data centers. After that, this traffic remains constant while the other EU
vSilos connect to Relay-vThing-JP and begin receiving its traffic (e.g., vSilo5-EU at sec. 160)
because the EU MQTT Broker acts as a multicast split point serving all vSilos located in
the EU data center. We notice that the JP-to-EU traffic is higher than that of each vSilo
because the MQTT clustering background traffic is about 15 kbit/s (e.g., for monitoring

Sensors 2021, 21, 6546 19 of 27

cluster status, etc.), which is observed even before the first EU vSilo is connected to the
Relay-vThing-JP at sec. 80.

Overall, these two plots show the effectiveness of the MQTT Distribution System to
optimize data latency and network traffic of context data by creating a multicast distribution
tree that follows the network topology.

0 5 10 15 20 25 30 35 40
Message id

0

20

40

60

80

100

120

140
L

at
en

cy
 (

m
s) vSilo1-EU

vSilo5-EU

vSilo1-JP

Figure 10. Latency of context data.

0 50 100 150 200 250 300
0

50

100

0 50 100 150 200 250 300
0

50

100

B
itr

at
e

(k
bi

t/s
)

0 50 100 150 200 250 300
Time (sec)

0

50

100

to vSilo5-EU

from JP to EU

to vSilo1-EU

Figure 11. MQTT traffic of context data.

Now let us evaluate the performance of the HTTP Distribution System. First, we
analyze the caching capability using two EU vSilos. At the beginning of the test, the con-
sumer application connected to vSilo1-EU downloads the dummy file (100 MB) provided
by Relay-vThing-JP. Another consumer application, connected to vSilo2-EU, repeats the
download after 30 s. Figure 12 shows the bitrate of the different traffic flows measured
at the EU HTTP proxy. During the first download, there is traffic flow from JP to EU
coming from Relay-vThing-JP to the EU HTTP proxy. From here, this traffic is relayed to
vSilos1-EU. The bit rate is limited by the bandwidth of the JP-EU link: it is in the order of
54 Mbit/s, and the download takes about 13 s. The dummy file is cached by the EU HTTP
proxy; hence, during the second download, there is no traffic from JP but only from the
cache of the EU HTTP proxy to vSilo2-EU. They are in the same data center, so the bit rate
is very high, and the download takes only 1 s.

The second assessment we make on the HTTP Distribution System is its ability to
efficiently distribute live contents. We used five EU vSilos. Each one of them is used
by a consumer application (mimicking a video player) which joins an MPEG DASH live

Sensors 2021, 21, 6546 20 of 27

video streaming session provided by Relay-vThing-JP. Consumer i connected to the ith
vSilo joins at time 16 ∗ (i − 1) seconds. Figure 13 shows the bitrate of the different traffic
flows measured at the EU HTTP proxy. Traffic starts flowing from JP when, at sec. 0, the
consumer of the first EU vSilo joins the live streaming session. As expected, when the
consumers attached to the other vSilos (e.g., vSilo5-EU) start watching the video, traffic
from Japan does not change because the EU HTTP proxy is acting as a multicast split point
for the vSilos located in the EU data center.

0 5 10 15 20 25 30 35
Time (sec)

0

100

200

300

400

500

600

700

800

900

B
itr

at
e

(M
bi

t/s
)

to vSilo1-EU
to vSilo2-EU
from JP to EU

from JP to EU

to vSilo1-EU

to vSilo2-EU

Figure 12. HTTP traffic during the download of a generic content.

0 50 100 150 200 250
0

5

0 50 100 150 200 250
0

5

B
itr

at
e

(M
bi

t/s
)

0 50 100 150 200 250
Time (sec)

0

5

from JP to EU

to vSilo1-EU

to vSilo5-EU

Figure 13. HTTP traffic during a live streaming session.

Overall, Figures 12 and 13 show the effectiveness of the HTTP Distribution System
at optimizing network traffic of generic contents by exploiting caching and by creating a
multicast distribution tree that follows network topology.

4.2. Comparison of Open-Source IoT Brokers

We used the VirIoT platform to compare, side-by-side, the performance of several open-
source IoT Brokers by running them within specific vSilos. The IoT Brokers we considered
are as follows: Mobius (v2) oneM2M [33], NGSIv2 Orion [34], NGSI-LD OrionLD [35]
and NGSI-LD Scorpio [36]. We also included a Mosquitto vSilo in the test. Each vSilo is
connected to a Relay-vThing-EU implemented by a Relay-ThingVisor-EU and deployed in
the EU data center, along with its producer application.

To measure data latency, we connected a different consumer application to each vSilo’s
IoT Broker. These applications receive context data from Relay-vThing-EU by using the

Sensors 2021, 21, 6546 21 of 27

publish/subscribe services offered by the vSilo’s IoT Brokers, thus avoiding any polling
operation and minimizing the transfer delay. NGSIv2 and NGSI-LD publish/subscribe
services are via HTTP; the consumer tells the IoT Broker the notification URI where it wants
to receive data. In addition to HTTP, oneM2M technology also supports MQTT binding for
publish/subscribe services: the consumer subscribes to a topic where the oneM2M Broker
(Mobius) publishes context data.

We analyze three scenarios, as depicted in Figure 14. Figure 14a represents a central-
ized deployment of VirIoT where the entire platform is installed in a single EU data center.
Producer and consumers are located in the same data center too. In Figure 14b, we have
the same EU centralized deployment, but we have moved the consumers away from their
vSilos from Europe to Japan. Finally, in Figure 14c, we leave the consumers in Japan, but
we consider a distributed VirIoT deployment that also includes a JP data center, and we
move the vSilos there so that they can be closer to the consumers.

vSilo2-Mobius

vSilo3-Orion

vSilo4-OrionLD

vSilo5-Scorpio

Relay-ThingVisor-EU
(Relay-vThing-EU)

Cons. 2

Cons. 3

Cons. 4

Cons. 5

vSilo1-MosquittoCons. 1

Producer

VirIoT

Europe

(a) Test scenario 2—centralized.

Cons. 2

Cons. 3

Cons. 4

Cons. 5

Cons. 1

Japan

vSilo2-Mobius

vSilo3-Orion

vSilo4-OrionLD

vSilo5-Scorpio

Relay-ThingVisor-EU
(Relay-vThing-EU)

vSilo1-Mosquitto

Producer

VirIoT

Europe

(b) Test scenario 3—remote-consumers.

vSilo2-Mobius

vSilo3-Orion

vSilo4-OrionLD

vSilo5-Scorpio

vSilo1-Mosquitto

Cons. 2

Cons. 3

Cons. 4

Cons. 5

Cons. 1

Relay-ThingVisor-EU
(Relay-vThing-EU)Producer

VirIoT VirIoT

Europe Japan

(c) Test scenario 4—distributed.

Figure 14. Test scenarios used in the comparison of IoT Brokers.

Let us start discussing the results we have obtained in the centralized scenario of
Figure 14a. Figure 15a shows the related average latency of context data for different IoT
Brokers. For the oneM2M Mobius Broker, we considered both transport options: HTTP
and MQTT. As expected, Mosquitto-based vSilo is the fastest. However, this is not a fair
comparison because this vSilo does not really offer tenants the services of an IoT integration
platform as the other vSilos do; in fact, the Mosquitto vSilo simply forwards NGSI-LD
data received from vThings, onto external topics. For this reason, the difference in delay
performance between Mosquitto and the other vSilos can be considered as a measure of
the processing effort required to virtualize a fully featured integration platform rather than
a simple pass-through service.

Performance comparison of the other vSilos reveals that the oneM2M Mobius Broker
is a bit slower than the others with HTTP transport, but its latency is reduced when

Sensors 2021, 21, 6546 22 of 27

using MQTT. This HTTP/MQTT difference is motivated by the fact that with HTTP it is
necessary to open and close a TCP connection for each data piece from vSilo’s IoT Broker
and the consumer application; indeed, HTTP persistent connections do not apply for
publish/subscribe callbacks; all of the Brokers close the connection after data delivery.
With MQTT, the TCP connection is persistent; thus, there is no RTT penalty. NGSIv2 Orion
and NGSI-LD OrionLD have very similar latency. NGSI-LD Scorpio is a little bit slower. In
general, all vSilos have latency in the range of 35–55 ms.

IoT Brokers
0

10

20

30

40

50

60

A
ve

ra
ge

 la
te

nc
y

(m
s)

Mosquitto

Mobius (HTTP)

OrionLD

Orion

ScorpioMobius (MQTT)

(a) Average latency.

IoT Brokers
0

2

4

6

8

10

12

14

k8
s v

Si
lo

 p
od

 C
PU

 %

Mobius (HTTP)

Orion

OrionLD

Scorpio

Mosquitto

(b) CPU footprint.

IoT Brokers
0

500

1000

1500

2000

2500

3000

3500

4000

k8
s

vS
ilo

 p
od

 m
em

or
y

(M
B

)

Mobius

Orion

OrionLD

Scorpio

Mosquitto

(c) Memory footprint.

Figure 15. Performance of vSilos with different IoT Brokers for test scenario 2 (centralized).

Figure 15b,c show the CPU and memory footprint of vSilos during the test. For all
Brokers, CPU usage is quite limited. Of the NGSI-LD vSilos, Scorpios have a much larger
memory footprint than OrionLD. This is motivated by the fact that Scorpio is based on Java,
is designed for systems with many users and therefore uses many components (Apache
Kafka, PostgreSQL, etc.) that are memory hungry. Conversely, OrionLD is lighter, uses C++
and MongoDB.

We now report on the latency figures we obtained in the two remaining scenarios:
remote-consumers and distributed. Figure 16 refers to the remote-consumers scenario
of Figure 14b and shows that, when consumers are moved away from their IoT Brokers,
Brokers using an HTTP API (Mobius with HTTP, Orion, OrionLD and Scorpio) suffer a
significant latency increase due to the need to establish a TCP connection for each data
transfer. Brokers using MQTT (Mosquitto and Mobius with MQTT) do not have this
problem as they use persistent TCP connections where data are immediately pushed.

Sensors 2021, 21, 6546 23 of 27

IoT Brokers
0

100

200

300

400

500

A
ve

ra
ge

 la
te

nc
y

(m
s)

Scorpio

Mosquitto

Mobius (HTTP) Mobius (MQTT)

Orion OrionLD

Figure 16. Average latency for test scenario 3 (remote-consumers).

Figure 17 refers to the distributed-platform scenario of Figure 14c, and the comparison
with Figure 16 shows that the delay penalty of IoT Brokers using HTTP APIs can be
reduced by leveraging VirIoT ability to allocate services close to producers and consumers,
specifically vSilos in Japan and ThingVisor in Europe. This shortens the distance between
the involved HTTP endpoints (Producer–ThingVisor; IoT Broker–Consumer) and makes
end-to-end data transfer faster.

IoT Brokers
0

100

200

300

400

500

A
ve

ra
ge

 la
te

nc
y

(m
s)

Mosquitto

Mobius (HTTP)

Mobius (MQTT)

Orion

OrionLD

Scorpio

Figure 17. Average latency for test scenario 4 (distributed).

Finally, we analyze a typical drawback of virtualization technologies, which is the
performance penalty of a virtualized system compared to a native, i.e., non-virtualized
system. To this end, we carried out latency measurements of native systems, each composed
of an IoT Broker (Mobius, Orion, etc.) and a consumer/producer pair directly connected
to it. All three components, Producer-Broker-Consumer, are located in the same EU
data center. The equivalent but virtualized configuration to be used for a performance
comparison is the one shown in Figure 14a.

Figure 18 shows the data latency achieved for native systems. By comparing these
results with those in Figure 15a, we observe a delay penalty caused by virtualization on
the order of 10 to 15 ms. This is due to the fact that, in VirIoT, a context data piece goes
through a ThingVisor, the MQTT Distribution System and a vSilo IoT Controller, eventually
arriving at the vSilo IoT Broker (Figure 2). In a native system, the producer directly injects
context data into the IoT Broker. These additional virtualization steps increase data latency
because they introduce processing delays that, however, are implementation-dependent.
The implementation is currently in a preliminary stage and uses interpreted programming
languages (Python and JavaScript) rather than faster compiled languages; therefore, we
argue that this delay penalty can be reduced.

Sensors 2021, 21, 6546 24 of 27

IoT Brokers
0

10

20

30

40

50

60

A
ve

ra
ge

 la
te

nc
y

(m
s)

Scorpio

Orion

OrionLD

Mobius (MQTT)
Mobius (HTTP)

Mosquitto

Figure 18. Average latency of native systems (to be compared with Figure 15a).

Overall, the entire performance evaluation showed that VirIoT is a Cloud of Things
platform that works efficiently and is able to leverage infrastructures made up of many
cloud/edge sites and sensors/actuators while limiting site-to-site and thing-to-site band-
width consumption and data latency and offering very low virtualization overhead com-
pared to native systems. The platform is able to integrate different standard IoT Brokers,
and their comparison within VirIoT showed that, when clients are far away, Brokers sup-
porting MQTT access provide rather low latencies compared to those offering HTTP access.
In terms of latency, memory and CPU footprint, brokers from the Orion family performed
slightly better when clients were close to their vSilos. For distant clients, Mobius with
MQTT has lower latency because the other Brokers only offer HTTP access.

5. Conclusions

We propose a new form of cloud services for IoT that mimics the infrastructure as a
service but addresses Internet of Things instead of computing. Just as cloud computing
offers virtual machines made of virtual hardware and an operating system, our Cloud of
Things, VirIoT, offers Virtual Silos made of Virtual Things and standard IoT Brokers.

An initial challenge we found when designing the platform concerned interoperability
at the API, data model and device levels. Our position was not to introduce yet another
data model and/or API that users must comply with, but instead we wanted to create
a system that can integrate many IoT technologies in an evolutionary manner. Different
sensors/actuators can be connected to the platform by inserting the ThingVisors that
interact with them using their APIs and translating their data into VirIoT’s internal NGSI-
LD format. This ingress translation, however, does not force the consumers of this data to
use NGSI-LD for their applications. In fact, different IoT Brokers technologies (oneM2M,
NGSI-LD, NGSI, etc.) with their data models and APIs can be added to the system and
offered to users inside their vSilos, which internally implement the conversion rules from
NGSI-LD. This double translation of data models and API (from real device to NGSI-LD
to IoT Broker) has allowed VirIoT to integrate heterogeneous devices and IoT Brokers.
Moreover, updating/upgrading the system with new technologies, e.g., new ThingVisors or
vSilos types, can be performed continuously and without changing other running services
because VirIoT is a microservice architecture.

The scalability of the system with respect to the number of users/devices has also
been a challenge. With reference to a native, non-virtualized system made by a Broker,
we note that the latter can support more or fewer users depending on its implementation.
However, it is a single entity; thus, it is more prone to suffer from scalability issues.
Similarly, a proxy/hub agent that connects many IoT devices to cloud services may have
the same problem; likewise, a IoT device used by many clients (e.g., via HTTP) may
have issues due to possible bandwidth or processing limitations. VirIoT addresses these
user/device scalability issues by using different IoT Brokers (within vSilos) per tenant
and different ThingVisors per IoT device. These components can be run in parallel on

Sensors 2021, 21, 6546 25 of 27

a cluster of cloud computing resources, thus allowing horizontal scalability of VirIoT
services regardless of the specific IoT Broker or device technology. Moreover, IoT devices
connected to VirIoT have only one client, which is their ThingVisor, thus limiting their
bandwidth and processing requirements. In fact, VirIoT takes care of distributing the
device’s data to many users and handling any API/data model translation. Furthermore,
the data distribution system has also been made horizontally scalable and bandwidth-
saving by using a distributed system of MQTT brokers and HTTP caches that implements
topology-aware service routing. The system database also supports horizontal scalability
by being NoSQL based, and the Master Controller can be replicated to support a possible
increase in load. Overall, VirIoT is a horizontally scalable architecture that also limits
bandwidth consumption for data transmission and does not require onerous computation
requirements to the real devices connected to it.

A final challenge was the management of virtual actuators. Indeed, while the Sensing-
as-a-Service concept has been previously addressed in the literature and in projects, the
virtualization of actuators considering data interoperability issues and the need to support
heterogeneous use cases has been a new innovation challenge that we solved by proposing
a command-oriented actuator control strategy and a new concept of actuation QoS.

Future work may include deeper security and threat analysis; possible exploitation of
semantic annotations (already carried by internal NGSI-LD data) for semantically oriented
control operations, such as adding a vThing to a vSilo only by describing the semantic
properties of the vThing or data (e.g., “temperature of Rome”) of interest rather than its
vThingID; and, finally, even though we deployed the platform by using many clouds/edge
data centers connected by VPN links, we noticed that when the cloud infrastructure is
dynamic, e.g., IP addresses change, the Kubernetes configuration we used has problems.
Thus, supporting VirIoT services with a dynamic underlying infrastructure is a challenge
for future investigations.

Inspired by the NIST definition of Cloud Computing [24], we conclude this paper by
summarizing the essential characteristics our Cloud of Things has:

• On-demand self-service: A consumer can unilaterally provision IoT resources, such as
Virtual Things, IoT Broker and Virtual Silos;

• Broad IoT access: IoT resources are available over the network and accessed through a
plethora of heterogeneous IoT standard technologies, such as those specified by NGSI,
NGSI-LD, oneM2M, etc;

• Broad support of IoT devices: We support heterogeneous IoT sensors and actuators
producing or consuming context data and generic, large-size HTTP contents;

• Resource pooling: Underlying computing and IoT resources (real things, open data,
etc.) are pooled to serve multiple consumers by means of different kinds of virtual
resources that are dynamically assigned and reassigned according to current demand
from consumers.

Author Contributions: All authors contributed to the paper, and work was more or less distributed as
follows: conceptualization, all authors; methodology, A.D. and H.N.; software, L.P. and K.K.; valida-
tion, all authors; investigation, J.A.M.N.; data curation, G.T., L.F., J.A.S.S. and K.K.; writing—original
draft preparation, A.D., G.T. and J.A.M.N.; writing—review and editing, all authors; supervision,
G.T. and L.P.; project administration, A.D.; funding acquisition, A.D. and H.N. All authors have read
and agreed to the published version of the manuscript.

Funding: This work is supported in part by the H2020 EU-JP Fed4IoT project (www.fed4iot.org, EU
contract n. 814918 and JP Grant no. JPJ000595). The document reflects the authors’ view only; the
European Commission and Japanese MIC are not responsible for any use that may be made of the
information it contains.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

www.fed4iot.org

Sensors 2021, 21, 6546 26 of 27

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design
of the study; in the collection, analyses or interpretation of data; in the writing of the manuscript or
in the decision to publish the results.

References
1. Ray, P.P. A survey of IoT cloud platforms. Future Comput. Inform. J. 2016, 1, 35–46. [CrossRef]
2. Ilyas, M.U.; Ahmad, M.; Saleem, S. Internet-of-Things-Infrastructure-as-a-Service: The democratization of access to public

Internet-of-Things Infrastructure. Int. J. Commun. Syst. 2020, 33, e4562. [CrossRef]
3. Amazon. AWS IoT Overview. Available online: https://aws.amazon.com/iot/ (accessed on 16 September 2021).
4. Microsoft. Azure IoT Overview. Available online: https://azure.microsoft.com/en-us/overview/iot/ (accessed on

16 September 2021).
5. Botta, A.; De Donato, W.; Persico, V.; Pescapé, A. Integration of cloud computing and internet of things: A survey. Future Gener.

Comput. Syst. 2016, 56, 684–700. [CrossRef]
6. Cavalcante, E.; Pereira, J.; Alves, M.P.; Maia, P.; Moura, R.; Batista, T.; Delicato, F.C.; Pires, P.F. On the interplay of Internet of

Things and Cloud Computing: A systematic mapping study. Comput. Commun. 2016, 89, 17–33. [CrossRef]
7. Guth, J.; Breitenbücher, U.; Falkenthal, M.; Leymann, F.; Reinfurt, L. Comparison of IoT platform architectures: A field study

based on a reference architecture. In Proceedings of the 2016 Cloudification of the Internet of Things (CIoT), Paris, France,
23–25 November 2016; pp. 1–6. [CrossRef]

8. Swetina, J.; Lu, G.; Jacobs, P.; Ennesser, F.; Song, J. Toward a standardized common M2M service layer platform: Introduction to
oneM2M. IEEE Wirel. Commun. 2014, 21, 20–26. [CrossRef]

9. FIWARE Home Page. Available online: https://www.fiware.org/ (accessed on 16 September 2021).
10. ETSI GS CIM 009. Context Information Management (CIM): NGSI-LD API. Available online: https://docbox.etsi.org/ISG/CIM/

Open (accessed on 16 September 2021).
11. Petrakis, E.G.; Sotiriadis, S.; Soultanopoulos, T.; Renta, P.T.; Buyya, R.; Bessis, N. Internet of Things as a Service (iTaaS): Challenges

and Solutions for Management of Sensor Data on the Cloud and the Fog. Internet Things 2018, 3, 156–174. [CrossRef]
12. Li, J.; Jin, J.; Yuan, D.; Zhang, H. Virtual fog: A virtualization enabled fog computing framework for Internet of Things. IEEE

Internet Things J. 2017, 5, 121–131. [CrossRef]
13. Al-Azez, Z.T.; Lawey, A.Q.; El-Gorashi, T.E.; Elmirghani, J.M. Energy efficient IoT virtualization framework with passive optical

access networks. In Proceedings of the 2016 18th International Conference on Transparent Optical Networks (ICTON), Trento,
Italy, 10–14 July 2016; pp. 1–4.

14. Alves, M.P.; Delicato, F.C.; Santos, I.L.; Pires, P.F. LW-CoEdge: A lightweight virtualization model and collaboration process for
edge computing. World Wide Web Internet Web Inf. Syst. 2020, 23, 1127–1175. [CrossRef]

15. Samaniego, M.; Espana, C.; Deters, R. Smart virtualization for IoT. In Proceedings of the 2018 IEEE International Conference on
Smart Cloud (SmartCloud), New York, NY, USA, 21–23 September 2018; pp. 125–128.

16. Longo, F.; Bruneo, D.; Distefano, S.; Merlino, G.; Puliafito, A. Stack4Things: A sensing-and-actuation-as-a-service framework for
IoT and cloud integration. Ann. Telecommun. 2017, 72, 53–70. [CrossRef]

17. Pierleoni, P.; Concetti, R.; Belli, A.; Palma, L. Amazon, Google and Microsoft solutions for IoT: Architectures and a performance
comparison. IEEE Access 2019, 8, 5455–5470. [CrossRef]

18. Kabadayi, S.; Pridgen, A.; Julien, C. Virtual sensors: Abstracting data from physical sensors. In Proceedings of the 2006
International Symposium on a World of Wireless, Mobile and Multimedia Networks (WoWMoM’06), Buffalo-Niagara Falls, NY,
USA, 26–29 June 2006; pp. 6–592.

19. Alam, S.; Chowdhury, M.M.; Noll, J. Senaas: An event-driven sensor virtualization approach for internet of things cloud. In
Proceedings of the 2010 IEEE International Conference on Networked Embedded Systems for Enterprise Applications, Suzhou,
China, 25–26 November 2010; pp. 1–6.

20. Aazam, M.; Khan, I.; Alsaffar, A.A.; Huh, E.N. Cloud of Things: Integrating Internet of Things and cloud computing and the
issues involved. In Proceedings of the 2014 11th International Bhurban Conference on Applied Sciences & Technology (IBCAST)
Islamabad, Pakistan, 14–18 January 2014; pp. 414–419.

21. Madria, S.; Kumar, V.; Dalvi, R. Sensor Cloud: A Cloud of Virtual Sensors. IEEE Softw. 2014, 31, 70–77. [CrossRef]
22. Dar, K.S.; Taherkordi, A.; Eliassen, F. Enhancing dependability of cloud-based IoT services through virtualization. In Proceedings

of the 2016 IEEE First International Conference on Internet-of-Things Design and Implementation (IoTDI), Berlin, Germany,
4–8 April 2016; pp. 106–116.

23. Alam, I.; Sharif, K.; Li, F.; Latif, Z.; Karim, M.M.; Nour, B.; Biswas, S.; Wang, Y. IoT virtualization: A survey of software definition
& function virtualization techniques for internet of things. arXiv 2019, arXiv:1902.10910.

24. Mell, P.; Grance, T. The NIST Definition of Cloud Computing; National Institute of Science and Technology: Berhampur, India, 2011.
25. VirIoT Open-Source Code. Available online: https://github.com/fed4iot/VirIoT (accessed on 16 September 2021).
26. Kubernetes Production-Grade Container Orchestration. Available online: https://kubernetes.io/ (accessed on 16 September 2021).
27. Information Technology—Message Queuing Telemetry Transport (MQTT) v3.1.1; Technical Report ISO/IEC 20922:2016; International

Organization for Standardization (ISO): Geneva, Switzerland, 2016.

http://doi.org/10.1016/j.fcij.2017.02.001
http://dx.doi.org/10.1002/dac.4562
https://aws.amazon.com/iot/
https://azure.microsoft.com/en-us/overview/iot/
http://dx.doi.org/10.1016/j.future.2015.09.021
http://dx.doi.org/10.1016/j.comcom.2016.03.012
http://dx.doi.org/10.1109/CIOT.2016.7872918
http://dx.doi.org/10.1109/MWC.2014.6845045
https://www.fiware.org/
https://docbox.etsi.org/ISG/CIM/Open
https://docbox.etsi.org/ISG/CIM/Open
http://dx.doi.org/10.1016/j.iot.2018.09.009
http://dx.doi.org/10.1109/JIOT.2017.2774286
http://dx.doi.org/10.1007/s11280-019-00722-9
http://dx.doi.org/10.1007/s12243-016-0528-5
http://dx.doi.org/10.1109/ACCESS.2019.2961511
http://dx.doi.org/10.1109/MS.2013.141
https://github.com/fed4iot/VirIoT
https://kubernetes.io/

Sensors 2021, 21, 6546 27 of 27

28. VirIoT-in-Action Video. Available online: https://fed4iot.org/wp-content/uploads/ftp/VirIoT-in-Action.mp4 (accessed on
16 September 2021).

29. Gonzalez-Gil, P.; Skarmeta, A.F.; Martinez, J.A. The security framework of Fed4IoT. In Proceedings of the Workshop on Cloud
Continuum Services for Smart IoT Systems, Virtual, 16–19 November 2020; pp. 1–6.

30. Jeong, S.; Kim, S.; Kim, J. City Data Hub: Implementation of Standard-Based Smart City Data Platform for Interoperability.
Sensors 2020, 20, 7000. [CrossRef] [PubMed]

31. Fed4IoT Deliverable 5.4—Pilot Integration—Second Release. Available online: https://fed4iot.org/wp-content/uploads/2021/0
9/D5.4.pdf (accessed on 16 September 2021).

32. Fed4IoT VirIoT Platform. Available online: https://fed4iot.org/index.php/viriot-overview/ (accessed on 16 September 2021).
33. Mobius IoT Server Platform. Available online: http://developers.iotocean.org/archives/module/mobius (accessed on 16 Septem-

ber 2021).
34. Orion Context Broker. Available online: https://github.com/telefonicaid/fiware-orion (accessed on 16 September 2021).
35. Orion Context Broker (Linked Data Extensions). Available online: https://https://github.com/FIWARE/context.Orion-LD

(accessed on 16 September 2021).
36. Scorpio NGSI-LD Broker. Available online: https://github.com/ScorpioBroker/ScorpioBroker (accessed on 16 September 2021).
37. Detti, A.; Funari, L.; Blefari-Melazzi, N. Sub-Linear Scalability of MQTT Clusters in Topic-Based Publish-Subscribe Applications.

IEEE Trans. Netw. Serv. Manag. 2020, 17, 1954–1968. [CrossRef]
38. VerneMQ. Clustering MQTT for High Availability and Scalability. Available online: https://vernemq.com (accessed on 16 Septem-

ber 2021).

https://fed4iot.org/wp-content/uploads/ftp/VirIoT-in-Action.mp4
http://dx.doi.org/10.3390/s20237000
http://www.ncbi.nlm.nih.gov/pubmed/33297506
https://fed4iot.org/wp-content/uploads/2021/09/D5.4.pdf
https://fed4iot.org/wp-content/uploads/2021/09/D5.4.pdf
https://fed4iot.org/index.php/viriot-overview/
http://developers.iotocean.org/archives/module/mobius
https://github.com/telefonicaid/fiware-orion
https://https://github.com/FIWARE/context.Orion-LD
https://github.com/ScorpioBroker/ScorpioBroker
http://dx.doi.org/10.1109/TNSM.2020.3003535
https://vernemq.com

	Introduction
	Background
	Proposed Evolution

	Related Works
	VirIoT Architecture and Services
	Information Models and Interoperability
	ThingVisors, vThings and Thing Virtualization Concept
	Virtual Sensors
	Virtual Actuators

	Virtual Silos
	MQTT and HTTP Distribution Systems
	MQTT Distribution System
	HTTP Distribution System

	Performance Evaluation
	Efficiency and Scalability of Data Distribution
	Comparison of Open-Source IoT Brokers

	Conclusions
	References

