160 research outputs found

    "Quantum Interference with Slits" Revisited

    Full text link
    Marcella [arXiv:quant-ph/0703126] has presented a straightforward technique employing the Dirac formalism to calculate single- and double-slit interference patterns. He claims that no reference is made to classical optics or scattering theory and that his method therefore provides a purely quantum mechanical description of these experiments. He also presents his calculation as if no approximations are employed. We show that he implicitly makes the same approximations found in classical treatments of interference and that no new physics has been introduced. At the same time, some of the quantum mechanical arguments Marcella gives are, at best, misleading.Comment: 11 pages, 3 figure

    Recent trends in the analysis of honey constituents

    Get PDF
    Producción CientíficaThe main goal of this article is to present an overview of the analytical methodologies employed in recent years (2015–2021) to determine several honey constituents, and, specifically, those with health-promoting effects and nutritional value, like phenolic compounds, sugars, amino acids and proteins, vitamins, lipids, minerals, and organic acids. The review is structured according to the different families of compounds, and they will be discussed along with the main extraction and analytical techniques used for their determination. Phenolic compounds, sugars and amino acids have been the main compounds determined in honey. The analytical methods (sample treatment and determination techniques) are strongly dependent on the compound. Nevertheless, it can be concluded that high-performance liquid chromatography was predominantly selected for determining honey constituents; while, in relation to the sample treatment, the preferred option was a dilution of the honey with water or a buffer.Ministerio de Economía y Competitividad y el Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (project numbers RTA 2015-00013-C03-03

    Correlates of Bird Collisions With Buildings Across Three North American Countries

    Get PDF
    Collisions with buildings cause up to 1 billion bird fatalities annually in North America. Bird-building collisions have recently received increased conservation, research, and policy attention. However, efforts to reduce collisions would benefit from studies conducted at large spatial scales across multiple study sites, with standardized methods, and with consideration of species- and life history-related variation and correlates of collisions. We addressed these research needs with a coordinated data collection effort at 40 sites across North America. We estimated collision vulnerability for 40 bird species by accounting for their North American population abundance, distribution overlap with study sites, and sampling effort. Of 10 species we identified as most vulnerable to collisions, some have been identified in past studies (e.g., Black-throated Blue Warbler [Setophaga caerulescens]) while others emerged for the first time (e.g., White-breasted Nuthatch [Sitta carolinensis]), possibly because we used a more standardized sampling approach than past studies. Analyses of species-specific collision correlates revealed that building size and glass area were positively associated with numbers of collisions for 5 of 8 species with enough observations to analyze independently. Vegetation around buildings influenced collisions for only 1 of those 8 species (Swainson\u27s Thrush [Catharus fuscescens]). We also found that life history predicted collisions; numbers of collisions were greatest for migratory, insectivorous, and woodland-inhabiting species. This coordinated, continent-wide study provides new insight into the species most vulnerable to building collisions, making them potentially in greatest need of conservation attention to reduce collisions. This study also lends insight into species- and life history-related variation and correlates of building collisions, information that can help refine collision management efforts

    Evaluating the potential of high pressure high temperature and thermal processing on volatile compounds, nutritional and structural properties of orange and yellow carrots

    Get PDF
    The present study compares the impact of thermal and high pressure high temperature(HPHT) processing on volatile profile (via a non-targeted headspace fingerprinting) and structural and nutritional quality parameter (via targeted approaches) of orange and yellow carrot purees. The effect of oil enrichment was also considered. Since oil enrichment affects compounds volatility, the effect of oil was not studied when comparing the volatile fraction. For the targeted part, as yellow carrot purees were shown to contain a very low amount of carotenoids, focus was given to orange carrot purees. The results of the non-targeted approach demonstrated HPHT processing exerts a distinct effect on the volatile fractions compared to thermal processing. In addition, different colored carrot varieties are characterized by distinct headspace fingerprints. From a structural point of view, limited or no difference could be observed between orange carrot purees treated with HPHT or HT processes, both for samples without and with oil. From nutritional point of view, only in samples with oil, significant isomerisation of all-trans-β-carotene occurred due to both processing. Overall, for this type of product and for the selected conditions, HPHT processing seems to have a different impact on the volatile profile but rather similar impact on the structural and nutritional attributes compared to thermal processing
    • …
    corecore