42 research outputs found

    Software reliability: Repetitive run experimentation and modeling

    Get PDF
    A software experiment conducted with repetitive run sampling is reported. Independently generated input data was used to verify that interfailure times are very nearly exponentially distributed and to obtain good estimates of the failure rates of individual errors and demonstrate how widely they vary. This fact invalidates many of the popular software reliability models now in use. The log failure rate of interfailure time was nearly linear as a function of the number of errors corrected. A new model of software reliability is proposed that incorporates these observations

    Diurnal and seasonal physiological changes in leaves of Vitis vinifera L.: co2 assimilation rates, sugar levels and sucrolytic enzyme activity

    Get PDF
    Changes in photosynthetic rates, sugar contents, and sucrolytic activity (invertase and sucrose synthase) in young (apical) and mature (basal) leaves of Vitis vinifera L. were investigated throughout the growth season. Photosynthetic activity of basal leaves was predominant before the berries reached pea size, but declined to low rates during grape ripening and after harvest. Apical leaves, on the other hand, showed a more or less uniform pattern of photosynthesis during the whole season with higher assimilation rates than basal leaves after the onset of ripening (veraison). High photosynthetic rates in young material are likely to be sustained by a continuous demand for assimilates from local or adjacent sinks. Diurnal fluctuations of sucrose, glucose, and fructose were similar in apical and basal leaves. Other than the photosynthetic rates, sucrose levels in young leaves tended to be somewhat higher than in mature leaves early in the season, but this balance was reversed after veraison. Generally, low sucrose concentrations correlated with high hexose values (berry set) and vice versa (post harvest). Increased sucrose levels were observed under conditions where carbon import or export limitation is expected to prevail. In comparison with the presumably normal situation observed before veraison, apical leaves of grapevines after extended predarkening showed substantially lower sucrose levels than basal leaves and very small amounts of hexose were detected in either group. This suggests that considerable sink demand for hexose and also sucrose was imposed on tile system by the dark period. Rapid enzymic conversion of sucrose to hexose is guaranteed by high sucrose synthase and invertase activities at least ingrowing material and early in the season. Persisting, albeit low, photosynthetic rates and stable invertase activities in mature leaves throughout maturation and after harvest are taken as indicative of the latent assimilatory competence of basal leaves to sustain maintenance metabolism and contribute to the perennial carbohydrate storage pool of the vine

    Wave curves: Simulating Lagrangian water waves on dynamically deforming surfaces

    Get PDF
    We propose a method to enhance the visual detail of a water surface simulation. Our method works as a post-processing step which takes a simulation as input and increases its apparent resolution by simulating many detailed Lagrangian water waves on top of it. We extend linear water wave theory to work in non-planar domains which deform over time, and we discretize the theory using Lagrangian wave packets attached to spline curves. The method is numerically stable and trivially parallelizable, and it produces high frequency ripples with dispersive wave-like behaviors customized to the underlying fluid simulation

    SIGGRAPH

    Get PDF
    The current state of the art in real-time two-dimensional water wave simulation requires developers to choose between efficient Fourier-based methods, which lack interactions with moving obstacles, and finite-difference or finite element methods, which handle environmental interactions but are significantly more expensive. This paper attempts to bridge this long-standing gap between complexity and performance, by proposing a new wave simulation method that can faithfully simulate wave interactions with moving obstacles in real time while simultaneously preserving minute details and accommodating very large simulation domains. Previous methods for simulating 2D water waves directly compute the change in height of the water surface, a strategy which imposes limitations based on the CFL condition (fast moving waves require small time steps) and Nyquist's limit (small wave details require closely-spaced simulation variables). This paper proposes a novel wavelet transformation that discretizes the liquid motion in terms of amplitude-like functions that vary over space, frequency, and direction, effectively generalizing Fourier-based methods to handle local interactions. Because these new variables change much more slowly over space than the original water height function, our change of variables drastically reduces the limitations of the CFL condition and Nyquist limit, allowing us to simulate highly detailed water waves at very large visual resolutions. Our discretization is amenable to fast summation and easy to parallelize. We also present basic extensions like pre-computed wave paths and two-way solid fluid coupling. Finally, we argue that our discretization provides a convenient set of variables for artistic manipulation, which we illustrate with a novel wave-painting interface

    The response of a small stream in the Lesni potok forested catchment, central Czech Republic, to a short-term in-stream acidification

    Get PDF
    International audienceLesni Potok stream drains a forested headwater catchment in the central Czech Republic. It was artificially acidified with hydrochloric acid (HC1) for four hours to assess the role of stream substrate in acid-neutralisation and recovery. The pH was lowered from 4.7 to 3.2. Desorption of Ca and Mg and desorption or solution of Al dominated acid-neutralisation; Al mobilisation was more important later. The stream substrate released 4,542 meq Ca, 1,184 meq Mg, and 2,329 meq Al over a 45 m long and 1 m wide stream segment; smaller amounts of Be, Cd, Fe, and Mn were released. Adsorption of SO42- and desorption of F? occurred during the acidification phase of the experiment. The exchange reactions were rapidly reversible for Ca, Mg and SO42-; but not symmetric as the substrate resorbed 1083, 790 and 0 meq Ca, Mg, and Al, respectively, in a 4-hour recovery period. Desorption of SO42-; occurred during the resorption of Ca and Mg. These exchange and dissolution reactions delay acidification, diminish the pH depression and retard recovery from episodic acidification. The behaviour of the stream substrate-water interaction resembles that for soil?soil water interactions. A mathematical dynamic mass-balance based model, MASS (Modelling Acidification of Stream pediments), was developed which simulates the adsorption and desorption of base cations during the experiment and was successfully calibrated to the experimental data. Keywords: Al, Ca, Mg, base cations, acid-neutralisation, stream acidification, recovery, stream sediment, experiment, modelling, adsorption, desorption, adsorption, Czech Republic, Lesni Poto

    A Review of Nitrates in Drinking Water: Maternal Exposure and Adverse Reproductive and Developmental Outcomes

    Get PDF
    In this review we present an update on maternal exposure to nitrates in drinking water in relation to possible adverse reproductive and developmental effects, and also discuss nitrates in drinking water in the United States. The current standard for nitrates in drinking water is based on retrospective studies and approximates a level that protects infants from methemoglobinemia, but no safety factor is built into the standard. The current standard applies only to public water systems. Drinking water source was related to nitrate exposure (i.e., private systems water was more likely than community system water to have nitrate levels above the maximum contaminant limit). Animal studies have found adverse reproductive effects resulting from higher doses of nitrate or nitrite. The epidemiologic evidence of a direct exposure–response relationship between drinking water nitrate level and adverse reproductive effect is still not clear. However, some reports have suggested an association between exposure to nitrates in drinking water and spontaneous abortions, intrauterine growth restriction, and various birth defects. Uncertainties in epidemiologic studies include the lack of individual exposure assessment that would rule out confounding of the exposure with some other cause. Nitrates may be just one of the contaminants in drinking water contributing to adverse outcomes. We conclude that the current literature does not provide sufficient evidence of a causal relationship between exposure to nitrates in drinking water and adverse reproductive effects. Future studies incorporating individual exposure assessment about users of private wells—the population most at risk—should be considered
    corecore