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RUNNING HEAD: 

Collisions with Buildings 

KEYWORDS: 

anthropogenic threats, bird strikes, urbanization, wildlife mortality, window collisions, life 

history, vulnerability 

ARTICLE IMPACT STATEMENT: 

Species and life history predict bird collisions with buildings, and risk correlates vary by 

species.  
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ABSTRACT: 

 Collisions with buildings cause up to 1 billion bird fatalities annually in North 

America. Bird-building collisions have recently received increased conservation, research, 

and policy attention. However, efforts to reduce collisions would benefit from studies 

conducted at large spatial scales across multiple study sites, with standardized methods, and 

with consideration of species- and life history-related variation and correlates of collisions. 

We addressed these research needs with a coordinated data collection effort at 40 sites across 

North America. We estimated collision vulnerability for 40 bird species by accounting for 

their North American population abundance, distribution overlap with study sites, and 

sampling effort. Of 10 species we identified as most vulnerable to collisions, some have been 

identified in past studies (e.g., Black-throated Blue Warbler [Setophaga caerulescens]) while 

others emerged for the first time (e.g., White-breasted Nuthatch [Sitta carolinensis]), possibly 

because we used a more standardized sampling approach than past studies. Analyses of 

species-specific collision correlates revealed that building size and glass area were positively 

associated with numbers of collisions for 5 of 8 species with enough observations to analyze 

independently. Vegetation around buildings influenced collisions for only 1 of those 8 

species (Swainson’s Thrush [Catharus fuscescens]). We also found that life history predicted 

collisions; numbers of collisions were greatest for migratory, insectivorous, and woodland-

inhabiting species. This coordinated, continent-wide study provides new insight into the 

species most vulnerable to building collisions, making them potentially in greatest need of 

conservation attention to reduce collisions. This study also lends insight into species- and life 

history-related variation and correlates of building collisions, information that can help refine 

collision management efforts. <PE-FRONTEND>  
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INTRODUCTION: 

 Globally, many bird populations are in decline. In addition to important indirect 

anthropogenic threats like climate change and habitat loss, many declines are likely caused in 

part by direct sources of human-caused mortality, including collisions with structures, 

chemical poisoning, and predation by domestic pets (Rosenberg et al. 2019). Collisions with 

buildings, communication towers, wind turbines, and other structures annually cause up to 

1.5 billion bird fatalities in North America (Loss et al. 2015). Building collisions cause up to 

1 billion of these avian deaths (Machtans et al. 2013; Loss et al. 2014). 

Bird-building collisions that occur during the day are thought to result from birds 

mistaking reflections or open areas behind glass as safe flight passages (Klem 1989). At 

night, artificial light at night (ALAN; Longcore & Rich 2004) contributes to bird-building 

collisions. ALAN attracts and disorients nocturnally migrating birds, causing them to collide 

with buildings,  become entrapped and later collide, become easy targets for predators, or 

succumb to exhaustion (Lao et al. 2020; Winger et al. 2019). As human population grows and 

shifts to urban areas, buildings and ALAN are increasing, which will likely result in 

increasing numbers of diurnal and nocturnal bird-building collisions if mitigation approaches 

are not identified and widely implemented. 

Many factors influence spatial variation in bird-building collisions, including building 

size and location, nearby vegetation, and levels of regional urbanization (Hager et al. 2017). 

When considering total collisions across all bird species, large numbers of collisions occur at 

buildings with extensive glass area (Hager et al. 2008; Klem et al. 2009), ALAN (Winger et 

al. 2019), and nearby trees and shrubs (Hager et al. 2013; Cusa et al. 2015). Local-scale 

factors also interact with broad-scale factors to influence collisions. For example, a North 

American continent-wide study found that regional urbanization mediates the effect of 
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building characteristics, with large glassy buildings in relatively undeveloped landscapes 

causing more collisions than similar buildings in urbanized areas (Hager et al. 2017). 

Numbers of building collision may also vary due to factors intrinsic to birds such as 

their life history (Cusa et al. 2015; Wittig et al. 2017). Migratory species are thought to 

collide in greater numbers than non-migratory species, and nocturnal migrants may collide 

more frequently than diurnal migrants (Machtans et al. 2013; Loss et al. 2014; Winger et al. 

2019). Among-family variation in collisions also is thought to occur; for example, wood 

warblers (Parulidae) and hummingbirds (Trochilidae) are reported to collide in greater 

numbers than swallows (Hirundinidae). Some species may experience collisions in 

exceptionally large numbers (e.g., White-throated Sparrow [Zonotrichia albicollis]) or may 

be disproportionately vulnerable, colliding in numbers greater than expected based solely on 

abundance (e.g., Ruby-throated Hummingbird [Archilochus colubris], Ovenbird [Seiurus 

aurocapilla], Yellow-bellied Sapsucker [Sphyrapicus varius]) (Arnold & Zink 2011; Loss et 

al. 2014). These disproportionately vulnerable species are perhaps more likely to experience 

population declines associated with building collision mortality. 

Most studies of factors influencing bird-building collisions are descriptive, occur in a 

single study area, or do not account for factors causing fatality counts to misrepresent 

collision vulnerability. Only two meta-analyses include evaluation of bird-building collisions 

across multiple sites and account for abundance and spatial sampling biases to generate 

vulnerability estimates (Arnold & Zink 2011; Loss et al. 2014). These quantitative syntheses 

included data from several independent studies with varying sampling protocols, which 

propagated uncertainty and bias into meta-analysis results. Further, few studies have 

considered how avian life histories influence collisions or how correlates of collisions vary 

among species. One such study suggests forest-inhabiting, foliage-gleaning species collide 

more frequently at buildings surrounded by extensive vegetation while open woodland-
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inhabiting, ground-foraging species collide more at buildings surrounded by intense urban 

development (Cusa et al. 2015). Another study found that some collision correlates (e.g., 

glass area) are relatively consistent among bird species, but there is also among-species 

variation in correlates (Loss et al. 2019). As with much of the bird collision literature, these 

last two studies occurred at single study sites.  

A broad-scale assessment using a coordinated data collection approach across 

multiple sites and considering species- and life history-related variation and correlates of 

collisions would help identify bird species and life history groups most likely to need 

conservation intervention. Such an analysis would also help identify suites of collision 

mitigation approaches that are effective across many bird species. We conducted such an 

assessment with a bird collision dataset collected under a coordinated sampling protocol at 

281 buildings in 40 study sites across North America in fall 2014. Our objectives were to: (1) 

assess variation in species’ vulnerability to building collisions, (2) identify building and 

landscape-related correlates of collision numbers for individual species, and (3) identify life 

history-related correlates of collisions. 

 

METHODS: 

Study area and design: 

 We collected collision data through the Bird-Window Collisions Project under the 

Ecological Research as Education Network (EREN) (Hager et al. 2017). Collaborators from 

40 university or college campuses across North America (Fig. 1) collected data during fall 

migration (August-October) in 2014. At each campus, buildings (n=281 total; range=4–21 

per site) were selected by stratifying candidate buildings by size (small, medium, large) and 

surrounding vegetation cover (high & low) within 50 m, resulting in 6 total building strata 

(details of strata classifications in Hager et al. 2017). 
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 Collision surveys were conducted following a standardized protocol (Hager & 

Cosentino 2014) during fall migration, the season when the greatest number of collisions 

typically occur (Machtans et al. 2013; Loss et al. 2014). We designed our sampling protocol 

to minimize estimation biases associated with carcass removal (i.e., some carcasses removed 

by scavengers and humans between surveys) and detection (i.e., some carcasses that were 

present not detected by surveyors) (Hager & Cosentino 2014).  

We minimized detection bias by making two passes around each building for each 

survey. Surveys consisted of one or two individuals searching within ~2 m of the entire 

building perimeter, including in, under, and around vegetation. When one individual 

conducted surveys, a single pass was made in each direction around the building; if two 

individuals conducted surveys, each made a single pass in opposite directions. Previous 

experiments showed that the probability of detecting a carcass during a single pass in this 

type of survey setting can vary from 0.70 to 0.95 depending on observer identity and 

conspicuousness of carcass coloration (Hager et al. 2013). Assuming detection probability is 

statistically independent between passes for the same carcass, this corresponds to cumulative 

detection probabilities of 0.91–0.99 (e.g., 1–(1–0.70)
2
=0.91). 

Since carcass removal by scavengers and humans varies spatially, temporally, and 

among bird species, we minimized removal bias by conducting surveys daily (range: 5–60 

consecutive days/site) between 1400–1600 h. Carcasses typically persist for multiple days 

(Hager et al. 2012; Riding & Loss 2018), so daily surveys maximize probability of 

encountering a carcass before removal. We usually conducted afternoon surveys because 

some studies suggest that most collisions occur during morning and that most carcass 

removal by scavengers occurs overnight (Bracey et al. 2016, Hager et al. 2012). However, 

surveys at Oklahoma State University were conducted from 0700–0900 h due to high 

numbers of collisions in predawn and early morning hours at this site and removal peaking in 
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the morning (Riding & Loss 2018). Although logistical constraints associated with 

coordinating research across 40 sites prevented experimental studies of carcass detection and 

removal at each site, the above protocol likely minimized detection and removal biases 

(Hager et al. 2012, 2013, 2017; Hager & Cosentino 2014).  

All carcasses were collected and identified to species. For all below-described 

analyses, we removed records for unidentified carcasses, species lacking distribution-wide 

population estimates, and species with distributions overlapping fewer than 10 sites. We 

conducted all analyses in R 3.4.4 (R Core Team 2018) unless otherwise mentioned. 

 

Measuring potential collision correlates: 

 Building characteristics, local vegetation, and regional urbanization were computed as 

described in Hager et al. (2017). Briefly, building metrics included window area (m
2
; 

calculated with tape measure or ImageJ [Abramoff et al. 2004]), number of stories above 

ground-level, and floor space area (m
2
; building footprint area). A single author used high-

resolution aerial imagery in ArcMap 10.3 (ESRI 2011) to digitize and calculate local 

vegetation variables, including percent cover of grass, impervious surface, water, structure, 

and woody vegetation within 50 m of buildings. We characterized regional urbanization by 

using a minimum convex polygon to estimate the proportion of urban cover within 5 km of 

the edge of the sampled cluster of buildings at each site. Because this study included the 

exact same buildings as in Hager et al. (2017), we used exact results of their principal 

components analysis (PCA), which identified principal components capturing characteristics 

of buildings and their surroundings. To achieve multivariate normality, which improves PCA 

interpretation (McGarigal et al. 2000), all building metrics were log-transformed and all local 

vegetation variables were logit-transformed. The PCA was computed on the correlation 

matrix and three principal components (PCs) with eigenvalues ≥1 were retained as collision 
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correlates with axis scores accounting for 70% of variance. The 3 PCs represented building 

size (e.g., number of stories, window area), local vegetation (within 50 m), and regional 

urbanization (within 5 km) (Hager et al. 2017). 

 

Estimating species’ vulnerability to collisions: 

We defined species’ vulnerability to collisions as the number of collisions relative to 

population size and geographic distribution overlap with study sites. This definition follows 

previous studies (Arnold and Zink 2011; Loss et al. 2014) in assuming that species with 

greater abundance and broader distribution overlap collide more frequently than less 

abundant or narrowly-distributed species. To estimate continent-wide population size, we 

used the Partners in Flight Population Estimates Database version 3.0 (Partners in Flight 

2019). To estimate distribution overlap, we used Python 2.7 with ArcGIS 10.3 to count the 

intersection of our 40 campuses with species distribution maps (BirdLife International 2016; 

ESRI 2011). Species distribution maps were visually examined in ArcGIS to ensure all parts 

of each species’ distribution were included, and if portions were missing (usually the 

migration range), we used information from field guides to fill in missing portions (Sibley 

2000; Rodewald 2015). For the subsequent vulnerability analysis, we only included species 

with ≥2 fatalities across study sites. 

 We estimated species’ vulnerability using the approach of Arnold & Zink (2011) and 

Loss et al. (2014), with one modification. Briefly, their approach estimates vulnerability by 

using residuals from a fitted regression between species fatality counts and both population 

size and distribution overlap with study sites. However, we regressed a novel response 

variable (hereafter “birds per effort”, BPE) on only a single predictor variable (population 

size) because BPE accounts for species’ distribution overlap with sites, as well as varying 

numbers of surveys at different sites and buildings. We indexed BPE by each species i, and 
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calculated BPEi by dividing total numbers of fatalities by the total number of days surveyed 

at all buildings within that species’ distribution. We treated species as replicates and fit the 

relationship between BPEi and population size (while fixing regression coefficients to 1) as: 

 

Log10(BPEi)=β0+β1*log10(population sizei). 

 

We calculated residuals from this equation and used them to calculate vulnerability indices as 

follows: 

 

Vulnerabilityi=10
^|residual for i|

. 

 

This approach assumes that a 10–fold increase in population size results in a 10–fold increase 

in collisions. The vulnerability index designates the factor by which a species has greater 

(positive residual) or lesser (negative residual) probability of experiencing a collision 

compared to an average species. To assess potential effects of observer detection probability 

on vulnerability, we conducted Pearson’s correlations between vulnerability estimates and 

species-specific indices from Arnold and Zink (2011) that reflect carcass size and 

conspicuousness (index ranges=0-2; with small, cryptic species scored 0 and large, 

conspicuously-plumaged species scored 2).  

 

Identifying collision correlates for individual species: 

To identify correlates of collision numbers for individual species, we used generalized 

linear mixed models (GLMMs) in the glmmTMB package (Brooks et al. 2017) to examine 

relationships between the three PCA-derived latent variables (predictors) and species’ fatality 

counts (response variable), with individual buildings as replicates (n=281). These models 
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were similar to those used by Hager et al. (2017); however, instead of assessing total 

collisions as the response variable, we conducted separate analyses for 8 species with ≥10 

collisions observed. For each species, we considered models with 14 different combinations 

of predictor variables: a null model, models for each additive combination of predictors, and 

models with a single interaction effect and up to one additional predictor (Supplementary 

Information). For each variable combination, we specified one model with a negative 

binomial (NB) error distribution (to account for over-dispersion) and one model with a zero-

inflated negative binomial (ZINB distribution) due to the large number of buildings with no 

collisions observed. For all 28 resultant candidate models, we specified an offset for log-

transformed numbers of surveys (to account for varying effort). We used AIC in the bbmle 

package to rank models (Bolker 2017), eliminated uninformative parameters, and considered 

models supported when their ∆AIC=0–2 and at least 2 above the null model (Arnold 2010). If 

multiple models were strongly supported, we used conditional model averaging in the 

MuMIn package (Barton 2018) to generate coefficient estimates. Regardless of whether 

coefficient estimates were from a single model or averaged models, we considered predictor 

variables meaningful if 95% confidence intervals (CIs) of coefficient estimates did not 

overlap zero. 

 

Assessing influence of life history on collisions: 

We classified species according to their migratory status and primary habitat 

(Langham et al. 2015), and their main food resource (González-Salazar et al. 2012, Rodewald 

2015). To analyze life history influence on collision numbers, we merged classifications for 

these three characteristics into binary categories describing migration status (migratory/non-

migratory), primary food (insectivorous/non-insectivorous), and primary habitat 

(woodland/non-woodland). We used GLMMs with a NB error distribution because a 
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preliminary analysis comparing NB and ZINB versions of the below-described full models 

determined there was greater support for the NB distribution. We specified an offset for log-

transformed numbers of surveys, and a random effect for building nested within site to 

account for non-independence of multiple replicates for each building and buildings within 

sites. We included the three PCA-derived latent variables from the species-level correlate 

analysis as predictors to account for known sources of variance, but because these were not of 

primary interest for this analysis we did not interpret the significance of these predictors.  

As opposed to the species-specific correlate analysis, which we based on 14 defined 

candidate models, we used a more exploratory approach for this analysis. The response 

variable for this analysis was fatality counts at each building for each combination of binary-

coded predictor category (n=281 buildings*6 life history combinations=1686; e.g., one 

replicate for the count of migrant woodland insectivores at a building, one for non-migrant 

woodland insectivores, etc.). We defined a full model including all two-way interactions 

among life history and PCA-derived predictors. Dredging and model ranking were conducted 

in the MuMIn package (Barton 2018), with maximum number of predictor variables set to 7 

to limit the many possible combinations of predictors in each model (resulting in comparison 

of 1,733 models; Supporting Information). For this model set, we used the same approach to 

model comparison and coefficient assessment as described for species-specific correlates 

analyses. 

 

RESULTS: 

 

 Surveyors found 324 bird carcasses at 281 buildings on 40 academic campuses. After 

applying our filtering protocol for species with limited information or distributions, we 

retained for analysis 269 carcasses of 64 species. The most frequently found species were 
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Ruby-throated Hummingbird and Common Yellowthroat (Geothlypis trichas) with 22 and 21 

collisions respectively. 

 

Species’ vulnerability to collisions: 

After removing species with ≤ 2 fatalities, we retained 240 carcasses from 40 species 

for our estimation of collision vulnerability. Estimated collision vulnerability varied, with one 

species 32 times more likely than average to collide, to another species 10 times less likely to 

collide than average (all estimated vulnerabilities in Supporting Information). The 10 most 

vulnerable species were Black-throated Blue Warbler (Setopahga caerulescens), Ovenbird, 

Ruby-throated Hummingbird, Yellow-bellied Sapsucker, Wood Thrush (Hylocichla 

mustelina), Brown Thrasher (Toxostoma rufum), White-breasted Nuthatch (Sitta 

carolinensis), American Goldfinch (Spinus tristis), Gray Catbird (Dumetella carolinensis), 

and Common Yellowthroat (Table 1). We found no correlation between vulnerability and 

either body size (r=-0.04, p =0.79) or plumage conspicuousness (r=0.15, p-value=0.35), 

suggesting minimal influence of observer detection probability on vulnerability estimates.  

 

Collision correlates for individual species: 

Collision correlates were evaluated for 8 species with ≥10 fatalities (vulnerability 

range for these species: +6.2 to –2.5) (Table 2). For all species, top models included NB 

distributions as opposed to ZINB distributions, despite the fact that most counts were zero. 

The first PC described building size and included positive loadings of building height, 

window area, and floor space area. That PC was a positive predictor of collision numbers for 

5 of the 8 species (all except Swainson’s Thrush [Catharus ustulatus], White-throated 

Sparrow, and Dark-eyed Junco [Junco hyemalis]). The second PC represented vegetation 

cover within 50 m of buildings and included a positive loading of impervious surface and 
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negative loading of woody vegetation. That PC was a negative predictor of collisions only for 

Swainson’s Thrush. Some top models included variables not meaningfully associated with 

fatalities such as the third PC (which included a positive loading for regional urbanization) 

and an interaction between the building size PC and local vegetation PC for one species; 

other interactions were not included in top models for any species (Table 2; Supplementary 

Information). 

 

Influence of life history on collisions: 

 The top and only competitive model for the life history analysis included the building 

size PC and all 2–way interactions among the 3 life history variables (Figure 2; model 

rankings in Supporting Information). The interaction terms in our models indicate that 

migratory species collide more than non-migratory species, and that this difference is more 

pronounced for woodland-inhabiting and insectivorous species. Likewise, traits associated 

with being insectivorous increase collision numbers for woodland-inhabiting species but 

decrease collisions for species inhabiting other vegetation types (stated alternatively, traits 

associated with being a woodland-inhabitant are associated with increased collisions for 

insectivores and decreased collisions for non-insectivores). However, differences in collision 

numbers between primary food and primary habitat were small (Figure 2c).  

 

DISCUSSION: 

Species’ vulnerability to collisions: 

Of the 10 bird species most vulnerable to building collisions, 7 (Black-throated Blue 

Warbler, Ovenbird, Ruby-throated Hummingbird, Yellow-bellied Sapsucker, Wood Thrush, 

Gray Catbird, Common Yellowthroat) have been documented as highly vulnerable in past 

multi-site studies (Arnold & Zink 2011; Loss et al. 2014). The other 3 (Brown Thrasher, 
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White-breasted Nuthatch, American Goldfinch) have not previously been identified as highly 

vulnerable. These novel findings may have arisen from our coordinated sampling, varying 

geographic or seasonal coverage of our study, the more-recent bird population estimates we 

used, or the more-limited number of species analyzed (i.e., some species may have ranked as 

highly vulnerable only because of the smaller number of “competing” species that we 

ranked).  

Estimating collision vulnerability, as opposed to raw fatality counts, may provide 

insight into the likelihood of population-level effects of building collisions. Of our 10 most-

vulnerable species, American Goldfinch, Brown Thrasher, Wood Thrush, and Common 

Yellowthroat have experienced population declines since 1970 (Rosenberg et al. 2019), and 

Wood Thrush is a US Bird of Conservation Concern (NABCI 2016). Other human-related 

factors like habitat loss are undoubtedly driving declines for these and many other migratory 

bird species. Nonetheless, our results and past studies (Arnold and Zink 2011; Loss et al. 

2014) indicate that building collisions are also potentially contributing to declines, especially 

for the most vulnerable species colliding in greatest numbers relative to their abundance. 

Further, studies have identified that mortality during migration can affect bird populations, 

including for species we found to be highly vulnerable to collisions (e.g., Black-throated Blue 

Warbler, Wood Thrush; Sillett & Holmes 2002; Rushing et al. 2017). Although these studies 

did not identify specific sources of mortality, we suggest that building collisions during 

migration could be a major factor, and further research is needed to analyze the link between 

collisions and demography for migratory bird species.  

 Our continent-wide, coordinated sampling approach expands on previous 

vulnerability analyses (Arnold & Zink 2011; Loss et al. 2014) in part by accounting for biases 

associated with among-site variation in data collection protocols. That said, our analysis 

would be improved if we had observed more species with distributions that overlapped ≥10 
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sites. As a result of only including only 40 such species, some of those we analyzed that had 

low population sizes or distribution overlap with sites could have artificially high 

vulnerability estimates if observed in relatively large numbers at a small number of sites. 

Similarly, incorporating local abundance estimates, rather than continent-wide estimates, 

would further improve vulnerability estimates (see also “Future Directions”). Finally, like all 

other vulnerability studies, the indices we calculated are not comparable to those from other 

studies. This limitation is especially important to consider for rare species that may collide in 

low numbers. These taxa are difficult to detect in short-term collision surveys (Beston et al. 

2015), but their populations may be affected by only a few collisions.  

 

Collision correlates for individual species: 

 The PC for building size, and specifically the building height, window area, and floor 

space area variables, were positively related to numbers of collision for 5 of 8 species 

assessed. Previous studies evaluating correlates of bird collisions have shown a similar 

increase in collisions with increasing building size and window area for both individual 

species (Loss et al. 2019) and total number of carcasses found (Klem et al. 2009; Hager et al. 

2013, 2017; Machtans et al. 2013; Cusa et al. 2015; Ocampo-Peñuela et al. 2016; Schneider 

et al. 2018). Our results suggest large, glassy, multi-storied buildings cause large numbers of 

collisions for many bird species. This finding appears to apply the same for the medium-sized 

buildings (1–14 stories tall) on academic campuses in our study as it does for the larger 

buildings in other studies (Klem et al. 2009; Cusa et al. 2015; Loss et al. 2019). Conservation 

efforts focused on these types of buildings may result in the greatest per-building collision 

reductions. 

Although past studies suggest more collisions occur at buildings surrounded by 

extensive vegetation and limited impervious surface (Hager et al. 2013; Cusa et al. 2015; 
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Ocampo-Peñuela et al. 2016; Schneider et al. 2018), we only found evidence for such effects 

for one species, Swainson’s Thrush. Since Swainson’s Thrush is commonly associated with 

forested habitat with dense undergrowth (Mack & Yong 2020), this species may be more 

likely to frequent areas near buildings with extensive woody vegetation, increasing numbers 

of collisions.  

Small numbers of collisions for most species likely limited our ability to identify 

other correlates of species-level collision numbers. Assessing correlates of species-specific 

collisions should be considered in future studies, especially when the goal is to reduce 

collisions for particular species of conservation concern (e.g., rare or declining species); 

management based on correlates of total bird collisions may not always result in collision 

reductions for species of concern. In particular, amount of lighting emitted from buildings at 

night strongly influences total bird collisions (Lao et al. 2020), and vulnerability to lighting 

may vary among species in association with life history (e.g., nocturnal vs. diurnal migrants) 

and vision (e.g., lighting effects variable with species-specific differences in visual sensitivity 

and acuity). 

 

Influence of life history on collisions: 

Life history was associated with numbers of collisions, a finding with important 

implications for predicting and managing collisions across species with similar traits, and for 

understanding how traits mediate collision risk. Migratory species collided more than non-

migrants (see also Arnold & Zink 2011; Loss et al. 2014; Wittig et al. 2017; and discussion of 

our sampling-related limitations below). Migrants may collide more because nocturnally 

migrating species, which comprise the majority of migrants, are more prone to attraction and 

disorientation from ALAN (Lao et al. 2020; Winger et al. 2019). More generally, migrants 
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could be at greater collision risk as a result of encountering more buildings over their annual 

cycle due to traversing a greater area and longer distances.  

The larger number of collisions for woodland-inhabitants relative to non-woodland 

inhabitants that we documented could reflect physical, behavioral, or physiological 

adaptations associated with living in woodlands (e.g., habitat selection strategy, flight 

style/maneuverability, visual acuity) that influence perception and avoidance of buildings or 

ALAN. We hypothesize that the greater number of insectivore collisions could reflect 

increased attraction due to abundant insects in urban environments (Frankie & Ehler 1978), 

including near buildings due to ALAN (Longcore & Rich 2004). This pattern could also 

reflect alteration of birds’ primary diets during migration due to resource availability 

influencing habitat selection. For example, insectivores may supplement their diet with fruits 

or seeds due to lack of insects (Parrish 1997), which may bring birds closer to buildings. Our 

results could also reflect life history traits (e.g., feeding behavior or location) not captured in 

the categories we defined. For example, insectivores are often foliage gleaners that fly 

through small openings in the forest canopy, a foraging strategy that may increase collision 

susceptibility due to reflections of vegetation and sunlight in windows (Wittig et al. 2017).  

It is possible that our classification of life history using binary predictor variables 

(e.g., migratory/non-migratory) resulted in the loss of some potentially valuable information. 

Future studies with larger numbers of collisions and more species observed may allow 

assessment of more refined categories (e.g., long, medium, and short distance migrants) to 

provide greater understanding of how life history influences numbers of collisions. Further, 

our focus of sampling during fall migration led to an inherent bias towards migratory species, 

as migrants typically collide more than residents do during migration seasons (Riding 2019); 

future studies could assess life history-related effects across different seasons. 
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Future Directions: 

The large spatial extent of our study required us to sample in one fall migration only; 

future research would benefit by including multiple seasons and years. Related, future studies 

should attempt to sample more collisions while maintaining a coordinated sampling 

approach. In addition to a longer sampling period, numbers could be increased by 

coordinating citizen science efforts to study bird collisions across multiple cities, and using 

molecular techniques to identify bird carcasses that would otherwise be unidentifiable. Future 

studies could also quantify and account for bird abundance, which influences collision 

numbers and varies regionally relative to factors such as latitude, longitude, and proximity to 

major migration flyways, including those associated with geographical features (e.g., 

coastlines and mountain ranges). Local species abundance could be estimated with data from 

public databases (e.g., eBird; Sullivan et al. 2009) or surveys conducted near buildings, and 

total abundance of migrants could be quantified with weather radar (Van Doren and Horton 

2018). Studies should also evaluate sampling bias associated with birds colliding and exiting 

the survey area before dying, and assess risk correlates related to bird vision and morphology, 

which may influence collision avoidance or the proportion of collisions that are fatal. Finally, 

future research should attempt to verify species and life history-related correlates of collisions 

because our 16 assessments of 95% CIs of model coefficients to infer variable importance 

increased probability of Type I error (i.e., apparently significant effects arising by chance). 

Using the Bonferroni correction to account for multiple assessments (i.e., increasing the CI 

width used to infer meaningful effects) results in all supported variables having coefficient 

CIs that overlap zero. However, many of our documented effects may be biologically 

important as the Bonferroni correction has been criticized for being overly conservative (i.e., 

resulting in Type II error, or false negatives; Moran 2003).  
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Conclusions: 

 Building collisions kill large numbers of birds and will likely increase with increasing 

human population, number of buildings, and ALAN. The vulnerability rankings we produced 

can assist conservation by highlighting species that experience the greatest numbers of 

collisions relative to population abundance, which are pertinent species on which mitigation 

steps to reduce building collisions should be focused. Our analyses of species-specific 

collision correlates at buildings on academic campuses provide further evidence for focusing 

mitigation on relatively large buildings in these settings, and to even larger buildings in urban 

centers (e.g., skyscrapers in major cities). Our results also support the importance of 

constructing buildings with smaller expanses of reflective or transparent glass, and treating 

glass on existing buildings. Policies and guidelines to reduce collision risk at new and 

existing buildings are becoming much more common (San Francisco Planning Department 

2019), and there are a growing number of commercially available options to make existing 

and new glass more bird-friendly (e.g., using fritted glass or installing films, decals, netting, 

or shades; Klem 2015). Our results also highlight that no single mitigation approach may be 

effective for all birds and that species-specific correlates should be considered when 

managing collisions. Finally, our life history analysis may aid in developing mitigation 

approaches that address life history-related risk factors (e.g., reduction of ALAN during 

migration to reduce mortality of migrants; Winger et al. 2019). 
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Table 1. Collision vulnerability estimates for 10 most vulnerable species from fall 2014 

collision monitoring at 40 sites across North America. 

 

Common Name Fatality Count Vulnerability 

Black-throated Blue Warbler 5 32.24 

Ovenbird 17 6.21 

Ruby-throated Hummingbird 22 6.09 

Yellow-bellied Sapsucker 8 5.15 

Wood Thrush 4 3.58 

Brown Thrasher 2 3.31 

White-breasted Nuthatch 3 2.83 

American Goldfinch 12 2.48 

Gray Catbird 7 2.29 

Common Yellowthroat 21 2.26 
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Table 2. Correlates of building collision fatalities for individual bird species; correlates are 

from top models in AIC comparisons. Direction of relationship for variables in top models 

indicated by + (positive) and – (negative); (0 indicates variables not in top models). Building 

size, local vegetation, and regional urbanization correlates represent principal components 

derived in Hager et al. (2017). All two-way interactions except building size * local 

vegetation were excluded from this table as they did not appear in top models. 

Common 

Name 

Number 

of 

collisions Vulnerability 

Building 

size 

Local 

vegetation 

Regional 

urbanization 

Building 

size*local 

vegetation 

Ovenbird 17 6.21 + –
a
  0 0 

Ruby-throated 

Hummingbird 22 6.09 + 0 0 

0 

American 

Goldfinch 12 2.48 + 0 0 

0 

Common 

Yellowthroat 21 2.26 + +
a
 0 

0 

Tennessee 

Warbler 14 1.18 + 0 0 

0 

Swainson’s 

Thrush* 10 –1.51 0 – –
a
 

0 

White-

throated 

Sparrow* 10 –1.65 +
a 

–
a
 +

a 

–
a 

Dark-eyed 

Junco 10 –2.48 0 0 0 

0 

*Species with >1 competitive model; results shown are from model-averaged coefficient 

estimates. 
a
Variables with 95% CIs of coefficients overlapping zero. 
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Figure 1. Locations of 40 study sites across North America with bird-building collision 

monitoring conducted during fall 2014. 
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Figure 2. Associations among life history and numbers of bird-building collisions per 

replicate (predicted based on the fitted generalized linear mixed model), including (a) 

interaction between migratory status and primary food, (b) interaction between migratory 

status and primary habitat, and (c) interaction between primary food and primary habitat. 
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