79 research outputs found

    Phenotypic Characteristics and Copy Number Variants in a Cohort of Colombian Patients with VACTERL Association

    Get PDF
    VACTERL association (OMIM 192350) is a heterogeneous clinical condition characterized by congenital structural defects that include at least 3 of the following features: vertebral abnormalities, anal atresia, heart defects, tracheoesophageal fistula, renal malformations, and limb defects. The nonrandom occurrence of these malformations and some familial cases suggest a possible association with genetic factors such as chromosomal alterations, gene mutations, and inherited syndromes such as Fanconi anemia (FA). In this study, the clinical phenotype and its relationship with the presence of chromosomal abnormalities and FA were evaluated in 18 patients with VACTERL association. For this, a G-banded karyotype, array-comparative genomic hybridization, and chromosomal fragility test for FA were performed. All patients (10 female and 8 male) showed a broad clinical spectrum: 13 (72.2%) had vertebral abnormalities, 8 (44.4%) had anal atresia, 14 (77.8%) had heart defects, 8 (44.4%) had esophageal atresia, 10 (55.6%) had renal abnormalities, and 10 (55.6%) had limb defects. Chromosomal abnormalities and FA were ruled out. In 2 cases, the finding of microalterations, namely del(15)(q11.2) and dup(17)(q12), explained the phenotype; in 8 cases, copy number variations were classified as variants of unknown significance and as not yet described in VACTERL. These variants comprise genes related to important cellular functions and embryonic development

    Phenotypic characteristics and copy number variants in a cohort of colombian patients with vacterl association

    Get PDF
    Q4Q2VACTERL association (OMIM 192350) is a heterogeneous clinical condition characterized by congenital structural defects that include at least 3 of the following features: vertebral abnormalities, anal atresia, heart defects, tracheoesophageal fistula, renal malformations, and limb defects. The nonrandom occurrence of these malformations and some familial cases suggest a possible association with genetic factors such as chromosomal alterations, gene mutations, and inherited syndromes such as Fanconi anemia (FA). In this study, the clinical phenotype and its relationship with the presence of chromosomal abnormalities and FA were evaluated in 18 patients with VACTERL association. For this, a G-banded karyotype, array-comparative genomic hybridization, and chromosomal fragility test for FA were performed. All patients (10 female and 8 male) showed a broad clinical spectrum: 13 (72.2%) had vertebral abnormalities, 8 (44.4%) had anal atresia, 14 (77.8%) had heart defects, 8 (44.4%) had esophageal atresia, 10 (55.6%) had renal abnormalities, and 10 (55.6%) had limb defects. Chromosomal abnormalities and FA were ruled out. In 2 cases, the finding of microalterations, namely del(15)(q11.2) and dup(17)(q12), explained the phenotype; in 8 cases, copy number variations were classified as variants of unknown significance and as not yet described in VACTERL. These variants comprise genes related to important cellular functions and embryonic development.N/

    Upregulation of NKG2D ligands impairs hematopoietic stem cell function in Fanconi anemia

    Get PDF
    Altres ajuts: Fondo Europeo de Desarrollo Regional (FEDER); Next Generation EU; EUROFANCOLEN); Comunidad de Madrid (AvanCell, B2017/BMD-3692); ICREA-Academia program.Fanconi anemia (FA) is the most prevalent inherited bone marrow failure (BMF) syndrome. Nevertheless, the pathophysiological mechanisms of BMF in FA have not been fully elucidated. Since FA cells are defective in DNA repair, we hypothesized that FA hematopoietic stem and progenitor cells (HSPCs) might express DNA damage-associated stress molecules such as natural killer group 2 member D ligands (NKG2D-Ls). These ligands could then interact with the activating NKG2D receptor expressed in cytotoxic NK or CD8+ T cells, which may result in progressive HSPC depletion. Our results indeed demonstrated upregulated levels of NKG2D-Ls in cultured FA fibroblasts and T cells, and these levels were further exacerbated by mitomycin C or formaldehyde. Notably, a high proportion of BM CD34+ HSPCs from patients with FA also expressed increased levels of NKG2D-Ls, which correlated inversely with the percentage of CD34+ cells in BM. Remarkably, the reduced clonogenic potential characteristic of FA HSPCs was improved by blocking NKG2D-NKG2D-L interactions. Moreover, the in vivo blockage of these interactions in a BMF FA mouse model ameliorated the anemia in these animals. Our study demonstrates the involvement of NKG2D-NKG2D-L interactions in FA HSPC functionality, suggesting an unexpected role of the immune system in the progressive BMF that is characteristic of FA

    Generating new fanca-deficient hnscc cell lines by genomic editing recapitulates the cellular phenotypes of fanconi anemia

    Get PDF
    Fanconi anemia (FA) patients have an exacerbated risk of head and neck squamous cell carcinoma (HNSCC). Treatment is challenging as FA patients display enhanced toxicity to standard treatments, including radio/chemotherapy. Therefore, better therapies as well as new disease models are urgently needed. We have used CRISPR/Cas9 editing tools in order to interrupt the human FANCA gene by the generation of insertions/deletions (indels) in exon 4 in two cancer cell lines from sporadic HNSCC having no mutation in FA-genes: CAL27 and CAL33 cells. Our approach allowed efficient editing, subsequent purification of single-cell clones, and Sanger sequencing validation at the edited locus. Clones having frameshift indels in homozygosis did not express FANCA protein and were selected for further analysis. When compared with parental CAL27 and CAL33, FANCA-mutant cell clones displayed a FA-phenotype as they (i) are highly sensitive to DNA interstrand crosslink (ICL) agents such as mitomycin C (MMC) or cisplatin(ii) do not monoubiquitinate FANCD2 upon MMC treatment and therefore (iii) do not form FANCD2 nuclear foci, and (iv) they display increased chromosome fragility and G2 arrest after diepoxybutane (DEB) treatment. These FANCA-mutant clones display similar growth rates as their parental cells. Interestingly, mutant cells acquire phenotypes associated with more aggressive disease, such as increased migration in wound healing assays. Therefore, CAL27 and CAL33 cells with FANCA mutations are phenocopies of FA-HNSCC cells

    A crowdsourcing database for the copy-number variation of the spanish population

    Get PDF
    Background: Despite being a very common type of genetic variation, the distribution of copy-number variations (CNVs) in the population is still poorly understood. The knowledge of the genetic variability, especially at the level of the local population, is a critical factor for distinguishing pathogenic from non-pathogenic variation in the discovery of new disease variants. Results: Here, we present the SPAnish Copy Number Alterations Collaborative Server (SPACNACS), which currently contains copy number variation profiles obtained from more than 400 genomes and exomes of unrelated Spanish individuals. By means of a collaborative crowdsourcing effort whole genome and whole exome sequencing data, produced by local genomic projects and for other purposes, is continuously collected. Once checked both, the Spanish ancestry and the lack of kinship with other individuals in the SPACNACS, the CNVs are inferred for these sequences and they are used to populate the database. A web interface allows querying the database with different filters that include ICD10 upper categories. This allows discarding samples from the disease under study and obtaining pseudo-control CNV profiles from the local population. We also show here additional studies on the local impact of CNVs in some phenotypes and on pharmacogenomic variants. SPACNACS can be accessed at: http://csvs.clinbioinfosspa.es/spacnacs/. Conclusion: SPACNACS facilitates disease gene discovery by providing detailed information of the local variability of the population and exemplifies how to reuse genomic data produced for other purposes to build a local reference database.This work is supported by Grants PID2020-117979RB-I00 from the Spanish Ministry of Science and Innovation; by the Institute of Health Carlos III (project IMPaCT-Data, exp. IMP/00019, IMP/00009 and PI20/01305), co-funded by the European Union, European Regional Development Fund (ERDF, “A way to make Europe”)

    Sex Differences in Sand Lizard Telomere Inheritance: Paternal Epigenetic Effects Increases Telomere Heritability and Offspring Survival

    Get PDF
    To date, the only estimate of the heritability of telomere length in wild populations comes from humans. Thus, there is a need for analysis of natural populations with respect to how telomeres evolve.Here, we show that telomere length is heritable in free-ranging sand lizards, Lacerta agilis. More importantly, heritability estimates analysed within, and contrasted between, the sexes are markedly different; son-sire heritability is much higher relative to daughter-dam heritability. We assess the effect of paternal age on Telomere Length (TL) and show that in this species, paternal age at conception is the best predictor of TL in sons. Neither paternal age per se at blood sampling for telomere screening, nor corresponding age in sons impact TL in sons. Processes maintaining telomere length are also associated with negative fitness effects, most notably by increasing the risk of cancer and show variation across different categories of individuals (e.g. males vs. females). We therefore tested whether TL influences offspring survival in their first year of life. Indeed such effects were present and independent of sex-biased offspring mortality and offspring malformations.TL show differences in sex-specific heritability with implications for differences between the sexes with respect to ongoing telomere selection. Paternal age influences the length of telomeres in sons and longer telomeres enhance offspring survival

    Bcr/Abl Interferes with the Fanconi Anemia/BRCA Pathway: Implications in the Chromosomal Instability of Chronic Myeloid Leukemia Cells

    Get PDF
    Chronic myeloid leukemia (CML) is a malignant clonal disorder of the hematopoietic system caused by the expression of the BCR/ABL fusion oncogene. Although it is well known that CML cells are genetically unstable, the mechanisms accounting for this genomic instability are still poorly understood. Because the Fanconi anemia (FA) pathway is believed to control several mechanisms of DNA repair, we investigated whether this pathway was disrupted in CML cells. Our data show that CML cells have a defective capacity to generate FANCD2 nuclear foci, either in dividing cells or after DNA damage. Similarly, human cord blood CD34+ cells transduced with BCR/ABL retroviral vectors showed impaired FANCD2 foci formation, whereas FANCD2 monoubiquitination in these cells was unaffected. Soon after the transduction of CD34+ cells with BCR/ABL retroviral vectors a high proportion of cells with supernumerary centrosomes was observed. Similarly, BCR/ABL induced a high proportion of chromosomal abnormalities, while mediated a cell survival advantage after exposure to DNA cross-linking agents. Significantly, both the impaired formation of FANCD2 nuclear foci, and also the predisposition of BCR/ABL cells to develop centrosomal and chromosomal aberrations were reverted by the ectopic expression of BRCA1. Taken together, our data show for the first time a disruption of the FA/BRCA pathway in BCR/ABL cells, suggesting that this defective pathway should play an important role in the genomic instability of CML by the co-occurrence of centrosomal amplification and DNA repair deficiencies

    CIBERER : Spanish national network for research on rare diseases: A highly productive collaborative initiative

    Get PDF
    Altres ajuts: Instituto de Salud Carlos III (ISCIII); Ministerio de Ciencia e Innovación.CIBER (Center for Biomedical Network Research; Centro de Investigación Biomédica En Red) is a public national consortium created in 2006 under the umbrella of the Spanish National Institute of Health Carlos III (ISCIII). This innovative research structure comprises 11 different specific areas dedicated to the main public health priorities in the National Health System. CIBERER, the thematic area of CIBER focused on rare diseases (RDs) currently consists of 75 research groups belonging to universities, research centers, and hospitals of the entire country. CIBERER's mission is to be a center prioritizing and favoring collaboration and cooperation between biomedical and clinical research groups, with special emphasis on the aspects of genetic, molecular, biochemical, and cellular research of RDs. This research is the basis for providing new tools for the diagnosis and therapy of low-prevalence diseases, in line with the International Rare Diseases Research Consortium (IRDiRC) objectives, thus favoring translational research between the scientific environment of the laboratory and the clinical setting of health centers. In this article, we intend to review CIBERER's 15-year journey and summarize the main results obtained in terms of internationalization, scientific production, contributions toward the discovery of new therapies and novel genes associated to diseases, cooperation with patients' associations and many other topics related to RD research
    • 

    corecore