237 research outputs found

    A search for Earth-crossing asteroids, supplement

    Get PDF
    The ground based electro-optical deep space surveillance program involves a network of computer controlled 40 inch 1m telescopes equipped with large format, low light level, television cameras of the intensified silicon diode array type which is to replace the Baker-Nunn photographic camera system for artificial satellite tracking. A prototype observatory was constructed where distant artificial satellites are discriminated from stars in real time on the basis of the satellites' proper motion. Hardware was modified and the technique was used to observe and search for minor planets. Asteroids are now routinely observed and searched. The complete observing cycle, including the 2"-3" measurement of position, requires about four minutes at present. The commonality of asteroids and artificial satellite observing, searching, data reduction, and orbital analysis is stressed. Improvements to the hardware and software as well as operational techniques are considered

    First record of an indoor pest sawtoothed grain beetle Oryzaephilus surinamensis (Coleoptera: Silvanidae) from wild outdoor wood ant nest

    Get PDF
    Alive individual adult sawtoothed grain beetle Oryzaephilus surinamensis (Linnaeus, 1758) was discovered inside a nest mound of the red wood ant Formica rufa Linnaeus, 1758 during a survey of myrmecophilous invertebrates. The sawtoothed grain beetle is a widespread indoor pest that has not previously been found in an ant nest. It is one of the most common pests in stored grain and cereal products, but the natural life-style of the species is not known. As the site of discovery was exceptional, we verified the species identification using the DNA barcode. If the sawtoothed grain beetle can live in mounds of red wood ants, the mounds may become widespread source habitats for the future infestations of this serious stored product pest

    The invasive herb Lupinus polyphyllus attracts bumblebees but reduces total arthropod abundance

    Get PDF
    Invasive plant species generally reduce the abundance and diversity of local plant species, which may translate into alterations at higher tropic levels, such as arthropods. Due to the diverse functional roles of arthropods in the ecosystems, it is critical to understand how arthropod communities are affected by plant invasions. Here, we investigated the impact of the invasive ornamental herb Lupinus polyphyllus (Lindl.) on arthropod communities during its main flowering period in southwestern Finland over two years. The total number of arthropods was about 46% smaller at the invaded sites than at the uninvaded sites in both study years, and this difference was mainly due to a lower abundance of beetles, Diptera, Lepidoptera, and ants. However, the number of bumblebees (particularly Bombus lucorum) was about twice as high at invaded sites compared with uninvaded sites, even though bumblebee richness did not differ between sites. There was no statistically significant difference between invaded and uninvaded sites in the abundances of the other arthropod groups considered (Hymenoptera (excluding bumblebees and ants), Hemiptera, and Arachnida). In addition, L. polyphyllus affected the relative abundance of four arthropod groups, with the order Lepidoptera being less common at invaded sites than at uninvaded sites, while the opposite was true for bumblebees, Hemiptera, and Arachnida. Overall, these results demonstrate that the negative impact of L. polyphyllus on biodiversity goes beyond its own trophic level, suggesting that this species has the potential to alter the abundance of different arthropod groups and, consequently, the structure of arthropod communities at a large scale

    First record of an indoor pest sawtoothed grain beetle Oryzaephilus surinamensis (Coleoptera: Silvanidae) from wild outdoor wood ant nest

    Get PDF
    Alive individual adult sawtoothed grain beetle Oryzaephilus surinamensis (Linnaeus, 1758) was discovered inside a nest mound of the red wood ant Formica rufa Linnaeus, 1758 during a survey of myrmecophilous invertebrates. The sawtoothed grain beetle is a widespread indoor pest that has not previously been found in an ant nest. It is one of the most common pests in stored grain and cereal products, but the natural life-style of the species is not known. As the site of discovery was exceptional, we verified the species identification using the DNA barcode. If the sawtoothed grain beetle can live in mounds of red wood ants, the mounds may become widespread source habitats for the future infestations of this serious stored product pest

    Ultra-High-Resolution Monitoring of the Catchment Response to Changing Weather Conditions Using Online Sediment Trapping

    Get PDF
    The purpose of this study was to identify relationships between meteorological and hydrological observations and sediment flux rate changes, in order to better understand catchment dynamics. The meteorological and hydrological observations included local air temperature, wind speed, water temperature, and ice cover, while the sediment flux rate was observed in the lake basin using a modified sediment trap technique. This study demonstrates the advantages of a new online methodology applied in conventional sediment trapping to obtain flux rate information with daily resolution. A prototype of a high-resolution online sediment trap was tested in Savilahti Bay, Lake Kallavesi, eastern Finland, during the period from 22 October 2017 to 6 October 2018. The daily resolutions of meteorological, hydrological, and sediment flux rate data were analyzed using statistical methods. The results indicate relationships between temperature, precipitation, wind speed, and sediment flux rate, but the urban site also showed erosional changes due to anthropogenic land use. Sediment flux ceased during winter season and spring floods were recorded as pronounced peaks in sediment flux, while the growing season showed generally higher sediment accumulation rates. This research also provides valuable information on the catchment response to short-term weather events. The influence of a storm led to larger sediment flux for several days. The importance of wind speed and frost formation on sedimentation, which has been difficult to address due to trap deployment times of typically several months, is now supported. Used together with varved sediment archives, online sediment trapping will facilitate the interpretation of paleoclimatic proxy records and modeling of detailed weather and erosion conditions that are related to climate change.</p

    Brood parasitism in eusocial insects (Hymenoptera): role of host geographical range size and phylogeny

    Get PDF
    Interspecific brood parasitism is common in many animal systems. Brood parasites enter the nests of other species and divert host resources for producing their own offspring, which can lead to strong antagonistic parasite–host coevolution. Here, we look at commonalities among social insect species that are victims of brood parasites, and use phylogenetic data and information on geographical range size to predict which species are most probably to fall victims to brood parasites in the future. In our analyses, we focus on three eusocial hymenopteran groups and their brood parasites: (i) bumblebees, (ii) Myrmica ants, and (iii) vespine and polistine wasps. In these groups, some, but not all, species are parasitized by obligate workerless inquilines that only produce reproductive-caste descendants. We find phylogenetic signals for geographical range size and the presence of parasites in bumblebees, but not in ants and wasps. Phylogenetic logistic regressions indicate that the probability of being attacked by one or more brood parasite species increases with the size of the geographical range in bumblebees, but the effect is statistically only marginally significant in ants. However, non-phylogenetic logistic regressions suggest that bumblebee species with the largest geographical range sizes may have a lower likelihood of harbouring social parasites than do hosts with medium-sized ranges. Our results provide new insights into the ecology and evolution of host–social parasite systems, and indicate that host phylogeny and geographical range size can be used to predict threats posed by social parasites, as well to design efficient conservation measures for both hosts and their parasites.This article is part of the theme issue ‘The coevolutionary biology of brood parasitism: from mechanism to pattern’.</p

    Urban environment and climate condition-related phenotypic plasticity of the common wasp Vespula vulgaris

    Get PDF
    Environmental alteration for urban development prompts ecological changes across urban centres, ranging out towards the surrounding undisturbed areas. These impact on organisms living across the urban-rural gradient and insects, being widely distributed in nature, are confronted with adaptive choices in such situations. The temperature in urban cores is generally higher due to the urban heat island effect. Thus, insects might modify their behaviour or morphology to cope with the urban environment. The common wasp Vespula vulgaris (L.) has shown adaptive capability as its colour pattern varies between years and geographic distribution. Our study assessed the impact of the built urban environment and summers of differing weather conditions on the common wasp by studying the melanic pigmentation on the abdomen. Samples were collected from urban zones in three cities and their adjacent rural zones in Finland. In one location samples were also collected from two different summers to see if climate condition difference between years can drive morph variation in the 1st and 2nd tergite. We also studied the structure of the cuticle and discovered a structure similar to xanthopterin granules embedded in the yellow stripes of the cuticle, this pigment acts as solar cells and is useful in thermoregulation. Our results showed that the common wasps had differences in the frequency of colour morphs of 2nd tergite between years with different weather and between urban and rural zones in the largest city, Helsinki. Wasps from urban and rural zones showed similar trend for the proportion of black and yellow pigmentation. Common wasps seem to have capability to adapt their pigmentation to correspond with prevailing summer and urban climate conditions, thus reaching better balance between heating and energy storing components in their cuticle

    Benefits of insect colours: a review from social insect studies

    Full text link
    Insect colours assist in body protection, signalling, and physiological adaptations. Colours also convey multiple channels of information. These channels are valuable for species identification, distinguishing individual quality, and revealing ecological or evolutionary aspects of animals’ life. During recent years, the emerging interest in colour research has been raised in social hymenopterans such as ants, wasps, and bees. These insects provide important ecosystem services and many of those are model research organisms. Here we review benefits that various colour types give to social insects, summarize practical applications, and highlight further directions. Ants might use colours principally for camouflage, however the evolutionary function of colour in ants needs more attention; in case of melanin colouration there is evidence for its interrelation with thermoregulation and pathogen resistance. Colours in wasps and bees have confirmed linkages to thermoregulation, which is increasingly important in face of global climate change. Besides wasps use colours for various types of signalling. Colour variations of well chemically defended social insects are the mimetic model for unprotected organisms. Despite recent progress in molecular identification of species, colour variations are still widely in use for species identification. Therefore, further studies on variability is encouraged. Being closely interconnected with physiological and biochemical processes, insect colouration is a great source for finding new ecological indicators and biomarkers. Due to novel digital imaging techniques, software, and artificial intelligence there are emerging possibilities for new advances in this topic. Further colour research in social insects should consider specific features of sociality. © 2020, The Author(s).We are warmly thankful to Stefan Pinkert and the anonymous reviewer, whose critical comments and suggestions helped to increase the quality of the manuscript. The study was financially supported by Kopion Naturalists’ Society (KLYY/Betty Väänänen fund) and Alfred Kordelin Foundation to OB; Jenny and Antti Wihuri Foundation [grants no 00180353 and 00190336] to OS. Photos, used in figures, were purchased according to copyright agreement with Standard license in Shutterstock, all rights reserved

    Bird Feces as Indicators of Metal Pollution: Pitfalls and Solutions

    Get PDF
    Bird feces are commonly used as a proxy for measuring dietary metal exposure levels in wild populations. Our study aims to improve the reliability and repeatability of fecal metal measurements and gives some recommendations for sampling. First, we studied levels of variation in metallic element (arsenic, calcium, cadmium, cobalt, copper, nickel, lead) concentrations: temporal variation within an individual, among siblings in a brood and among-brood/spatial variation. Second, we explored the variation caused by dual composition (urate vs. feces) of bird droppings. Two sets of fresh fecal samples were collected from pied flycatcher (Ficedula hypoleuca) nestlings living in a metal polluted area in summers 2017 (dataset 1) and 2018 (dataset 2). We found a great deal of temporal intra-individual variation in metal levels, suggesting that dietary exposure varied markedly in a short time scale (within a day). A sample from only one nestling per brood did not well describe the brood mean value, and we recommend that at least four siblings should be sampled. Brood level samples give relatively good temporal repeatability for most metals. For all the metals, the levels in the fecal portion were more than double to those in the urate portion. Since the mass proportion of urate in the bird droppings varied a great deal among samples, standardizing sampling, e.g., by collecting only the fecal part, would markedly reduce the variation due to composition. Alternatively, urate portion could be used for biomonitoring of internally circulated bioavailable metal. View Full-TextKeywords: bird feces; calcium; heavy metals; measurement error; pied flycatcher; repeatability; uric acid</div

    Respiratory diphtheria in an asylum seeker from Afghanistan arriving to Finland via Sweden, December 2015

    Get PDF
    In December 2015, an asylum seeker originating from Afghanistan was diagnosed with respiratory diphtheria in Finland. He arrived in Finland from Sweden where he had already been clinically suspected and tested for diphtheria. Corynebacterium diphtheriae was confirmed in Sweden and shown to be genotypically and phenotypically toxigenic. The event highlights the importance of early case detection, rapid communication within the country and internationally as well as preparedness plans of diphtheria antitoxin availability.Peer reviewe
    corecore