1,045 research outputs found

    Geometrical Effects of Baryon Density Inhomogeneities on Primordial Nucleosynthesis

    Get PDF
    We discuss effects of fluctuation geometry on primordial nucleosynthesis. For the first time we consider condensed cylinder and cylindrical-shell fluctuation geometries in addition to condensed spheres and spherical shells. We find that a cylindrical shell geometry allows for an appreciably higher baryonic contribution to be the closure density (\Omega_b h_{50}^2 \la 0.2) than that allowed in spherical inhomogeneous or standard homogeneous big bang models. This result, which is contrary to some other recent studies, is due to both geometry and recently revised estimates of the uncertainties in the observationally inferred primordial light-element abundances. We also find that inhomogeneous primordial nucleosynthesis in the cylindrical shell geometry can lead to significant Be and B production. In particular, a primordial beryllium abundance as high as [Be] = 12 + log(Be/H) 3\approx -3 is possible while still satisfying all of the light-element abundance constraints.Comment: Latex, 20 pages + 11 figures(not included). Entire ps file with embedded figures available via anonymous ftp at ftp://genova.mtk.nao.ac.jp/pub/prepri/bbgeomet.ps.g

    Big Bang Nucleosynthesis and Lepton Number Asymmetry in the Universe

    Get PDF
    Recently it is reported that there is the discrepancy between big bang nucleosynthesis theory and observations (BBN crisis). We show that BBN predictions agree with the primordial abundances of light elements, He4, D, He3 and Li7 inferred from the observational data if an electron neutrino has a net chemical potential xi_{nu_e} due to lepton asymmetry. We estimate that xi_{nu_e} = 0.043^{+0.040}_{-0.040} (95% C.L.) and Omega_bh^2 = 0.015^{+0.006}_{-0.003} (95% C.L.).Comment: 10 pages, using AAS LATEX and three postscript figure

    Charged-Particle and Neutron-Capture Processes in the High-Entropy Wind of Core-Collapse Supernovae

    Get PDF
    The astrophysical site of the r-process is still uncertain, and a full exploration of the systematics of this process in terms of its dependence on nuclear properties from stability to the neutron drip-line within realistic stellar environments has still to be undertaken. Sufficiently high neutron to seed ratios can only be obtained either in very neutron-rich low-entropy environments or moderately neutron-rich high-entropy environments, related to neutron star mergers (or jets of neutron star matter) and the high-entropy wind of core-collapse supernova explosions. As chemical evolution models seem to disfavor neutron star mergers, we focus here on high-entropy environments characterized by entropy SS, electron abundance YeY_e and expansion velocity VexpV_{exp}. We investigate the termination point of charged-particle reactions, and we define a maximum entropy SfinalS_{final} for a given VexpV_{exp} and YeY_e, beyond which the seed production of heavy elements fails due to the very small matter density. We then investigate whether an r-process subsequent to the charged-particle freeze-out can in principle be understood on the basis of the classical approach, which assumes a chemical equilibrium between neutron captures and photodisintegrations, possibly followed by a β\beta-flow equilibrium. In particular, we illustrate how long such a chemical equilibrium approximation holds, how the freeze-out from such conditions affects the abundance pattern, and which role the late capture of neutrons originating from β\beta-delayed neutron emission can play.Comment: 52 pages, 31 figure

    Analysis of fast turbulent reconnection with self-consistent determination of turbulence timescale

    Full text link
    We present results of Reynolds-averaged turbulence model simulation on the problem of magnetic reconnection. In the model, in addition to the mean density, momentum, magnetic field, and energy equations, the evolution equations of the turbulent cross-helicity WW, turbulent energy KK and its dissipation rate ε\varepsilon are simultaneously solved to calculate the rate of magnetic reconnection for a Harris-type current sheet. In contrast to previous works based on algebraic modeling, the turbulence timescale is self-determined by the nonlinear evolutions of KK and ε\varepsilon, their ratio being a timescale. We compare the reconnection rate produced by our mean-field model to the resistive non-turbulent MHD rate. To test whether different regimes of reconnection are produced, we vary the initial strength of turbulent energy and study the effect on the amount of magnetic flux reconnected in time.Comment: 10 pages, 7 figure

    Collective modes of CP(3) Skyrmion crystals in quantum Hall ferromagnets

    Full text link
    The two-dimensional electron gas in a bilayer quantum Hall system can sustain an interlayer coherence at filling factor nu=1 even in the absence of tunneling between the layers. This system has low-energy charged excitations which may carry textures in real spin or pseudospin. Away from filling factor nu =1 a finite density of these is present in the ground state of the 2DEG and forms a crystal. Depending on the relative size of the various energy scales, such as tunneling (Delta_SAS), Zeeman coupling (Delta_Z) or electrical bias (Delta_b), these textured crystal states can involve spin, pseudospin, or both intertwined. In this article, we present a comprehensive numerical study of the collective excitations of these textured crystals using the GRPA. For the pure spin case, at finite Zeeman coupling the state is a Skyrmion crystal with a gapless phonon mode, and a separate Goldstone mode that arises from a broken U(1) symmetry. At zero Zeeman coupling, we demonstrate that the constituent Skyrmions break up, and the resulting state is a meron crystal with 4 gapless modes. In contrast, a pure pseudospin Skyrme crystal at finite tunneling has only the phonon mode. For Delta_SAS=0, the state evolves into a meron crystal and supports an extra gapless U(1) mode in addition to the phonon. For a CP(3) Skyrmion crystal, we find a U(1) gapless mode in the presence of the symmetry-breaking fields. In addition, a second mode with a very small gap is present in the spectrum.Comment: 16 pages and 12 eps figure

    Finite temperature effects on cosmological baryon diffusion and inhomogeneous Big-Bang nucleosynthesis

    Get PDF
    We have studied finite temperature corrections to the baryon transport cross sections and diffusion coefficients. These corrections are based upon the recently computed renormalized electron mass and the modified state density due to the background thermal bath in the early universe. It is found that the optimum nucleosynthesis yields computed using our diffusion coefficients shift to longer distance scales by a factor of about 3. We also find that the minimum value of 4He^4 He abundance decreases by ΔYp0.01\Delta Y_p \simeq 0.01 while DD and 7Li^7 Li increase. Effects of these results on constraints from primordial nucleosynthesis are discussed. In particular, we find that a large baryonic contribution to the closure density (\Omega_b h_{50}^{2} \lsim 0.4) may be allowed in inhomogeneous models corrected for finite temperature.Comment: 7 pages, 6 figures, submitted to Phys. Rev.

    Diversidade genética de bactérias que colonizam nódulos radiculares de Phaseolus vulgaris L. cultivado em campo e em casa de vegetação.

    Get PDF
    Foi realizado o sequenciamento parcial dos genes 16S rRNA e glnII de seis isolados de nódulos radiculares de feijoeiro comum (Phaseolus vulgaris L.), sendo três de plantas cultivadas a campo (LGMB10, LGMB57 e LGMB58) e três de plantas cultivadas em casa de vegetação (LGMB73, LGMB88 e LGMB99). Foi observada uma preferência de colonização de acordo com o experimento avaliado

    Study of the 7Be(p,γ)8B^7Be(p,\gamma)^8B and 7Li(n,γ)8Li^7Li(n,\gamma)^8Li capture reactions using the shell model embedded in the continuum

    Full text link
    We apply the realistic shell model which includes the coupling between many-particle (quasi-)bound states and the continuum of one-particle scattering states to the spectroscopy of mirror nuclei: 8^8B and 8^8Li, as well as to the description of low energy cross sections (the astrophysical S factors) in the capture reactions:7Be(p,γ)8B^7Be(p,\gamma)^8B and 7Li(n,γ)8Li^7Li(n,\gamma)^8Li.Comment: 36 pages, 10 figure
    corecore