Software Reliability: Repetitive Run Experimentation and Modeling

Phyllis M. Nagel
James A. Skrivan

Boeing Computer Services Company
Space and Military Applıcatıons Division
Seattle, Washington 98124

N/SA

National Aeronautics and
Space Administration

Langley Research Center

Hampton Virginia 23665

L20han Pex
FFA日

IANGLEY RESEAFCL CENTER
lugrary, rasa

All Blank Pages

Intentionally Left Blank

To Keep Document Continuity

SOFTWARE RELIABILITY: REPETITIVE RUN EXPERIMENTATION AND MODELLING

Prepared Under Contract NAS1-16481

By

Phyllis M. Nagel
James A. Skrıvan

Boeing Computer Services Company Space and Military Applications Division Seattle, Washington 98124

For

National Aeronautics and Space Administration

PREFACE

The authors are much indebted to many of their colleagues in the Consulting Division and the Space and Military Applications Division of BCS for their assistance and counsel. In partıcular, special gratitude should be extended to:

- Mr. John R. Brown for his management of the project and his long-standing support and understanding of the problem.
- The two programmers for denying many of their professional instincts for timely debugging in order to support the goals of this experiment.
- Mr. Kerry Whitaker for his contributions in sizing and designing the original experıment, and
- Dr. Roberto Altschul for encouraging interest in log linear models and for the methodology for estırnating the nonlinear parameter set.

Finally the authors would like to thank Dr. D. R. Miller of the Department of Operations Research, George Washıngton Unıversity, for his many stımulatıng and exceedingly helpful discussions.

CONTENTS

Page
1.0 SUMMARY AND INTRODUCTION 1
1.1 SUMMARY 1
1.2 INTRODUCTION 1
2.0 EXPERIMENT 5
2.1 BASIC HYPOTHESIS ON ERROR DETECTION 5
2.1.1 Relationship Between the Error Set and 5the Input Set
2.1.2 Usage Distribution 5
2.1.3 Error Detection 6
2.1.4 Sampling Method 6
2.2 EXPERIMENTAL FEATURES 6
2.2.1 Overall Controls 6
2.2.2 Run Repetitions 6
2.2.3 Detection-Order Effects 7
2.2.4 Initialization and Statıc Detectors 7
2.2.5 Dynamic Detectors 7
2.2.6 Debugging and Statıc Debug Tests 8
2.2.7 Ripple Effect 8
2.2.8 Flow of Experıment 8
2.2.9 Run Sizing 10
2.2.10 Problem and Programmer as Desıgn Factors 11
2.2.11 Data Base 11
3.0 OPERATIONAL DESCRIPTION 13
3.1 GENERAL 13
3.2 OVERHEAD PROGRAMS 13
3.2.1 Test Drıver 13
3.2.2 Experıment Driver 13
3.2.2.1 Input-Data Generator 13
3.2.2.2 Comparator 17
3.2.2.3 Results Writer 17
3.2.3 Error Identıfier 17
3.3 COMPUTER/LANGUAGE ENVIRONMENT 19
3.3.1 BITS System 19
3.3.2 VAX/VMS System 19

CONTENTS (Contınued)

Page
4.0 EXPERIMENT DATA COLLECTION 21
4.1 INTRODUCTION
21
21
21
21 21
4.3 PROBLEM \#1
4.3 PROBLEM \#1
4.2 PROGRAMMER DESCRIPTIONS
4.2 PROGRAMMER DESCRIPTIONS
4.3.1 Background
4.3.2 Specifications 21
4.3.3 Test Cases 22
4.3.4 Usage Distribution 22
4.3.4.1 Coordinates
22
22
4.3.4.2 LCM and PUM Elements 22
4.3.4.3 Parameters
4.3.4.3 Parameters 24
4.3.5 Correct Version
24
24
4.3.6 Error Descriptions 24
4.3.6.1 Subject Program A1 25
4.3.6.2 Subject Program B1 26
4.3.7 Run Results 27
4.3.7.1 Subject Program Al 27
4.3.7.2 Subject Program B1 27
4.4 PROBLEM \#2 27
4.4.1 Background
27
27
4.4.2 Specifications 30
4.4.3 Test Case
30
30
4.4.4 Usage Distribution
4.4.4 Usage Distribution
30
30
4.4.5 Correct Version
30
30
4.4.6 Error Descriptions 30
4.4.6.1 Subject Program A2
31
31
4.4.6.2 Subject Program B2 31
4.4.7 Run Results 32
4.4.7.1 Subject Program A2
32
32
4.4.7.2 Subject Program B2 32
4.5 PROBLEM \#3 32
4.5.1 Background
32
32
4.5.2 Specifications
4.5.2 Specifications
32
32
4.5.3 Test Case
4.5.3 Test Case 32

CONTENTS（Contınued）

Page
4．5．4 Usage Distribution 32
4．5．5 Correct Version 32
4．5．6 Error Descriptions 32
4．5．6．1 Subject Program A3 35
4．5．6．2 Subject Program B3 35
4．5．7 Run Results 36
4．5．7．1 Subject Program A3 36
4．5．7．2 Subject Program B3 36
5．0 DATA ANALYSIS 39
5．1 TESTING THE HYPOTHESIS OF EXPONENTIAL 39
INTERFAILURE TIME
5．2 UNEQUAL ERROR PROBABILITY HYPOTHESIS 43
5．3 STATE PROBABILITY ESTIMATES 43
5.4 RANDOM INFLUENCES ON THE STAGE PROBABILITIES 48
5．5 PROPOSED MODEL FOR SOFTWARE RELIABILITY BASED 50
ON COX＇S PROPORTIONAL HAZARDS FAILURE MODEL
5．6 PROGRAM FEATURES AS PREDICTORS 56
5．7 RIPPLE EFFECT 62
6．0 CONCKUSIONS 63
REFERENCES 65
APPENDIX A：SOFTWARE ERROR CATEGORIES A－1
APPENDIX B：PROBLEM 非 1 SPECIFICATIONS B－1
APPENDIX C：PROBLEM \＃1 TEST CASES C－1
APPENDIX D： PROBLEM \＃2 SPECIFICATIONS D－1
APPENDIX E：PROBLEM 非2 TEST CASE E－1
APPENDIX F：PROBLEM 非3 SPECIFICATIONS F－1
APPENDIX G：PROBLEM 非3 TEST CASE G－1
APPENDIX H：EXPERIMENT DATA FOR SUBJECT PROGRAM A1 H－1
APPENDIX I：EXPERIMENT DATA FOR SUBJECT PROGRAM BI I－1
APPENDIX J：EXPERIMENT DATA FOR SUBJECT PROGRAM A2 J－1
APPENDIX K： EXPERIMENT DATA FOR SUBJECT PROGRAM B2 K－1
APPENDIX L：EXPERIMENT DATA FOR SUBJECT PROGRAM A3 L－I
APPENDIX M： EXPERIMENT DATA FOR SUBJECT PROGRAM B3 M－1

LIST OF FIGURES

Page
2.2.8-1 Experıment Flow Diagram 9
3.1-1 Experıment Software Structure 14
3.2.1-1 Test Driver Macro Flowchart 15
3.2.2-1 Experıment Drıver Macro Flowchart 16
3.2.3-1 Error Identıfıer Macro Flowchart 18
4.3.4.1-1 Usage Distribution for Coordinates 23
4.3.7.1-1 Trace of Runs for Subject Program A1 28
4.3.7.2-1 Trace of Runs for Subject Program B1 29
4.4.7.1-1 Trace of Runs for Subject Program A2 33
4.4.7.2-1 Trace of Runs for Subject Program B2 34
4.5.7.1-1 Trace of Runs for Subject Program A3 37
4.5.7.2-1 Trace of Runs for Subject Program B3 38
5.1-1 Survivor Function vs. t for Subject Programs A1 and B3 44
5.3-1 Estımated Error Rate as a Function of Errors 47 Corrected Usıng Orıgınal Data
5.3-2 Estımated Error Rate as a Function of Errors 49 Corrected Using Modified-orıgin Data
5.4-1 Histograms of Stage Probability Estımates for 51 Subject Program Al as a Function of the Number of Errors Corrected
5.4-2 Histograms of Stage Probability Estımates for 52
Subject Program B1 as a Function of the Number of Errors Corrected
5.5-1 Predicted Error Rate from the Proportional Hazards 58 Model, Usıng Orıginal Data
5.5-2 Predicted Error Rate from the Proportional Hazards 59 Model, Using Modıfıed-Orıgin Data
5.6-1 Inverse of Halstead's Volume vs. Predıcted Slope (Modıfıed Data), Proportıonal Hazards Model 61

LIST OF TABLES

Page
5.1-1 Comparison of Exponential-Mixture Density With 41 Exponential Density
5.1-2 Lilliefors K-S Test Statıstics for the Exponential 42 Distribution
5.2-1 Specıfıc Error Probabilities - Ranked Estımates 45
5.3-1 Estımated Stage Probabılities 46
5.5-1 Proportional Hazards Model Parameters Based on 54 Orıgınal Error Rate Data
5.5-2 Proportıonal Hazards Model Parameters Based on 55 Modifıed Orıgın Data
5.5-3 Estımates for Error Probability Per Program Execution 57 Based on the Proportıonal Hazards Model
5.6-1 Subject Program Measures 60

1.0 SUMMARY AND INTRODUCTION

1.1 SUMMARY

Boeing Computer Services has conducted carefully designed and controlled soft-ware-development experiments with analysis in support of software-reliability estimation and modelling. Two programmers individually designed and coded three FORTRAN programs each from three problem specifications. These programs were then executed in repetitive run sampling, where a run is a sequence of interfailure tımes recorded on each of a series of program states.

The run data has been used to verify that interfanlure times are exponentially distributed, to obtain good estimates of the fallure rates of individual errors and to demonstrate how widely the rates vary. This latter fact invalidates many of the popular software reliability models now in use. In addition, it was observed that the log fallure rate of interfallure time was nearly linear as a function of the number of errors corrected.

Cox's proportional hazards model has all of the observed characteristics of the experıment data and is proposed as a new model of reliability. Maxımum likelihood estımates for the unknown parameters were obtained for all six programs using nonlinear optımization technıques. Statistical tests on these estimates indicate there are strong programmer and problem effects on the background fallure rate. Results also show that over 80% of the observed variation in the logarithm of the fallure-rate data can be explained by the proportional hazards model. A tentative physical predictor was proposed based on Halstead's information criteria N which might be used in forecasting model parameters.

1.2 INTRODUCTION

Since the importance of good models for predicting software reliability is undeniable, it is an anomaly that so little model development has been based on insights gained from specific experimental results. Predicated on the belief that there is much to be learned regarding the man-in-the-loop process of software development before modeling can be effective, an experiment has been conducted that both attempts to extend the information base and provide experimental verification of some of the popular assumptions regarding the fallure structure of software. This experiment differs from other software experiments in several regards. The emphasis is on the prediction of software reliability from the traditional point of view of risk assessment rather than as a management tool in software development. The experıment utilizes the concepts of formal statistical design and experimental control and by replicating the design makes it possible to examine the detection process when errors are not identically distributed.

The design of this experiment has been chosen to explore only a few of the issues of software reliability and does not try to include the entire set of factors thought to influence the software error structure. Two prımary self-1mposed constraints were adopted. First of all, by concentrating on reliability assessment, the experiment consciously avoids all of the issues behind time and accuracy growth of software undergoing redefinition, and explores only those related to problems with fixed specifications. Secondly, the experiment assumes that the detection of errors in a
program depends only on the interaction of the error set, the criteria or detector establishing correctness and the probability of detection of each error given the detection mechanism. Thus, except for the process of error removal, the probability of detection for a specific error remains fixed throughout the experiment.

Data from software reliability tests has traditionally consisted of a record of the successive interfailure times following the detection and correction of sequential errors. In the present context such a set of data will be called a program run. Since fixing a program by correcting an error is equivalent to a program design change, a run of data consists of a single observation on life length for each of a sequence of design configurations that are different but possibly connected. It is this fact that has inhibited the statistical investigation of the properties of software reliability.

The experiment reported here enriches the data base by increasing the sample size of each of the design stages. This has been accomplished by replicating runs. Each run consists of a reinitialization of the program to its original design configuration and a repetition of the process of obtaining interfailure times with different independent sequences of randomly generated input data.

With this data several modeling properties of the software fallure phenomenon have been investigated. In particular these include investigations of:
a. The exponential assumption as the distribution of interfallure time.
b. The assumption of equal error probability implicitly assumed in the JelınskiMoranda [1], Shooman [2], and Schick-Wolverton [3] models versus the unequal error detection probability proposed by Littlewood and Verrall [4] and further investigated by Littlewood[5].
c. The consequences of the results of a. and b. (above) on reliability considerations.
d. The effect of programmer on the error characteristics for a fixed problem specification.
e. The effect of problem on a given programmer's error performance.
f. The number of program executions to fallure versus interfanlure time measured in computer resource units (CRU's) as a base in which to measure reliability, where here, a program execution means a complete processing of the input case from the beginning of the program to the final output, correct or incorrect.
g. Potential physical features of the program to use as predictors of the error structure.

This report is presented in six sections. Section 2 contains a detailed description of the experiment with reference to its design and the controls imposed to insure data integrity. Sections 3 and 4 provide detalls of the actual experiment. Section 3 describes the computer programs written to maintain the flow of the experiment and conduct error detection. Section 4 outlines the problems and specifications selected for this experiment together with the experience histories of the programmers
involved and their programs written from the specifications. This section also includes some discussion on the nature of the errors manifested during the experiment. In Section 5, descriptive statistics of the observed data are provided and the investigations referenced above are described. Details are then given of a proposed new model of software reliability. Section 6.0 provides conclusions of the study.

2.0 EXPERIMENT

2.1 BASIC HYPOTHESIS ON ERROR DETECTION

By assuming that fallure rates are simple functions of the total number of errors in a program, currently popular software-error models imply implicitly that errors are equally probable. The belief in this property has not only influenced the modeling of software reliability, it has also influenced the design of software-error experiments and the types of data that have been collected to date. Based on the complicated structural relationship that exists between an error and the forces causing its manifestation, it seems quite possible, however, that errors are not equally probable. This experiment therefore has been designed specifically to explore the exact nature of these probabilities.

2.1.1 Relationship Between the Error Set and the Input Set

There is a correspondence between an error in the program and a subset of the set of all possible inputs to the program whose elements can detect the error where the word input stands for the complete vector of quantities required for a single program execution. Some subsets no doubt are larger than others and some may only consist of a single input. Sets can overlap if some inputs can detect more than one error and therefore the correspondence between the subsets and the errors is not necessarily one to one. One subset contained in another may mean that the contained error is nested and cannot be detected until the other error is first corrected.

Depending on the experiment, it may or may not be the case that the incidence of an input in the intersection set of two or more errors causes the correction of all of the errors involved. In this experıment, however, all errors detectable by a given input are corrected before testing is resumed.

If an error exists that can only be detected by a region of the set of inputs to the program that is rarely used in practice, the probability of detection is necessarily small. It is also true (for experiments designed as this one is) that the unreliability of a program contaning a fixed error set is the probability of the union of these errordetecting subsets of the input set.

2.1.2 Usage Distribution

Once a program has been declared operational the dynamic influences on the development of the program are stabilized. At this time the program is intended to be used in an operating environment defined in terms of the values and frequencies of the inputs selected for execution. It is relative to this operating environment, then, that the question of reliability is posed, and if the environment changes so will the statements regarding reliability.

The set of all potential uses of a program imposes a probability distribution on the set of all possible program inputs. This reflects that some regions of the set of inputs are more interesting or more popular than others. This distribution, sometımes called the "usage" distribution, is described in Brown and Lipow [6]. Since there is a correspondence between an error in the program and a subset in the input set whose elements can detect the error, the probability of detection of an error is the
probability of sampling at random, according to the usage distribution, in its associated subset.

The usage distribution, therefore, plays a critical role in determining error probabilities and it is quite possible that some errors are more probable than others either because their associated input subsets are larger or because their subsets are more likely to be selected in execution. Furthermore, all statements regarding the reliability of a program are really referencing the interplay between the probabilistic forces of the usage distribution and the error structure of the prograin.

2.1.3 Error Detection

Since it is true that the detection of an error implies the existence of a detector, then it also follows that the type of detector in use influences the probability of detection and therefore has an impact on the reliability of the program. That is, in the sense of the user's knowledge of an error as opposed to its fundamental existence, the detector defines the error.

2.1.4 Sampling Method

Three major influences on the reliability of a program have been discussed: the existing error set, the usage distribution and the error-defining detector that judges output correctness. There is, however, one other factor that can be extremely important in some contexts that has to do with the nature of the sampling from the usage distribution. In most experiments described in the literature, sampling proceeds by independent sampling with replacement and reliability is unaffected. In some fields of application, however, such as avionics, there is time dependence in the input stream. The existence of this autocorrelation in the sampling can exercise considerable influence over a program's reliability performance. A manifestation of this potential influence is the concept of software-error "bursts"[7].

2.2 EXPERIMENTAL FEATURES

2.2.1 Overall Controls

The specifications for each of the problems considered in the experiment included complete definitions of the usage distributions to be employed and all detectors. Controls on the error set included controlling for problem, controlling for programmer and controlling the definition of a program's initial state in terms of the test cases it must successfully pass. Data was sampled independently and with replacement at all tımes.

2.2.2 Run Repetitions

Traditional software experiments remove errors without allowing for the probabilistic impact of the detected error on subsequent error detection. In order to be able to measure this impact the present experiment was designed to provide some information about "what was there" from a probabilistic point of view. This was achieved by repetitively sampling a program from its initial error state (state 0) through n errors, obtaining a series of runs. A run then consists of n observed times to fallure on each of n sequential program stages.

2.2.3 Detection Order Effects

This method of sampling introduces two other concepts which must be defined, namely those of program stage and program state. A program stage refers to the number of errors that have been corrected since sampling began with the program in its initial state. A program state is a listing of errors by number that have been detected and corrected since the initialization. In traditional experiments the concept of state was not recognized. In this experıment observing runs makes it possible to not only study how errors are distributed but also to study the consequences of removing errors in a random order.

Time to next fallure of a program is conditional on the error state of the program at the time of the last fallure. Since the order of error removal is random, it is of interest not only to study the magnitude of the error probabilities but also the effect of order on these estimates. For this experiment not only is the interfallure time recorded at the time of program faılure, but also each observed error is diagnosed and recorded by number so that the exact conditioning is known at all times.

2.2.4 Initialization and Static Detectors

Once the program is released from the programmer, the code must satisfy all compiler checks and correctly execute a set of predetermined "reasonable" test cases, numbering at most three. These tests form a set of static detectors that are intended to stabilize the initial error set of each program in order to form a common initial base from which to compare different programs as a function of the number of errors corrected. In traditional experıments there has been little attempt to control for a common 'inıtial denomınator', and comparing error structures across different programs was further thwarted in this regard.

Later in the paper a second initialization criterion is proposed that seems even more useful at providing a stronger, more consistent basis for comparing dissimilar programs.

Other static detectors such as the program DAVE [8] were considered as joint detectors with the above set to insure greater commonality in the initial state. However, the potential return compared to the cost of their use did not seem justified until the problem is better understood.

2.2.5 Dynamic Detectors

For each of the problems selected for this experıment, an existıng program satısfying the specifications for the problem has been in use for some tıme. The output of this pre-existing program, executed with identical inputs to the program on test, is used as a comparator to determine the correctness of the new program. Although absolute correctness in any sense cannot be assured by this method, a program that has received extensive prior use has already been through many and varied tests in its lifetime and is felt to be a reasonable norm. The use of other norms, however, can change the judgment of a program's reliability.

In addition to this comparator, the operating system itself has some detecting ability that causes the program to stop, or "bomb off", during execution. The familiar system-interrupt message, "division by zero," is an example of a failure detected by
an operating system. This detecting ability must be considered as part of the dynamic detecting environment that defines errors.

Other dynamic detectors were considered, particularly those employing the technique of dynamic assertion to test selected program varıable states [9]. Again the use of these detectors seemed unjustified at this time on the grounds of cost, although the technique seems useful and may be considered at some future date.

2.2.6 Debugging and Statıc Debug Tests

When an incorrect execution of the program is detected, the inputs to the program are saved while the bug is corrected. The corrected program is then subjected to the same static tests as in the original set. That is, it must satısfy all compiler checks and correctly execute the original test cases. In addition, it must also correctly execute the saved last input case. An incorrect execution at this time indicates one of two possibilities: the bug causing fallure has not yet been corrected; or the saved input is causing an additional simultaneous error from one or more errors in the orıginal error set.

By saving the last input case and forcing the correction of all errors detected by this input, the experıment can both provide a measure of the probability of the intersection and give a slightly better estimate of the marginal error probabilities.

To clarify this last observation it should be noted that in many situations one error can dominate another due to the ordered nature of a program's execution. That is, one error is always detected before another when an input is selected in the intersection. By referencing a Venn diagram involving the intersecting sets A and B, if A dominates B and the inputs are not fully explored to determine when they fall in the intersection, the program measures the probability of B as $P(\bar{A} \cap B)$ before A is observed and $P(\bar{A} \cap B)+P(A \cap B)$ after A is removed. On the other hand, by exploring if a given input is in the intersection, the probability of B is measured the same before or after the dominating error is removed.

2.2.7 Rıpple Effect

When an execution of the program is declared in error, the nature of the error is investigated to determine if the error was introduced at an earlier stage as part of the debugging process. If so, separate books are kept of the error in order to track the growth of unreliability as well as the growth of reliability if this seems indicated.

2.2.8 Flow of Experıment

Figure 2.2.8-1 Illustrates the flow of the experiment for a single problem and a single programmer's code. The process is in fact based on a simulation until fallure of various program states. It begins with an initial version of the program that has successfully passed all of the static tests. Random input is then generated according to the usage distribution defined in the problem specifications and the program is executed with these inputs. Simultaneously, the comparator is executed with these same inputs and correctness of the program on test is determined. If correct the process is repeated with new inputs generated independently until an error is detected. Once detected the error is analyzed, recorded in the proper account with an error number and corrected. At the point where all static tests including the

Figure 2.2.8-1. Experiment Flow Diagram.
re-execution of the last input case have correctly executed, simulation can begin on another cycle with the program in this new state.

It was the intent originally to continue cycling until 5 or 6 bugs had been discovered or truncate the process at the predetermined number of executions. In practice neither of these rules was followed too closely, and termination usually occurred when a bug was discovered that was extremely time consuming to correct. Most programs manıfested 5 or 6 errors before this occurred.

Repeated runs on the same program are conducted starting from the same imitial state, i.e., state 0 . The experimental flow for each run is exactly the same but the simulated input streain is generated independently and hence different for each run. Thus each run has the opportunity of generating different random errors in different orders. As a consequence each run represents a random walk through the set of possible errors, and therefore experiences random conditioning at each stage.

2.2.9 Run Sizing

In order to determıne how many runs were sufficient to obtain stable estımates of the error probabilities, it was decided to base the size on the probability structure that exists initially since all runs are in a common state during this stage. Assuming that each execution of the program has a fixed probability p of fallure, then the probability that the first fallure will occur on the 1 'th execution is expressable in terins of the geometric distribution:

$$
P(1)=(1-p)^{1-1} p
$$

For k independent runs, let $1_{1},{ }_{1}, \ldots,{ }_{1}$ be the k values each expressing the number of times the program was executed in its initial state before fallure occurred. Then the maximum likelihood estımate for p is

$$
\hat{\mathrm{p}}=\frac{\mathrm{k}}{\sum_{\mathrm{j}}}
$$

It can be shown that the asymptotic variance of \hat{p} is

$$
\operatorname{Var}(\hat{p})=\frac{p^{2}(1-p)}{k}
$$

Therefore an asymptotic 95% confıdence interval on the maximum likelıhood estımator is

$$
\hat{p} \pm 1.96 \sqrt{\frac{p^{2}(1-p)}{k}}
$$

If k is chosen on the basis of the half length L of the resulting confidence interval, then since

$$
L=1.96 \sqrt{\frac{p^{2}(1-p)}{k}}
$$

k can be calculated from

$$
k=\frac{3.84 p^{2}(1-p)}{L^{2}}
$$

If $p<.05$ and $k=50$, then $L<.014$. Similarly if $p<.01$ and $k=50$, then $L<.0028$. Thus $k=50$ was selected as sufficiently discerning.

2.2.10 Problem and Programmer as Desıgn Factors

To control for the effect that programmer and problem may have on the corresponding error structure of a program, a factorial design consisting of two programmers A and B, each programming the same three problems, labelled 1, 2 and 3, from their specifications, formed the basic experıment. Each of the six programs Al through B3 thus formed were executed through 50 runs each of which consisted of at least four stages. Within time constraints, the programmers designed, coded and tested their programs using FORTRAN IV.

2.2.11 Data Base

The data base developed from this experiment consisted of a record, for each of the six programmer-problem combinations, of the number of executions until failure for each stage, the interfallure time (in terms of both the number of input cases to fanlure and computer-resource units (CRU's)), and the number of the error causing failure. A number was assigned each new error as it was encountered. This data base then provided complete knowledge of the error state of the program at each stage and detalled knowledge of the time to fallure of the program conditioned on each of these states.

3.0 OPERATIONAL DESCRIPTION

3.1 GENERAL

In order to gather statistics on software fallure detection/error correction, the subject programs must be embedded in a software-test environment (Figure 3.1-1). There is a unique, but quite similar environment for each of the three problem specifications. In reality, the subject programs are subprograms which are called in three separate programs: 1) test driver; 2) experıment drıver; and 3) error identifier. The latter two programs are indirectly linked via the fanled-cases file -- the experiment drıver writes all failed cases to the file and the error identifier reads those farled cases. These three overhead programs and the falled-cases file are discussed in the following sections.

The experıment was run on two computer systems: 1) the Boeing Intelligent Terminal System (BITS); and 2) the DEC VAX/VMS System. BITS, a microcomputer-based system, was chosen for the first problem because of fıxed rental and sole use by the study. VAX/VMS, a virtual-memory minicomputer-based system, was used because of the need for more storage and faster execution time. These systems and the support software are described in Section 3.3.

3.2 OVERHEAD PROGRAMS

3.2.1 Test Driver

The test driver is the program which determines if the subject programs pass the predefined test cases to bring the subject program to state 0 . The principal components of the test driver are: 1) test-case data; 2) correct version; 3) subject program; and 4) comparator to determine correctness. The macro flowchart is shown in Figure 3.2.1-1.

3.2.2 Experıment Drıver

The experiment driver is the program which executes the subject program using randomly-generated data, and determines correctness by executing the correct version and comparing the results. The principal components of the experiment driver are: 1) parameter input; 2) input-data generator; 3) correct version; 4) subject program; 5) comparator and 6) results writer. The macro flowchart of the experiment driver is given in Figure 3.2.2-1.

3.2.2.1 Input-Data Generator

Each of the three problem specifications contains descriptions of the joint distribution of the input-data stems. Random data from these distributions are obtained using a standard library random number generator.

Figure 3.1-1. Experiment Software Structure.

Figure 3.2.1-1. Test Driver Macro Flowchart.

Figure 3.2.2-1. Experiment Driver Macro Flowchart.

3.2.2.2 Comparator

The comparator in the experiment driver is used to determine correctness of the subject program. Simply stated, the comparator is program code to compare every output-data item of the subject program with the corresponding item of the correct version. An error flag is set when a difference in output is noted.

3.2.2.3 Results Writer

The results writer is code in the experiment driver to record the following information: 1) incorrect output as the result of a software failure; 2) number of input-data cases run to software fallure; 3) CRU's to the software fallure; and 4) fanled inputdata case.

The incorrect output helps to identify the potential software error(s) causing the failure. The identification of errors and their associated error numbers in each run required the careful matching of various program states with the falled input-data cases. By running selected program states with the falled cases and recording successes, the error numbers can be accurately assigned. Multiple errors can also be identified with this procedure, or equivalently, computer program. The program, called the error identifier, is described in 3.2.3.

The recorded failed case is actually the initial seed of the random number generator associated with the farled case. The volume of written data is thus greatly reduced. However, the price paid is the execution time required in the error identifier to regenerate the full input data of the farled case.

These data are written on the failed-cases file which is permanent disk storage. This file is then easily referenced by the error identifier program at a later time.

The fanled-case file is organized by the subject program states that produced the fallures. In other words, all the falled cases from a partıcular program state are grouped together on the file, with some header information identifying that group of cases.

3.2.3 Error Identıfier

The error identifier is the program which executes any state of the subject program using the failed-cases file. The structure of the error identifier is much like the experiment driver, in that they both use the correct version and a comparator to determine success. The macro flowchart is given in Figure 3.2.3-1.

The identification of the software errors corresponding to all failures of a particular subject program state involves multiple executions of the error identifier using the program in other states. The following steps constitute the runs of the experiment to identify errors.

1. Run the experıment driver with a subject program in a given state, producing a falled-cases file F.
2. Correct one software error E in the program in state S, which yields the program in state S.E.

Figure 3.2.3-1. Error Identifier Macro Flowchart.
3. Run the error identifier with S.E. and F.
4. Identify all successful cases with error E.
5. Repeat steps 2-4.

This procedure will identify all known single errors which caused the fallures. Multiple errors are identified by correcting two or more errors at a time in the program in state S.

Implicit in the above discussion is what appears to be previous knowledge of all errors. In practice, the programmers were given software failures from initial executions of the experiment driver. They then identified the associated errors and made their corrections. In some cases no corrections were made. These errors are discussed in Sections 4.3.6, 4.4.6, and 4.5.6.

3.3 COMPUTER/LANGUAGE ENVIRONMENT

3.3.1 BITS System

BITS is an integrated system of intelligent terminal hardware and software developed by BCS. The hardware consists of a Terak 8510A microcomputer using the 16 -bit LSI-11 microprocessor. Primary memory is 56 K bytes, and secondary memory consists of two eight-inch floppy disk drives with a combined capacity of about 512 K bytes.

The software available on BITS includes a file manager, text editor, communications capability, together with Pascal, BASIC and FORTRAN compilers. The FORTRAN compiler, utilized in this study, closely conforms to Standard ANSI FORTRAN 77.

3.3.2 VAX/VMS System

VAX (Virtual Address Extension) system together with VMS (Virtual Memory Operation System), is a high-performance multı-programming system based on 32-bit architecture. Virutal memory features, plus disk storage of over one gigabyte, remove the storage restrictions for most applications programs.

There is a full suite of software avallable on the VAX, including an operating system, text editors and compilers. The FORTRAN compiler contains all the features of Standard ANSI FORTRAN 77.

4.0 EXPERIMENT DATA COLLECTION

4.1 INTRODUCTION

This chapter and the referenced appendices present the data-collection results of the experiment. Also included is a brief description of the programmers' backgrounds.

There are three parallel sections (4.3, 4.4, and 4.5) corresponding to the three problems of the experiment. Each of these sections together with corresponding appendices gives, in detail, background information on the problem specifications and correct version, descriptions of test cases and the usage distribution for the experiment runs.

A tabulation of software errors is given for each subject program. The identified errors are categorized using the categories in [10]. These categories are given in Appendix A.

4.2 PROGRAMMER DESCRIPTIONS

Two scientific programmers were used for all three problems. Programmer A received a B.S. degree in Computer Science in 1979 and joined BCS in June 1979 as a programmer. His principal job has been to support and enhance a geometry package used to design wing and body configurations. His emphasis in the field of computer science is structured software design, development and languages, including FORTRAN, Pascal, ALGOL, SNOBOL and COBOL.

Programmer B received a B.S. degree in Computer Science in 1975 and joined BCS in January 1976 as a programmer. He has worked on nuclear-waste engineering and radiation-monitoring problems, using FORTRAN on a variety of machines. Later assignments have involved integration testing on the AWACS program using JOVIAL language, and conversion of a missile-simulation program and graphics package from an IBM machine to the VAX/VMS system.

4.3 PROBLEM \#1

4.3.1 Background

TRW [10] conducted an extensive study of software reliability in 1973 which included an experiment similar to that of the present study. Two experienced programmers were given specifications for a missile-tracking simulation problem. Then each programiner designed, coded and tested his own version using FORTRAN IV.

The experiment consisted of many executions of the resulting programs, using a predefined usage distribution. Reliability estımates were made from the percentage of successful cases to the total number of cases run. However, there was no errorcorrection process as that in this study.

The same problem specifications, test cases and usage distribution in the TRW study were used in the present study. However, additional specifications, including input and output descriptions, were necessary to resolve certain ambiguities.

4.3.2 Specifıcations

In general, the specifications require geometric calculations involving an input set of two-dımensional coordinates representing radar tracks. Fifteen such calculations then became conditions to be logically combined to determine if a make-believe missile should be launched.

The complete specifications for problem $\# 1$ are presented in Appendix B. Sections 1.0-4.0 of Appendix B are from [10]. Sections 5.0-7.0 of Appendix B were added as part of the present study.

4.3.3 Test Cases

Three test cases were used to bring both subject programs A1 and Bl to state 0. All three cases were chosen from [10]. The test cases and the corresponding correct output are presented in Appendix C.

4.3.4 Usage Distribution

The following usage distribution (see 2.1.2) describes the input data used for problem \#1.

4.3.4.1 Coordınates

Figure 4.3.4.1-1 illustrates the distrıbution from which the two-dımensional coordınates simulating a radar track are drawn. Each input case requires 5 such coordinates.

Approximately 95% of the time the two-dimensional coordinates are drawn uniformly from area A, and 5% of the time from the combined 4 subareas labeled B. Each coordinate is rounded to the nearest 0.1 .

4.3.4.2 LCM and PUM Elements

120 elements of the Logical Connector Matrix (LCM) satısfying L such that $\mathrm{i} \leq \mathrm{j}$ (where 1 is the row index and j the column index) were generated from the following distributions:
for 1 and s equal to $1,2,3,4,5,6,7,8,9,10,11$ and $\mathrm{i} \leq \mathrm{J}, \mathrm{L}_{1 \mathrm{j}}=2$
for all other i and j where ${ }_{1} \leq \mathrm{j}, \quad \operatorname{Pr}\left\{\mathrm{L}_{\mathrm{ij}}=0\right\}=.78$

$$
\begin{aligned}
& \operatorname{Pr}\left\{L_{i j}=1\right\}=.20 \\
& \operatorname{Pr}\left\{L_{i j}=2\right\}=.02
\end{aligned}
$$

the $L_{1 j}$ for which $i \geq j$ were computed internally from the equation $L_{1 j}=L_{j 1}$.
Fifteen diagonal elements, P_{11}, of the Preliminary Unlocking Matrix (PUM) were generated by selecting 0 or 1 , each with probability 0.5 .

Figure 4.3.4.1-1. Usage Distribution for Coordinates.

4.3.4.3 Parameters

The 15 Launch Interceptor Conditions (LIC) required the following parameters (listed by the appropriate LIC):

1) l	$=14.5$
2) r	$=7.1$
3) ϵ_{2}	$=0$
4) A	$=50$
5) M	$=1 ; Q=3$
6) $N o n e$	
7) N	$=4 ; \epsilon_{1}=15.0$
$(8-11) \mathrm{n}_{1}$	$=n_{2}=n_{3}=n_{4}=1 ; m_{1}=m_{2}=m_{3}=m_{4}=1$
12) n_{6}	$=5$
13) L	$=0$
14) R	$=0$
15) E	$=0$

4.3.5 Correct Version

Correctness of output was determıned by compar!ng the subject programs' output with that from one program written in the TRW study.

Program "MYRON" was written by a senıor-level applıcatıons programmer, as part of the TRW project. The program consisted of approximately 298 lines of non-comment source code of FORTRAN IV.

After program MYRON passed the three test cases in Appendix C, 1000 randomly generated input cases from the usage distribution of Section 4.3 .4 were executed with program MYRON. Based on three software fallures among these cases, the reliability of program MYRON was estımated to be 0.997 .

As part of the present study, the software error causing the three farlures above was corrected. The resulting program was then assumed to be correct. However, in the course of the experiment two additional sof tware errors in MYRON were corrected. After the corrections were made, the experiment was rerun with what is now assumed the correct version.

4.3.6 Error Descriptions

In the course of the experiment for problem \#1, subject program A1 had 9 different software failures detected and the corresponding errors corrected. An additional software error, manifested in small inaccuracies between Al and the correct version, was left uncorrected. Subject program B1 had 9 different software errors corrected. All errors are discussed in the following sections.

4．3．6．1 Subject Program A1

ERROR
NUMBER

1

2

3

4
B600

5

6

7

8

9

10 CODE A600

A600

A600
：

A600

B400

B400

A600

A600

A600

CLASSIFICATION

DESCRIPTION

An incorrect algorithm was used for coverage of three coordinates by a circle of given radius．

An incorrect equation was used to calculate the area of the triangle．

The use of arccos to determine linear－ ity of three points was inaccurate．

An incorrect comparison was used when determınıng if the difference between abscissa of adjacent points were negative．

There was a division by zero when coordinates were identical in the cal－ culation of the area of the triangle defined by three coordinates．

There was an accuracy fallure in an algorithm for coverage of three co－ ordinates by a circle of a given radius when two coordinates were identical．

This error is identical to \＃6 except it is located in a separate，but indepen－ dent section of the program．

The tolerance introduced for error \＃3 had to be made larger．This is an example of the ripple effect，Section 5.7.

The tolerance introduced for error $⿰ ⿰ 三 丨 ⿰ 丨 三$ 6 had to be made larger．（Ripple effect．）

The tolerance introduced for error \＃8 was too large．No correction was made，because a new algorithm was probably required，not just a simple tolerance change．（Rıpple effect．）

4.3.6.2 Subject Program B1

ERROR NUMBER

1

2

CLASSIFICATION CODE

A400 D100*

F300*

A600*

A600

5
4
3
3

5

6

7 7

A600

8

9
9

DESCRIPTION

Conversion to radians of an argument for arccos was redundant. In addition, pı was not initialized everywhere.

The squaring of a negative quantity was done using a power-series expansion, not just squaring the quantity, 1.e., $W * * 2.0$ was used instead of $W * * 2$ or $W * W$.

In the algorithm for coverage of three coordinates by a circle of a given radius, a term was left out of an equation.

There was a division by zero, when adjacent coordinates were the same.

The argument for arccos was greater than 1.0 when three coordinates formed a line.

An exact comparison of floatıng-point variables was used, instead of allowing a tolerance.

An incorrect algorithm was used for LIC(7) when the first and last coordinates were identical.

The area of the triangle defined by three coordinates was not set to zero when the coordinates formed a line.

When the area of the triangle defined by three coordinates was exactly equal to the test criteria (parameter A), a value slightly greater than A was calculated.

[^0]
4.3.7 Run Results

4.3.7.1 Subject Program A1

Figure 4.3.7.1-1 presents the results of the experıment for subject program A1. This figure, as well as those for the remaining programs (4.3.7.2-1, 4.4.7.1-1, 4.4.7.2-1, 4.5.7.1-1 and 4.5.7.2-1), traces the 50 runs for the particular program. The figure is composed of levels, or stages, of prograin states, where each stage is defined by the number of errors detected. Beginning with state 0 , the occurring program states and their frequencies are shown for the 50 runs. The encircled number(s) represent a program state, in particular, the error numbers of the corrected errors. For example, 12 is a given subject program with errors \#1 and \#2 corrected. A subject program at state 0 is identified with 0 following the program name and dash, e.g., A1-0. The directed line segments represent the random walk of the subject program going from one state to another, i.e., having one or more errors corrected. The number to the left of this line segment is the number of runs experiencing that particular change in state.

For example, using Figure 4.3.7.1-1 and beginning with state 0 (A1-0), 40 of the runs had error $\# 1,8$ had error $\# 2$ and 2 had multiple errors, \#1 and $\# 2$, occurring with the same input cases. As shown in the table to the right of the figure, these 50 runs required a total of 51 input cases for the first error(s) to occur.

From these states (48 at stage 1,2 at stage 2), the runs contınue to another stage. Note that not all 50 runs continue through all stages, because some errors detected are not corrected. In general, the number of input cases per run required to detect errors increases as the stage increases.

4.3.7.2 Subject Program B1

Figure 4.3.7.2-1 illustrates the results of the software failure detection/error correction process.

4.4 PROBLEM \#2

4.4.1 Background

The Boeing Intelligent Terminal System (BITS) includes a library of general-purpose scientific subroutines. Included in the habrary are routines for spline-function interpolation. These routines have received extensive testing and subsequent use at Boeing for over ten years. Functions of several of these routines were used for specifications of problem $\# 2$ and the library routines themselves became the basis of the correct version (see 4.4.5).

Figure 4.3.7.1-1. Trace of Runs for Subject Program A1.

ERRORS DETECTED (STAGE)	RUNS	TOTAL
1	50	328
2	50	107
3	50	89
4	50	5,484
5	50	14,355
6	46	81,595
7	1	0

Figure 4.3.7.2-1. Trace of Runs for Subject Program B1.

4．4．2 Specifıcations

Specifications for problem \＃2 were developed as part of the present study．In general，four subroutines were required：（1）routine to calculate coefficients of the spline passing through the input coordinates；（2）routine to calculate coefficients when the spline polynomials are expressed in an alternate form；（3）routine to interpolate at an arbitrary point using the spline coefficients，and（4）a routine to integrate along the spline between arbitrary endpoints．

The complete specifications for problem \＃2 are given in Appendix D．

4．4．3 Test Case

One test case was used to brıng both subject programs A2 and B2 to state 0．The test case and the corresponding correct output are presented in Appendix E．

4．4．4 Usage Distribution

Three coordinates are drawn randomly from the distribution shown in Figure 4．3．4．1－1．Each coordinate is rounded to the nearest 0．1．

Each input data case also requires three X－coordinates－one for the point of interpolation and two to define the limits of integration．These points are drawn from the following distribution：

$P(A)=95 \%$ ，uniformly distributed within A
$P(B)=5 \%$ ，uniformly distributed within B
Each of these X －coordinates is rounded to the nearest 0.1 ．

4．4．5 Correct Version

The correct results for three of the four required routines were those from the library routines based on which problem \＃2 was selected（see 4．4．1）．The so－called correct results for the routine performing integration were computed in a routine written specifically for the project．This latter routine received extensive peer review and testing．

4．4．6 Error Descriptions

For problem $⿰ ⿰ 三 丨 ⿰ 丨 三 一 2$, subject program A2 had five different software fallures detected with four errors corrected．The fifth software fallure was when a subject program output item was not within 1% relative error of the corresponding correct－version output item．In this case，there was no correction made to the software．

Subject program B2 had three different software fallures, with two fallures resulting in corresponding software-error corrections. One software fallure was similar to the relative-error fallure mentioned above. As with subject program A2, there was also no correction made for this fallure in subject program B2.

4.4.6.1 Subject Program A2

ERROR
 NUMBER

1
B400
B600 D800

2
A600

3
A600

4
A600

5
A600

DESCRIPTION

An infinite loop occurred because a switch of variables was not made in a sort algorithm.

The upper limit of the range of integration was incorrectly calculated when both limits were within the range of one spline.

The integral was incorrect when the upper hmit equaled the largest X coordinate defining the splines.

The interpolated value was incorrect when the point for interpolation equaled the largest X -coordinate defining the splines.

There was an accuracy fallure in some output item (relative error > 1\%).

DESCRIPTION

The integral was not calculated when the lower limit was greater than the upper limit.

The integral was incorrect when the upper limit equaled the largest X coordinate defining the splines.

There was an accuracy farlure in some output item (relative error > 1\%).

4.4.7 Run Results

4.4.7.1 Subject Program A2

Figure 4.4.7.1-1 presents the results of the software fallure detection/error correction process.

4.4.7.2 Subject Program B2

Figure 4.4.7.2-1 illustrates the results of the software fallure detection/error correction process.

4.5 PROBLEM $\$ 3$

4.5.1 Background

The use of problem \#3 in the experıment was motivated by existıng routines used for earth-satellite calculations. Such calculations, involving analytic geometry and vector analysis, determine distances, azimuths and intersections on the earth.

4.5.2 Specifications

Specifications for problem \#3 were developed for the project by a senior-level computer scientist who has had experience with the particular application stated above. The complete specifications are presented in Appendix F.

4.5.3 Test Case

One test case was used to bring both subject programs A3 and B3 to state 0 . The test case and the corresponding correct output are presented in Appendix G.

4.5.4 Usage Distribution

As stated in the specifications for problem \#3 (Appendix F), three latıtude-longitude coordinates on the earth are required inputs, as well as an angle between 0° and 180°. The distribution for the latitude-longitude coordinates was uniform over the sphere, but rounded to the nearest 5° in both latitude and longitude. The distribution for the angle was uniform between 0° and 180° with no rounding.

4.5.5 Correct Version

The existing routines mentioned in Section 4.5.1 became the nucleus of the "correct version" program which was designed, coded and tested for the study by the senior-level computer scientist who developed the specifications. His version received extensive peer review plus many tests designed to simulate the usage distribution to be used in the experiment.

4.5.6 Error Descriptions

For problem 非3, subject program A3 had seven different software fallures, for which five distinct software errors were corrected. One fallure for which no error was corrected involved the wrong number of intersections found (see Section 1.0,

ERRORS DETECTED (STAGE)	RUNS	TOTAL CASES
1	50	62
2	50	178
3	50	1,323
4	49	2,567
5	22	162,142

Figure 4.4.7.1-1. Trace of Runs for Subject Program A2.

Figure 4.4.7.2-1. Trace of Runs for Subject Program B2.

Appendix F). The second such fallure occurred when the relative error of an output item from A3 compared to the correct version was greater than 1%. Time and budget constraints precluded software error corrections for these two fallures.

Similarly, subject program B3 had ten different software fallures for which six software errors were corrected. Two of the remaining software failures which did not lead to corrections correspond to sımılar fallures for program A3 above, with an additional two fallures involving a division by zero and an incorrect azımuth.

4.5.6.1 Subject Program A3

ERROR NUMBER	$\xrightarrow{\substack{\text { CLASSIFICATION } \\ \text { CODE }}}$	DESCRIPTION
1	A600	The determination of the sign of the azımuth was incorrect.
2	A800	There were unınıtialized variables when cross-product calculations were bypassed under certain conditions.
3	A900	The argument for arccos was greater than 1.0 or less than -1.0 .
4	A600	The algorithm to determine intersections calculated the wrong point of intersection.
5	A600	The azımuth was incorrectly calculated when the path went through either the north or south pole.
6	A600	The algorithm for calculating intersections failed to determine the correct number of intersections.
7	A600	There was an accuracy failure in some output item (relative error > 1%).

4.5.6.2 Subject Program B3

ERROR NUMBER	CLASSIFICATION CODE
1	A800
2	A 600

ERROR
NUMBER

3	A900
4	A600

5

7

8

10

A900

A600

A600

A600

CLASSIFICATION CODE

A900

A600

A600

A600

The argument for arccos was greater than 1.0 or less than -1.0 .

The algorithm to determine intersections failed to find a correct intersection point.

The argument for arcsin and/or arccos was greater than 1.0 or less than -1.0.

The sıgn of the calculated azimuth was incorrect, when the magnitude of the azımuth is pi.

Determination of colinearity of two coordinates and the center of the earth was incorrect.

There was an accuracy farlure in some output item (relative error $>1 \%$).

There was division by zero when determıning intersections.

The azimuth was incorrectly calculated as 0 , when the correct value was pl.

4.5.7 Run Results

4.5.7.1 Subject Program A3

The results of the software fallure detection/error correction process are shown in Figure 4.5.7.1-1.

4.5.7.2 Subject Program B3

The results of the fallure detection/error correction process are illustrated in Figure
4.5.7.2-1.

Figure 4.5.7.1-1. Trace of Runs for Subject Program A3.

Figure 4.5.7.2-1. Trace of Runs for Subject Program B3.

5.0 DATA ANALYSIS

The results contained in the following sections depend on the structure of the experiment performed. In particular, they reflect the specific features of the usage distributions employed, the detectors imposed to define the errors, and the sampling techniques utilized during experimentation.

The data base obtained from this experiment and on which the following analyses are conducted is presented in Appendices H-M. For each program the listing consists of run number and for each stage the number of executions to fallure, the number of the error causing fallure and the interfallure time.

One difficulty with this data should be noted. At the beginning of the experiment, the concept of how an error should be strictly defined was not completely understood. After some experıence it was finally established that only those program errors causing the specific program fallure would be corrected between states. In addition, it was also established that errors would be separately defined, i.e., labeled separately, only if for some input cases one would occur without the other. In other words two errors would be separately labeled if the intersection of the two error sets was strictly contained in, and not equal to, their union. Thus, errors that always occur together are defined as a single error and are removed together.

Unfortunately, the realization of this difficulty did not occur early enough to prevent a slight degradation of the data base. Specifically the distortion occurred for errors \#2 and \#3 of subject program Bl, the first program to be studied. At the time of the debugging of error $\# 1$, programmer B was allowed to fix another line of code. This line of code had two intriguing properties. First of all, because of the way the computer was initialized and the specifications of the problem, this line of code, though incorrect, would not have resulted in a computational error, and thus falls in the class of hidden errors with respect to the set of error detectors utilized in this problem. Secondly, correcting this line of code permitted entry into a section of the subroutine containing errors $\# 2$ and $\# 3$. The code in this part of the subroutine, however, was not essential to the solution of the problem as specified, and as long as it was bypassed made no difference. Thus, errors \#2 and \#3 were hidden by the existence of the initial hidden error.

5.1 TESTING THE HYPOTHESIS OF EXPONENTIAL INTERFAILURE TIME

One of the major assumptions of most reliability models is that the conditional distribution of interfallure time given the number of errors corrected is exponentially distributed. When all errors are identically distributed or if the conditioning is on state rather than stage, this assumption appears consistent with the error detection process as commonly understood. If measured execution time, however, is highly truncated or widely varies with input, time may have to be measured in numbers of executions to farlure to observe exponential behavior.

When errors are not identically distributed, interfallure time, conditioned on the number of errors corrected, is not necessarily exponentially distributed. In fact, if state conditioning produces exponentially distributed interarrival times, then stage conditioning results in times which are distributed according to a mixture of exponentials having one component for each state contributing to the stage. Thus,
for example, if there are three fallure modes for a given program and if t is the interfailure time to the second failure given that one error has been detected and corrected, then t has density:

$$
\begin{aligned}
f(t)= & \left\{\lambda_{1}\left(\lambda_{2}+\lambda_{3}\right) \exp \left[-\left(\lambda_{2}+\lambda_{3}\right) t\right]+\lambda_{2}\left(\lambda_{1}+\lambda_{3}\right) \cdot\right. \\
& \exp \left[-\left(\lambda_{1}+\lambda_{3}\right) t\right]+\lambda_{3}\left(\lambda_{1}+\lambda_{2}\right) \cdot \\
& \left.\exp \left[-\left(\lambda_{1}+\lambda_{2}\right) t\right]\right\} /\left(\lambda_{1}+\lambda_{2}+\lambda_{3}\right)
\end{aligned}
$$

where λ_{1} is the fallure rate of the ${ }_{1}{ }^{\text {th }}$ error source.
In general, a mixture of exponentials is a monotone decreasing function and is difficult to distinguish from the exponential itself. Its hazard function is a decreasing function. Table 5.1-1 compares values of the function $f(t)$, above, when $\lambda_{1}=5, \lambda_{2}=10, \lambda_{3}=15$ with values of a comparable exponential function having the same first moment.

Some statistical goodness-of-fit tests have been performed on the data to establish if the exponential assumption is preferable against varıous alternative classes. Unfortunately none of these tests are sensitive enough to distinguish between an exponential and an exponential mixture. The tests performed were variations of the Kolmogoroff-Smirnov goodness-of-fit test developed specifically for the exponential with unknown parameter by Finkelstein and Schafer [11] and by Lilliefors [12]. Both tests are described in Mann, Schafer and Singpurwalla [13].

Table 5.1-2 gives the results of the test. In all cases, regardless of the data type, the exponential assumption is preferable to the alternatives to which these tests are sensitive. It does appear, however, that when few errors have been corrected in the early program stages this may not be the case due to the truncation effects of execution time.

Proschan's test for DFR distributions, Barlow and Proschan [14], could also be used in this context. This test appears to be particularly powerful in sensing differences coming from mixtures of exponential distributions. To date the computations in this test have not been completed.

For the problems considered in this experiment, constant execution time is a reasonable assumption. For problems demonstrating widely varying execution times or when there are sizable truncation effects, the equivalency of time and number of program executions may not hold.

Kalbfleish and Prentice [15] point out that if a data set is exponential, the log of the survivor function estimate plotted against t should approximate a stiaight line through the origin. The survivor function in the case of noncensored data is defined by

$$
F\left(t_{(1)}\right)=1-1 / n
$$

TABLE 5.1-1
COMPARISON OF EXPONENTIAL-MIXTURE DENSITY WITH EXPONENTIAL DENSITY

$$
\begin{aligned}
& \mathrm{N}=3 \\
& \lambda_{1}=5, \lambda_{2}=10, \lambda_{3}=15
\end{aligned}
$$

\mathbf{t}	Exponential Mixture	Exponential (Same Mean)
0	18.33	17.65
.01	15.16	14.79
.02	12.55	12.40
.03	10.41	10.39
.04	8.64	8.71
.05	7.19	7.30
.07	4.99	5.13
.10	2.92	3.02
.15	1.22	1.25
.2	.52	.52
.3	.10	.09

TABLE 5.1-2

LILLIEFORS K-S TEST STATISTIC FOR THE EXPONENTIAL DISTRIBUTION

\#-Of-Input-Cases Based

Subject Program	Stage	Statıstıc $($ Max $\delta)$.	$\frac{\text { d.f. }}{}$	Signıfıcance $(\boldsymbol{\alpha = . 0 5)}$
A1	2	.139	50	Not sıg.	
A1	3	.089	50	Not sıg.	
A1	4	.101	42	Not sıg.	
B1	4	.0602	50	Not sıg.	
B3	4	.0641	36	Not sıg.	

Execution-Tıme Based

Subject Program	Stage	Statıstıc $($ Max $\delta)$	$\frac{\text { d.f. }}{}$	Sıgnıfıcance $(\boldsymbol{\alpha}=.05)$
A1	3	.0892	50	Not sıg.

Figure 5.1-1 plots these quantities for two different stages and problems. There appears to be some deviations from the exponential in the tall. Whether this is due to real effects coming from a non-constant hazard function or random effects due to the variation in the tail is not known.

5.2 UNEQUAL ERROR PROBABILITY HYPOTHESIS

One of the primary concerns of this research is to determine if errors occur with unequal probabilities within a program. Estımates of these errors by number are given in Table 5.2-1 for all six subject programs. The estimates are based on looking at each run not as a series of stages but as a continuous uninterrupted run until the error of interest occurs. The number of executions until the error is manifested is distributed as the geometric distribution. The same is true for all other errors in the program. Thus the individual error estimates are based on the same estimator as that discussed in Section 2.2.9.

To compare two error estimates from the same run and statistically test for equality the following procedure was adopted. The numbers of correct cases to occurrence of each of the errors were subtracted run by run obtaining a set of k differences. It was then assumed that the mean of these differences was approximately normally distributed with mean zero if the errors are identically distributed. A t statistic was then used to evaluate if the observed mean difference was significantly different from zero, based on the observed standard deviation. For every program there were at least two errors which manifested a significant difference. Indeed by looking at the magnitude of the range of the error estimates, this hypothesis appears to be extremely well substantiated. In fact, it seems very unlikely that errors are ever identıcally distributed across an entıre program error set.

5.3 STATE PROBABILITY ESTIMATES

Given that the above hypothesis is true, it is of great interest to measure its impact on the observed error structure of a program in a variety of situations. Table 5.3-1 gives estimates of the stage probabilities for each of the six programs of this experiment. The probability given for the $\mathrm{i}^{\text {th }}$ stage can be interpreted as the conditional probability that the program will fail in a single-execution given that $1-1$ errors have been corrected. This statement presumes then that the first stage is based on a program in its initıal state as defıned by the static detectors and that this is the state of the program with all of its errors intact.

Figure 5.3-1 is a plot of the absolute value of the logarithm of the error probabilities versus an approximate measure of the number of errors corrected at that stage. This graph presents the first experimental measure of a program's behavior through time, under repeated conditions, takıng into account both the probabılities of the errors in the error set and their random order of observation. Several features of this graph are notable.

Figure 5.1-1. Survivor Function vs. t for Subject Programs A1 and B3.

TABLE 5.2-1
SPECIFIC ERROR PROBABILITIES - RANKED ESTIMATES

Program	$\begin{aligned} & \text { Error } \\ & \text { No. } \\ & \hline \end{aligned}$	Prob. of Occurrence Per Program Execution	Program	$\begin{aligned} & \text { Error } \\ & \text { No. } \\ & \hline \end{aligned}$	Prob. of Occurrence Per Program Execution
A1	1	8.20×10^{-1}	B1	1	1.52×10^{-1}
	2	9.63×10^{-2}		2	1.07×10^{-1}
	4	1.22×10^{-3}		3	1.02×10^{-1}
	3	8.17×10^{-4}		4	6.89×10^{-3}
	5	4.43×10^{-4}		5	2.41×10^{-3}
	6	4.12×10^{-4}		6	2.46×10^{-4}
	8	2.49×10^{-4}		7	1.18×10^{-4}
	10	1.15×10^{-4}		8	1.18×10^{-4}
	7	1.92×10^{-5}			
	9	1.92×10^{-5}			
A2	1	7.83×10^{-1}	B2	1	1.31×10^{-1}
	2	1.87×10^{-1}		2	2.26×10^{-2}
	3	1.72×10^{-2}		3	1.03×10^{-4}
	4	1.66×10^{-2}			
	5	1.44×10^{-4}			
A3	1	2.37×10^{-1}	B3	1	3.29×10^{-1}
	2	1.78×10^{-2}		2	8.13×10^{-2}
	6	1.16×10^{-2}		5	4.55×10^{-3}
	5	1.03×10^{-2}		7	1.75×10^{-3}
	7	4.08×10^{-3}		4	1.53×10^{-3}
	10	3.15×10^{-3}		6	3.84×10^{-4}
	3	2.51×10^{-3}		3	3.08×10^{-4}
	4	2.37×10^{-3}			
	8	1.38×10^{-3}			
	9	1.97×10^{-4}			

TABLE 5.3-1

ESTIMATED STAGE PROBABILITIES

PROGRAM	STAGE	PROB. OF ERROR PER EXECUTION
A 1	1	. 9803
	2	. 1068
	3	. 002602
	4	. 002104
	5	. 001176
	6	. 0007659
B1	1	. 1524
	2	. 4673
	3	. 4098
	4	. 009117
	5	. 003483
	6	. 0005359
A2	1	. 8065
	2	. 2632
	3	. 03759
	4	. 01909
	5	. 0001374
B2	1	. 1449
	2	. 02625
	3	. 0001033
A3	1	. 2488
	2	. 05376
	3	. 03524
	4	. 02691
	5	. 02302
B3		. 3650
	2	. 1037
	3	. 01021
	4	. 004681
	5	. 002411

Figure 5.3-1. Estımated Error Rate as a Function of Errors Corrected, Using Original Data.

First of all, although controls were imposed on the experıment to insure as much commonality as possible in the definition of the initial program stage, this was an a priorı definition. In fact what seems more desirable is a definition of the first stage that may be data dependent but that causes error probabilities across all programs to cluster. This is equivalent to definıng the initial stage by a program feature that implıes a certain state of probabilistic commonality. High error probabilities 1 mply that a program is not well checked out. Check out is also very difficult to control in as much as programming time and programmer attention interact at this end of the scale with error discovery. Therefore, since highly probable errors are not interesting in forecasting software reliability, a redefinition of the initial program state in terms of a minimum p level might be potentally useful. This level was chosen to be In $p=-1.0$ or $p=.37$. Figure 5.3-2 is a replot of the data in $5.3-1$ with this definition of zero on the horizontal scale. The data is nicely compressed at zero with small range indicating some commonality. The usefulness of this definition is further explored in the next section.

One of the most striking characteristics of the data in Figures 5.3-1 and 5.3-2 regardless of the question of origin is the degree of linearity in each of the graphs. This suggests the model for the basic reliability structure behind these programs that is developed in the following section. In these graphs there is also a hint of a cornection between the probability structure and the programmer as well as between the structure and the problem. The modeling effort referred to above enables these ideas to be subjected to statistical evaluation to some degree, and it also provides a framework in which to test program attributes that may be indicators of unreliability.

Another point about these graphs worth noting but of seeming little value to the current data analysis is the very low probabilities observed in what appears to be the early stages of programs A2 and B2. These two errors are both of the same type and both reflect a fallure of the program to compute with the accuracy required by the problem specifications. It is not surprising then that such errors have similar probabilities in both programs.

5.4 RANDOM INFLUENCES ON THE STAGE PROBABILITIES

The randomness in the estimates of the stage probabilities has two sources. One source is due to the natural sampling variation in any exponentially sampled variable (or nearly exponential as in this case). This can be extensive for the exponential because the standard deviation equals the mean, and as the rate decreases it behaves more and more as a uniformly-distributed variable over an increasing range. The second source depends on the fact that the order of error detection can be random.

Figures 4.3.7.1-1 and 2, 4.4.7.1-1 and 2, and 4.5.7.1-1 and 2 have already demonstrated that program fallures follow a random walk through the error space. The walk forms a pure death Markov process since the next error state of a program depends only on the transition probabilities and on those errors that have been corrected prior to execution and not on the time or order of correction. The frequencies of partıcular paths can be used to determine their transition probabılitıes. Most of the programs written for this experiment demonstrated a wide variety of walk behavior. Only for program B2 has the walk been concentrated primarily along a single path.

Figure 5.3-2. Estimated Error Rate as a Function of Errors Corrected, Using Modified-origin Data.

To evaluate the impact of these sources of randomness on the p estimates (which in turn are proportional to the fallure rates when execution time is constant), histograms of the individual run estimates of p are given in Figures 5.4-1 and 5.4-2 for two of the programs. The sample mean and standard deviations are also given for each histogram in order to provide measures of the randomness in the fallure rate estimates based on a single observation. Since single-point estimators are the current practice in traditional software reliability estimation, these histograms illustrate that the error in such observations can be considerable.

5.5 PROPOSED MODEL FOR SOFTWARE RELIABILITY BASED ON COX'S PROPORTIONAL HAZARDS FAILURE MODEL

Based on the evidence of Section 5.1, it can now be assumed that interfallure time is nearly exponentially distributed with rate proportional to p . In addition, the evidence in Figures 5.3-1 and 5.3-2 suggests that $\log p$ is nearly linear with respect to stage. A model that incorporates both of these ideas is explored in Kalbfleisch and Prentice [15] based on a model orıginally developed by Cox [16]. The model, called the proportional hazards model, specifies a hazard function of the form

$$
\lambda(t ; z)=\lambda(t) e^{z \beta}
$$

where $\lambda(t)$ is the base line hazard function that may or may not be time dependent and where z is a vector of covariates or factors. Thus by providing multiplicative shocks to the hazard function the vector z can alter the rate at which an individual program proceeds along the time axis.

In the context of software reliability it is anticipated that z as a minımum should consist of a covariate representing the stage level, i.e., the number of corrected errors. In addition, the vector could include other covariates representing physical features of the program as well as the experımental test factors such as the problem and programmer factors. New covarıates can be tested for their predicting ability as the model also provides a framework in which to statistically evaluate potential new explanatory covarıates.

Since within a stage it has been demonstrated that the hazard rate is nearly constant, this implies that the model for software is much simpler than the model explored by Cox as $\lambda(t)$ must be constant. Under these circumstances then, the distribution of within- stage life length reduces to the exponential

$$
\mathrm{f}(\mathrm{t} ; \mathrm{z})=\lambda \mathrm{e}^{\mathrm{z} \beta} \exp \left(-\lambda \mathrm{e}^{\mathrm{z} \beta} \mathrm{t}\right)
$$

A program has been developed that provides maximum likelihood estimates for λ and β based on the Newton-Raphson optimization technique applied to this problem outlined in [15]. Two models have been explored using this program. Both are based of an expansion of the exponent in the hazard function in the following terms for the ${ }_{1}$ th $\underset{\text { problem and } j}{ } \mathrm{j}$ the programmer

$$
\begin{aligned}
\theta_{1 j} & =\log \lambda_{1 j}+z \beta_{1 j} \\
& =\mu+\alpha_{1}+\beta_{j}+\gamma_{1 j} k
\end{aligned}
$$

PROGRAM AI

Figure 5.4-1. Histograms of Stage Probability Estimates for Subject Program A1 as a Function of the Number of Errors Corrected.

PROGRAM B1

NO. OF OCCURRENCES

Figure 5.4-2. Histograms of Stage Probability Estimates for Subject Program BI as a Function of the Number of Errors Corrected.
where

a_{1}	$=$ problem factor, $1=1,2,3$
β_{1}	$=$ programmer factor, $\mathrm{J}=1,2$
$\gamma_{1 \mathrm{~J}}$	$=$ program/programmer dependent slope
k	$=$ number of errors corrected, $\mathrm{k}=0,1,2, \ldots$

and
$\mu+a_{1}+\beta_{j}=$ initial stage-one fallure rate and background fallure rate.
The data for the first model is based on the definition of the stage indicator illustrated by Figure 5.3-1 and the second model uses the definition of the indicator illustrated in Figure 5.3-2. Thus the two models differ only in the definition of k for programs A1 and A2. Model 2 modifies the definition and starts counting with $k=0$ only when $\ln \mathrm{p} \leq-1$ for that stage and omits all prior error data. Model 1 on the other hand includes all of the observed data, and starts counting $\mathrm{k}=0$ according to the original definition of a stage.

Because the problem with the data of program Bl was not completely understood at the time of the development of the proportional hazards model, the data from errors \#2 and \#3 was omitted. It now appears that the best compromise with this difficulty would be to ignore the existence of these errors, group their data with the data of error \#4 as if they had not been recorded, relabel error \#4 as \#2 and relabel stages 3, $4, \ldots$ as stages $1,2, \ldots$. The effect of these changes has not as yet been investigated.

The model for θ was chosen specifically as a first attempt to explain the nature of the dependence of the error structure on problem and programmer. The design, however, is limited in that only the structure of the non-covariate (i.e., non z) part of the model is explored relative to these effects. To understand to what extent the slopes depend on these factors, a model of the form

$$
\theta_{1 j}=\mu+a_{1}+\beta_{j}+\left(\phi+\gamma_{1}+\epsilon_{j}+\gamma_{1 j}\right) k
$$

must be analyzed. The first θ model therefore explores the dependence of the initial, stage one, or background fallure rate on the two factors. The second representation of θ permits the testing of the dependence of the shocks to this farlure rate as a function of these factors. Unfortunately the limited amount of data did not permit the exploration of this second representation.

The results of the nonlinear estimation process are summarized in Tables 5.5-1 and 5.5-2. For the model based on the first definition of k the tests conducted on the coefficients indicate that all ten of the fitted free parameters are significantly d_{1} fferent from zero except α_{1} and the conclusion on α_{1} affects only the relative location of the three α parameters as they have sum zero. For the second definition of k, the tests indicate that all of the coefficients are significantly non zero. Thus for both models, the non k dependent part of the expansion of θ depends on both factors. That is, there is a significant programmer and a significant problem factor explaining the background fallure rate.

TABLE 5.5-1
PROPORTIONAL HAZARDS MODEL PARAMETERS BASED ON ORIGINAL ERROR RATE DATA

		Standard Coefficients

Constant
$\mu=-1.2602$
. 002604
.05103
Sıg.
Problem Levels

$\boldsymbol{\alpha}_{1}=-.02389$.006144	.07839	Not Sig.
$\boldsymbol{\alpha}_{2}=.5711$.004629	.06803	Sig.
$\boldsymbol{\alpha}_{3}=-.5472$	-		

Programmer Levels
$\begin{array}{lcc}\beta_{1}=.4158 & .002854 & .05342 \\ \beta_{2}=-.4158 & - & \text { Sig }\end{array}$
Slopes

$$
\begin{aligned}
&\left(\begin{array}{lll}
\gamma_{\mathrm{A} 1} & \gamma_{\mathrm{A} 2} & \gamma_{\mathrm{A} 3} \\
\gamma_{\mathrm{B} 1} & \gamma_{\mathrm{B} 2} & \gamma_{\mathrm{B} 3}
\end{array}\right)=\left(\begin{array}{lll}
-1.1000 & -1.8562 & -.8002 \\
-1.0902 & -3.7898 & -1.0193
\end{array}\right) \\
&=\left(\begin{array}{lll}
.004406 & .001570 & .002754 \\
.0009986 & .007047 & .003288
\end{array}\right) \\
&=\left(\begin{array}{lll}
.06637 & .03963 & .05248 \\
.03160 & .08395 & .05734
\end{array}\right)
\end{aligned}
$$

First stage (background) error rate exponent (estımated)
$\left(\log \lambda_{1 j}\right)=\left(\mu+\alpha_{1}+\boldsymbol{\beta}_{j}\right)=\left(\begin{array}{lll}-.8682 & .2732 & -1.3916 \\ -1.6999 & -.1 .1049 & -2.2232\end{array}\right)$
First stage fallure rate (estımated)

$$
\left(\lambda_{1)}\right)=\left(\begin{array}{lll}
.4197 & 1.3142^{*} & .2487 \\
.1829 & .3312^{*} & .1083
\end{array}\right)
$$

* Unconstrained model

TABLE 5.5-2
PROPORTIONAL HAZARDS MODEL PARAMETERS BASED ON MODIFIED ORIGIN DATA

Coefficients	$\underline{\text { Varıance }}$	Standard Devıatıon	Sıgnifıcance $\boldsymbol{(\alpha = . 0 5)}$

Constant
$\mu=-1.9394$
.003022
.05497
Problem Levels

$\alpha_{1}=-.8740$.007538	.08682	Sig.
$\boldsymbol{\alpha}_{2}=.5102$.005507	.07421	Sig.
$\boldsymbol{\alpha}_{3}=.3638$	-	--	--

Programmer Levels

$\beta_{A}=-.3026$.003010	.05486	Sig.
$\beta_{B}=.3026$	--	--	--

Slopes

$$
\begin{aligned}
\left(\begin{array}{lll}
\gamma_{\mathrm{A} 1} & \gamma_{\mathrm{A} 2} & \gamma_{\mathrm{A} 3} \\
\boldsymbol{\gamma}_{\mathrm{B} 1} & \gamma_{\mathrm{B} 2} & \gamma_{\mathrm{B} 3}
\end{array}\right) & =\left(\begin{array}{lll}
-1.7196 & -2.0717 & -.5970 \\
-.9067 & -3.7781 & -1.4001
\end{array}\right) \\
& =\left(\begin{array}{lll}
.01097 & .003503 & .002663 \\
.001257 & .007115 & .003333
\end{array}\right) \\
& =\left(\begin{array}{ll}
.1047 & .05918 \\
.0355 & .08435
\end{array}\right. \\
\text { s.d. }(\boldsymbol{\gamma}) & =\left(\begin{array}{ll}
.05161 \\
&
\end{array}\right.
\end{aligned}
$$

First stage (background) fallure rate exponent (model)
$\left(\log \lambda_{1 j}\right)=\left(\mu+\alpha_{i}+\beta_{j}\right)=\left(\begin{array}{lll}-3.1161 & -1.7319 & -1.8782 \\ -2.5109 & -1.1267 & -1.2730\end{array}\right)$

First stage fallure rate (model)

$$
\left(\lambda_{1)}\right)=\left(\begin{array}{lll}
.04433 & .1770 & .1529 \\
.08120 & .3241 & .2800
\end{array}\right)
$$

A number of tests of equality were also conducted to determine if any of the pairwise γ 's across problems for a given programmer or across programmers for a given problem were equal. Only isolated cases farled to reject so that some interaction between the two factors seems to exist. To what extent the main effects explain the slopes is not known.

Table 5.5-3 and Figures 5.5-1 and 5.5-2 compare the raw estimates of the p values and the $\ln p$ values to the predicted values based on the proportional hazards model with parameter estımates from Tables 5.5-1 and 5.5-2. In general the model does reasonably well in predicting \log fallure rate.

Since a methodology for evaluating the quality of the fit for the two models does not exist at this time, it is difficult to measure if the new definition of the initial state of the program increases the efficiency of the modeling. The variance of the residual not explained by the model can be compared, however, to the original data variance, based on the data in Figures 5.5-1 and 5.5-2, in order to obtain a pseudo R^{2} value for comparison purposes. For model 1 the percentage reduction in variance due to the model is 80.7%. For model 2 the percentage reduction is 83.5%. Thus there is a slight but not appreciable advantage for this problem set in using the new definition of the initial state.

5.6 PROGRAM FEATURES AS PREDICTORS

Several physical features of the subject programs have been measured as possible predictors of the error fallure rate. Table 5.6-1 gives these features for all the subject programs. In general these are in the form of counts of such features as program length, total branch modes including the statements GO TO, DO, IF and CALL and two of Halstead's [17] program measures; his length measure N and his total error predictor E. Both of Halstead's measures depend on countıng the number of operators and the number of operands in the program, neither of which has been precisely defined for all cases. There is no particular rationale behind these choices of physical features for consideration except that "length" measures and "complexity" measures of a program seem reasonable as "first look" predictors. This set is cursory and is not intended to be exhaustive in any way.

In general, these program features are all poor predictors of both slope and furst stage fallure rate. Figure 5.6-1, however, demonstrates that the slopes of programmer B suggest a linearly increasing trend with the inverse of Halstead's length measure N. (This is also true of E because N and E are nearly linearly dependent in this range.) Thus, for this programmer, as Halstead's length increases the fallure rate for fixed k increases.

The behavior of the programs written by programmer A are much less consistent with regard to this measure. A possible reason for this discrepancy might be that the programming tıme for this programmer was not as consıstently controlled as for programmer B, partıcularly for program A1 due to outsıde factors. Program Al seems to be an outlier with regard to every single physical measure and seems to have a much smaller failure rate than its length and complexity would indicate.

TABLE 5.5-3
ESTIMATES FOR ERROR PROBABILITY PER PROGRAM EXECUTION, BASED ON THE PROPORTIONAL HAZARDS MODEL

PROGRAM	STAGE	EXPERIMENT BASED ESTIMATES	MODEL PREDICTIONS (ORIGINAL ORIGIN)	MODEL PREDICTIONS (MODIFIED ORIGIN)
A1	1	. 9803	. 4197	
	2	. 1068	. 05678	. 04430
	3	. 002602	. 007689	. 007936
	4	. 002104	. 001041	. 001422
	5	. 001176	. 0001409	. 0002546
	6	. 0007659	. 00001907	. 00004561
B1	1	. 1524	. 1829	. 0812
	4	. 009117	. 006947	. 005348
	5	. 003483	. 002335	. 002160
	6	. 0005359	. 007850	. 0008721
A2	1	. 8065	1.3142*	
	2	. 2632	. 2054	. 1770
	3	. 03759	. 03209	. 02230
	4	. 01909	. 005015	. 002809
	5	. 0001374	. 0007836	. 0003538
B2	1	. 1449	. 3312	. 3241
	2	. 02625	$.007486$	$.007411$
	3	. 0001033	. 0001692	$.0001694$
A3	1	. 2488	. 2487	. 1529
	2	. 05376	. 1117	. 08417
	3	. 03524	. 05109	. 04633
	4	. 02691	. 02255	. 02550
	5	. 02302	. 01012	. 01404
B3	1	. 3650	. 1083	. 2800
	2	. 1037	. 04864	. 06904
	3	. 01021	. 02185	. 01702
	4	. 004681	. 009816	. 004198
	5	. 002411	. 004410	. 001035

* Unconstraıned Model

Figure 5.5-1. Predicted Error Rate from the Proportional Hazards Model, Using Original Data.

Figure 5.5-2. Predicted Error Rate from the Proportional Hazards Model, Using Modified-origin Data.

TABLE 5.6-1 SUBJECT PROGRAM MEASURES

Figure 5.6-1. Inverse of Halstead's Length vs. Predicted Slope (Modified Data), Proportional Hazards Model.

5.7 RIPPLE EFFECT

In only one program did the correction of an error introduce additional errors. Since so little data was avallable with which to model this effect, no attempt was made to include it as a special case in the proportional hazards model. It suffices to point out that the model is sufficiently general to include shocks that increase as well as decrease the fallure rate.

6.0 CONCLUSIONS

The results of this experıment have proven useful in exploring the foundations of the probabilistıc process of detecting software errors. The data has been used to statistically verify that interfallure time is exponentially distributed and to prove that errors can occur with widely different fallure rates. This fact invalidates many of the more popular software reliability models now in use. It was also observed that \log fallure rate was nearly linear as a function of the number of errors corrected.

It was demonstrated that Cox's proportional hazards life model has all of the observed characteristics of the data noted above and is proposed as a new model for predicting software reliability. The model specifies a log linear hazard function depending on a covariate representing the number of errors corrected. Maximum likelihood estimates for the unknown parameters of this model were obtaned for all six subject programs using nonlınear optımization technıques. Tests on these estimates indicate that there are strong programmer and problem effects in the background fallure rate. Results also show that over 80% of the observed variation in the logarithm of the failure rate data can be explained by the proportional hazards function model. A tentative physical predictor was proposed based on Halstead's information criterion N that might prove useful in forecasting model parameters.

Forecasting software reliability based on physical program features is a subject in its infancy. Probabilistic models with parameters that require statistical estimation from operational experience on a program do, however, offer forecasting alternatives. If operational usage data can be simulated, then repetitive run sampling desıgns provide a rıch statistıcal base for estimating these parameters. Repetitive run sampling is no different from the standard method of recording software error data in a single run, with regard to the number of different errors detected. Both methods will uncover the same errors on the average in the same number of program executions. The differences occur in the amount and kind of interim information, on the frequency of error occurrence and the effects of conditioning, recorded during testing. These potential uses of the additional information gained during repetitive sampling can only be conjectured, but based on the experiences of this study it appears very promising.

This is the first software reliability model to be based on the results of a carefully designed and controlled software experiment. These results indicate that software error detection has many of the attributes of a predictable structure. The process of completely understanding the nature of the problem, however, has just started and much additional research is necessary to substantiate these results on more complicated problems written by more experienced personnel under the same controlled conditions.
.

REFERENCES

1. Jelınskı, F. and Moranda, P. B., "Software Reliability Research," Statistıcal Computer Performance Evaluation, W. Freıberger, Ed., New York: Academıc, 1972.
2. Shooman, M. L., "Probabilıstıc Models for Software Relıabilıty Predıctıon," $\frac{\text { Probabilistıc Models for Software, W. Freıberger, Ed., New York: Academic, }}{1972 .}$
3. Schick, G. J. and Wolverton, R. W., "An Analysis of Competıng Software Reliability Models," IEEE Transactions on Software Engineering, Vol. SE-4, No. 2, March 1978.
4. Littlewood, B. and Verrall, J. L., "A Bayesian Reliability Growth Model for Computer Software," 1973 IEEE Symposium on Computer Software Reliability, New York, 1973.
5. Littlewood, B., "What Makes A Reliable Program - Few Bugs, or a Small Fanlure Rate?," AFIPS Conference Proceedings, Vol. 49, 1980.
6. Brown, J. R. and Lipow, M. "Testing for Software Reliability," Proceedings, 1975 International Conference on Reliable Software, IEEE Cat. No. 75-CH0940-7CSR, 1975.
7. Mıgneault, G. E., "Emulatıon Applıed to Relıabılity Analysis of Reconfıgurable, Hıghly Reliable, Fault-Tolerant Computıng Systems," AGARD Conference Proceeding, No. 261, 1980.
8. Fosdıck, Lloyd D. and Osterweil, L. J., "DAVE - A Fortran Program Analysıs System," Computer Science and Statistics, 8th Annual Symposium on the Interface, 1975.
9. Stuckı, L. G. and Foshee, G. L., "New Assertion Concepts for Self Metric Software Validation," Proceedings, 1975 International Conference on Reliable Software, IEEE Cat. No. 75-CH0940-7CSR, 1975.
10. Brown, J. R. and Buchanan, H. N., "The Quantitative Measurement of Software Safety and Reliability," TRW SDP 1776, TRW Systems Group, Redondo Beach, Calıfornia, 1973.
11. Finkelstein, J. M. and Schafer, R. E., "Improved Goodness-of-Fit Tests," Biometrika, 58:3, pp. 641-645, 1971.
12. Lilliefors, H. W., "On the Kolmogoroff-Smırnov Test for the Exponential Distribution With Mean Unknown," Journal of the American Statistical Association, pp. 387-389, March 1980.
13. Mann, N. R., Schafer, R. E., and Singpurwalla, Nozer D., Methods for Statistical Analysis of Relıabılity and Life Data, Wiley: New York, 1974.

REFERENCES (Continued)

14. Barlow, Richard E. and Proschan, Frank, Mathematical Theory of Reliability,
Wiley: New York, 1965 .
15. Kalbfleısch, J. D. and Prentice, R. L., The Statistical Analysis of Failure Time Data, Wiley: New York, 1980.
16. Cox, D. R., "Regression Models and Life Tables," Journal of the Royal Statistical Society, Series B, Vol. 34, pp. 187-220, 1972.
17. Halstead, M. A., Elements of Software Engıneering, Elsenıer: New York, 1977.

APPENDIX A: SOFTWARE ERROR CATEGORIES

From Brown and Buchanan [10]

A000
A100
A200
A300
A400
A500
A600
A700
A800
A900
B000
B100
B200
B300
B400
B500
B600
B700
C000
C100
C200
C300
C400
C500
C600
D000
D050
D100
D200
D300
D400
D500
D600 D600 Incorrect variable type
D800
D900
COMPUTATIONAL ERRORS
Incorrect operand in equation Incorrect use of parenthesis Sign convention error Units or data conversion error Incorrect/inaccurate equation used Precision loss due to mixed mode Missing computation Rounding or truncation error

LOGIC ERRORS

Logic activities out of sequence Wrong variable being checked Missing logic or condition tests
Too many/few statements in loop (including endless loop) Duplicate logic

DATA INPUT ERRORS

 Input read from incorrect data file Incorrect input format End of file encountered prematurely End of file missingDATA HANDLING ERRORS Data initualizatıon not done Data initialization done improperly Bit manipulation done incorrectly Data packıng/unpacking error Sort error Subscripting error

Computation produces an over/under flow

Incorrect operand in logical expression Loop iterated incorrect number of times

Invalid input read from correct data file Incorrect format statement referenced

Data frle not rewound before reading Variable used as a flag or index not set properly Varıable referred to by the wrong name

E100 Data written on wrong file
E200 Data written according to the wrong format statement
E300
E400
E500
E600
E700
E800

F100
F200
F300
F400
F500
F600
F700

G100
G200
G300
G400
H0OO

H300
1000
I100
1200
I300
1400
1500
I600

H100 Data not inıtialized in data base
H200 Data initialized to incorrect value
Data written in wrong format
Data written with wrong carriage control
Incomplete or missing output
Output field size too small
Line count or page eject problem
Output garbled or misleading
INTERFACE ERRORS
Wrong subroutine called
Call to subroutine not made or made in wrong place
Subroutine arguments not consistent in type, units, order, etc.
Subroutine called is nonexistent
Software/data base interface error
Software/user interface error
Software/software interface error
DATA DEFINITION ERRORS
Data not properly defıned/dımensioned
Data referenced out of bounds
Data being referenced at incorrect location
Data pointers not incremented properly
DATA BASE ERRORS

Data units are incorrect
OPERATION ERRORS
Operating system error (vendor supplied)
Hardware error
Operator error
Test execution error
User misunderstanding/error
Configuration control error

APPENDIX A: SOFTWARE ERROR CATEGORIES (Contınued)

J000

$J 100$
J200
J300
J400
J500
J600
J700
J800
J900
K000
K100
K200 Interface specification
K300 Design specification
K400 Requirements specification
K500 Test documentation
X0000
X0001 No problem
X0002 Void/withdrawn
X0003 Out of scope - not part of approved design
X0004 Duplicates another problem report
X0005 Deferred

APPENDIX B: PROBLEM \#1 SPECIFICATIONS

From Brown and Buchanan [10]

1.0 LAUNCH INTERCEPTOR CONDITIONS (LIC)

Conditıons were specified in such a way that the resulting program would be sımilar to a Site Defense program attempting to correlate radar tracking returns. Nineteen parameters were required as input to precisely specify these conditions. The Launch Interceptor Conditions (LIC) were defıned as follows:

1) Any two consecutive data points are a distance greater than the length, ℓ, apart.
2) Any three consecutıve data points cannot all be contaıned within or on a circle of radius r.
3) Any three consecutive data points form an angle, a, where a $<\left(\pi-\epsilon_{2}\right.$) or a $>\left(\pi+\epsilon_{2}\right)$. Being measured here is the angle a's deviation from 180 degrees. The second of the three consecutive points is always at the vertex of the angle.
4) Any three consecutive data points form a triangle with area greater than A. The three points are at the triangle's vertices.
5) Any M consecutive data points lie in more than Q quadrants. Where there is ambiguity as to which quadrant contans a given point, priority of decision will be by quadrant number, i.e., I, II, III, IV. For example, the data point $(0,0)$ is in quadrant I. Also, the point $(-1,0)$ is in quadrant II. The point $(0,-1)$ is in quadrant III.
6) For any two consecutive data points, P_{1} and P_{2}, the difference of their abscissas is negative, i.e., $\left(X_{2}-X_{1}\right)<0$.
7) At least one of any N consecutive data points lies a distance greater than ϵ_{1} from the line joining the first and last of these points.
8) Any two data points (with n_{1} consecutive intervening points) are a distance greater than the length, ℓ, apart.
9) Any three data points (with n_{2} and m_{2} consecutive intervening points, respectively) cannot be contaned within or on a circle of radius r.
10) Any three data points (with n_{3} and m_{3} consecutive intervening points, respectively) form an angle, α, where $\alpha<\left(\pi-\epsilon_{2}\right)$ or $\alpha>\left(\pi+\epsilon_{2}\right)$. Being measured here is the angle α 's deviation from 180 degrees. Of the above first mentioned three data points. the second is always at the vertex of the angle.
11) Any three data points (with n_{4} and m_{4} consecutive intervening points, respectively) form a triangle with area greater than A. The above first mentioned three data points are at the triangle's vertices.
12) For any two data points, P_{1} and P_{2} (with n_{6} consecutive intervening points) the difference of their abscissas is negative, i.e., $\left(X_{2}-X_{1}\right)<0$.
13) Any two data points, with n_{1} consecutive intervening points, are a distance greater than the length, ℓ, apart. Also, any two data points (which can be the same or different from the above first mentioned two data points), with n_{1} consecutive intervening points, are a distance less than the length, L, apart.
14) Any three data points, with n_{2} and m_{2} consecutive intervening points, respectively, cannot be contained within or on a circle of radius r. Also, any three data points (which can be the same or different from the above first mentioned three data points), with n_{2} and m_{2} consecutive intervening points, respectively, can be contaıned in or on a circle of radius R.
15) Any three data points, with n_{4} and m_{4} consecutive intervening points, respectively, form a triangle with area greater than A. The above first mentioned three data points are at the triangle's vertices. Also, any three data points (which can be the same or different from the above first mentioned three data points), with n_{4} and m_{4} consecutive intervening points, respectively, form a triangle with area less than E. The above second mentioned three data points are at the (second) triangle's vertices.

2.0 PROBLEM LOGIC

1) Information was supplied indicating the logical connectors among all the LIC, as defined in Section 1.0. The format was a symmetrical square matrix where zero indicated NOT used, one indicated the OR connector between two conditions and two indicated the AND connector. The matrix was identıfied as the Logical Connector Matrix (LCM).
2) Part of the output data was a column matrix with resultant information as to whether or not the LIC were met, i.e., for each condition, zero meant the condition was not met and one meant it was met. The identification for this matrix was Conditions Met Matrix (CMM).
3) Prelimınary unlocking information was generated. By definition, these were criteria which determined whether or not interceptors would be launched. These data were determined by the interaction of the LCM and CMM matrices to form the Prelıminary Unlocking Matrix (PUM). Definitions of the matrix elements indicate how the two matrices interact to form PUM. The diagonal elements of PUM were input according to the desired or required unlocking sequence, i.e., a one indicated that the corresponding LIC was to be considered as a factor in signaling interceptor launch and a zero meant that it was not a factor. Non-diagonal elements were determined by the LCM operating as a Boolean operator, as defined in Section 2.0.1, on the operand CMM.
4) The Final Unlocking Matrix (FUM) was generated by having the PUM diagonal operate on non-diagonal elements. An element in the FUM was one (1) if:

The corresponding PUM diagonal element was zero (0), indıcating no interest in the associated LIC; or

The corresponding PUM diagonal element was one (1) and all other elements in that diagonal element's row were one (1).

An element in the FUM represented the final conclusion with respect to its corresponding LIC.
5) In order to launch an interceptor, all elements in FUM had to be equal to one. In this case, the message "NOW" was generated and output to the printer, together with a lsting of all input data values. The information from all matrices was printed. The output was in matrix format for ease of interpretation.

3.0 DATA INFORMATION

1) Pairs of values for the rectangular coordinates (x, y) represented data points.
2) An input data set contained a maximum of 100 ordered data points.
3) $P=$ number of data points in a data set.
4) The input data constants, as defined in Section 1.0 were specified for each input data set.
5) Restrictions on the input parameters were as follows:

$$
\begin{aligned}
& P>2, \ell \geq 0, r \geq 0,0 \leq \epsilon_{2}<\pi, \quad A \geq 0, M \leq P, 1 \leq Q \leq 3, \\
& \epsilon_{1} \geq 0, L \geq 0, R \geq 0, E \geq 0 .
\end{aligned}
$$

6) The Logical Connector Matrix (LCM) element values were given as input.
7) The Prelıminary Unlocking Matrıx (PUM) diagonal element values were given.

For the actual data values, see the example matrices in the following section.

4.0 EXAMPLE MATRICES

The following matrıces are a model of the problem logic, as defıned in Section 2.0.

Logical Connnector Matrıx (LCM)

Definition $-L_{1 j}$ is the $i j^{\text {th }}$ element in the LCM.

Conditions Met Matrix (CMM)

Condıtion	Value
1	0
2	1
3	1
4	0
5	0
\cdot	\cdot
\cdot	\cdot
.	-
15	0

Definition: C_{1} is the $1^{\text {th }}$ element in the CMM.

The C are computed output, but in order to illustrate this example, we are arbitrarıly setting these elements in the CMM.

Preliminary Unlocking Matrix (PUM)

LIC	1	2	3	4	5	\ldots	15
1	1	0	1	0	1	\ldots	1
2	0	0	1	1	1	\ldots	1
3	1	1	1	1	1	\ldots	1
4	0	1	1	0	1	\ldots	1
5	1	1	1	1	0	\ldots	1
.
.
.
15	0

(Output, non-diagonal elements) (Input, diagonal elements)

Furthermore, defining the ${ }_{10}$ th element in the PUM as P_{11}, we have the following: $P_{11}=P_{33}=1$ and all other P_{11} (i.e., the diagonal elements) ${ }^{1}$ are zero. This means that only the first and third LIC are required in the unlocking sequence. Note that these are input values.
$P_{12}=0$ since, $L_{12}=2$, signifying the AND condition for C_{1} and C_{2} which are zero and one, respectively, i.e., $01=0$.
$P_{13}=1$ since, $L_{13}=1$, sıgnifyng the $O R$ condition for C_{1} and C_{3} which are zero and one, respectively, i.e., $0+1=1$.
$P_{14}=0$ sınce, $L_{14}=2$, sıgnifyıng the AND conditıon for C_{1} and C_{4} which are both zero, i.e., $00=0$.
$\mathrm{P}_{15}=1$ since $L_{15}=0$, signifying the $\frac{\text { Not Used condition }}{}$ for C_{1} and C_{5}. The above
examples show how to generate the $P_{1 j}$ values.

LIC	VALUE
1	0
2	1
3	1
4	1
5	1
.	\cdot
.	\cdot
.	1
15	1

Definition: F_{1} is the $i^{\text {th }}$ element in the FUM.
$F_{1}=0$ since $P_{11}=1$ and $P_{12}=P_{14}=0$, i.e., the diagonal value is one and there is at least one zero element in the first row of PUM.
$F_{2}=1$, since $P_{22}=0$.
$F_{3}=1$, since $P_{33}=1$ and $P_{31}=P_{32}=P_{34}=P_{35}=\ldots=P_{3,15}=1$.
$F_{4}=1$, since $P_{44}=0$.
$\mathrm{F}_{5}=\mathrm{F}_{6}=\ldots=\mathrm{F}_{15}=1$, since, $\mathrm{P}_{55}=\mathrm{P}_{66}=\ldots=\mathrm{P}_{15,15}=0$,
respectively.
Since there is a zero element in FUM, ($\mathrm{F}_{1}=0$), the launch interceptor condition is not met.

5.0 SUPPLEMENTARY INFORMATION

1. The program will be written in FORTRAN on the BITS system.
2. No double precision or complex variables are required.
3. Your program will be a subroutine.
4. Assume the inputs are in labeled common, i.e., COMMON/INPUTS/ X(100), Y(100), EL, ... using the order in Section 6.0. You are free to use your own varıable names, however.
5. Outputs will be in labeled common, i.e., COMMON/OUTPTS/CMM(15), ... using the order in Section 7.0. Again you are free to use your own variable names.
6. Use the IFOUT flag to control printing. Code the output statements, but branch around them if $I F O U T=1$.
7. When the first and last points of N consecutive data points are identical, then the calculated distance to compare with ϵ (LIC \#7), will be that distance from the coincident point to all others of the N consecutive points.

6.0 INPUTS

1. Data Points
$\left(x_{i}, y_{1}\right)$
$i=1, \ldots, P$
$2 \leq P \leq 100$
accurate to one decimal place
real
2. Nineteen Parameters

1.	l	real
2.	r	"
3.	ϵ_{2}	"
4.	A	"

5. M integer
6. $Q \quad$ "
7. ϵ_{1} real
8. ${ }^{n_{1}}$ integer
9. n_{2} "
10. m_{2} "
11. $n_{3} \quad "$
12. $m_{3} \quad "$
13. $\mathrm{n}_{4} \quad "$
14. $\mathrm{m}_{4} \quad "$
15. n_{6}
16. L real
17. R real
18. E real
19. N integer
20. LCM Array $\operatorname{LCM}_{i, j}$ $\mathrm{i}=1, \ldots, 15$ integer $j=1, \ldots, 15$4. PUM arrayDiagonal Terms \quad PUM $_{i, i} \quad i=1, \ldots, 15 \quad$ integer
21. P - number of data pointsinteger
22. IFOUT - Controlling output, i.e., $=0$ Program prints output
$=1$ Program prints no output
7.0 OUTPUTS

| 1. Conditıons Met Matrix | CMM $_{\mathrm{i}}$, | $i=1,-, 15$ | integer |
| :--- | :--- | :--- | :--- | :--- |
| 2. Final Unlockıng Matrix | $\mathrm{FUM}_{\mathrm{i}}$, | $\mathrm{i}=1,-, 15$ | integer |

3. "LAUNCH" or "NO LAUNCH"(Use a logical variable which is true for launch and false for no launch).

APPENDIX C: PROBLEM \#1 TEST CASES

From Brown and Buchanan [10]

1.0 TEST CASE 1

- Input
- $100(X, Y)$ points defined by $\left(X_{i}, Y_{i}\right)=(2 i-2,1-1)$ for $1=1, \ldots, 100$
- LIC parameters $=\ell=2.3, r=2.3, \epsilon_{2}=0.2, A=0.3, M=4$,

$$
\mathrm{Q}=1, \epsilon_{1}=0.1 \text {, all } n_{i} \text { and } m_{i} \text { equal to } 0, L=2, R=2.2,
$$

$$
E=0, N=5 .
$$

- LCM:

LIC	1	2	3	4	5	$\ldots 15$
1	2	2	1	2	0	\ldots
2	2	2	1	1	0	\ldots
3	1	1	2	1	0	\ldots
4	2	1	1	2	0	\ldots
5	0	0	0	0	0	\ldots
.	\ldots
.	0					
.	\ldots
.	\ldots
15	0	0	0	0	0	\ldots

- PUM diagnoal: $P_{11}=P_{33}=1$; all other $P_{i i}$ equal to zero.
- Output
- PUM:

LIC	1	2	3	4	5	$\ldots 15$
1	1	0	0	0	1	\ldots
2	0	0	0	0	1	\ldots
3	0	0	1	0	1	\ldots
4	0	0	0	0	1	\ldots
5	1	1	1	1	0	\ldots
.	\ldots
.	\ldots
.	\ldots
15	1	1	1	1	1	\ldots

- CMM: all 0's
- FUM: 010111111111111
- Final Conclusion: No Launch

2.0 TEST CASE 2

- Input
$-\quad \underset{i \neq 5}{95}(X, Y)$ points defined by $\left(X_{1}, Y_{i}\right)=(2 i-2, i-1)$ for $i=1, \ldots, 96$ except
- LIC parameters: same as Test Case I.
- LCM:
$\left.\begin{array}{c|cccccc}\text { LIC } & 1 & 2 & 3 & 4 & 5 & \ldots 15 \\ \hline 1 & 2 & 1 & 2 & 2 & 0 & \ldots \\ 2 & 1 & 2 & 1 & 1 & 0 & \ldots \\ 3 & 2 & 1 & 2 & 1 & 0 & \ldots \\ 4 & 2 & 1 & 1 & 2 & 0 & \ldots \\ 5 & 0 & 0 & 0 & 0 & 0 & \ldots \\ . & . & . & . & . & . & \ldots \\ . & . & . & . & . & . & \ldots \\ . & . & . & . & . & . & \ldots\end{array}\right)$
- PUM diagonal: $P_{11}=P_{22}=1$ and all other $P_{i i}=0$
- Output
- PUM:

LIC	1	2	3	4	5	$\ldots 15$
1	1	1	0	0	1	\ldots
2	1	1	1	1	1	\ldots
3	0	1	0	0	1	\ldots
4	0	1	0	0	1	\ldots
5	1	1	1	1	0	\ldots
.	\ldots
.	\ldots.
.	\ldots
15	1	1	1	1	1	\ldots

- CMM: 110000011000000
- FUM: 011111111111111
- Final Conclusion: No Launch

3.0 TEST CASE 3

- Input
- (X,Y) points same as Test Case 2
- LIC parameters: same as Test Case 1
- LCM:

LIC	1	2	3	4	5	\ldots
1	2	2	1	1	0	\ldots
2	2	2	1	1	0	\ldots
3	1	1	2	1	0	\ldots
4	1	1	1	2	0	\ldots
5	0	0	0	0	0	\ldots
.	\ldots
.	\ldots
.	\ldots
15	0	0	0	0	0	\ldots

- PUM diagonal: same as Test Case 1
- Output
- PUM:

LIC	1	2	3	4	5	\ldots
1	1	1	1	1	1	\ldots
2	1	1	1	1	1	\ldots
3	1	1	0	0	1	\ldots
4	1	1	0	0	1	\ldots
5	1	1	1	1	0	\ldots
	1					
.	\ldots
.	\ldots
.	\ldots
15	1	1	1	1	1	\ldots

- CMM: 110000011000000
- FUM: all l's
- Final Conclusion: Launch

APPENDIX D: PROBLEM \#2 SPECIFICATIONS

1.0 GENERAL

Consider the following diagram:

A set of precewise cubic polynomials passing through predefined (x, y) coordinates, or knots, is a cubic spline if the functional value and the first and second derivatives of two adjoining cubic polynomials are continuous at the knot where they join.

For n knots, there are $n-1$ cubics. Since each cubic has 4 unknowns, there are $4 n-4$ unknowns in this cubic spline. The 3 continuity conditions at the $n-2$ inner points give $3 n-6$ conditions. There are n other conditions because the spline must pass through the knots. In addition, we need two more conditions to have $4 n-4$ conditions and $4 n-4$ unknowns. These additional conditions will be to specify the second derivative at each endpoint.

Note: An alternate form of the cubic over an interval $\left[X_{i}, X_{i+1}\right]$ is

$$
f_{i}(x)=y_{i}+a\left(x-x_{i}\right)+b\left(X-X_{i}\right)^{2}+c\left(x-X_{i}\right)^{3}
$$

2.0 DESCRIPTION OF SUBROUTINES

Four subroutınes are required for Problem \#2:

1. SPLINE to calculate coefficients of a cubic spline passing through given knots. Use the first cubic representation.
2. ADJUST to calculate coefficients of the alternate form of the cubic (see above).
3. SINTRP to interpolate the functional value and the first two derivatives at an input x_{0} using the coefficients from ADJUST.
4. SINTEG to integrate from X_{1} to X_{2} the spline generated using coefficients
from ADJUST.

Numerical results must be within 1.0% (relative error) of comparable results from library routines.
2.1 SUBROUTINE SPLINE (X, Y, N, SDL, SDR, COEFF, IERR)

INPUT $\quad \mathrm{N}, \#$ of knots, $2 \leq \mathrm{N} \leq 6$
$\mathrm{X}(\mathrm{I}), \mathrm{Y}(\mathrm{I})$, knots (coordinates), in any order
SDL, second derivative at left-most knot SDR, second derivative at right-most knot

OUTPUT $\{X(I), Y(I)\}$, in ascending X order.
((COEFF(I,J), $\mathrm{I}=1,4), \mathrm{J}=1, \mathrm{~N}-1$)
For a given interval $\mathrm{J},\left[\mathrm{X}_{\mathrm{J}}, \mathrm{X}_{\mathrm{J}+1}\right.$]
$\operatorname{COEFF}(1, \mathrm{~J})=\mathrm{a}_{0}$
$\operatorname{COEFF}(2, J)=a_{1}$
$\operatorname{COEFF}(3, J)=a_{2}$
$\operatorname{COEFF}(4, J)=a_{3}$
where $f(X)=a_{0}+a_{1} X+a_{2} X^{2}+a_{3} X^{3}$
is the cubic in that interval.
IERR $=0$ for normal return
$=\quad 2$ for two or more X coordinates identical
$=8$ for a singular matrix

2.2 SUBROUTINE ADJUST (X, Y, N, COEFF, COEFAD)

INPUT N, \# of knots, $2 \leq N \leq 6$
X, X-coordinates of knots in ascending order
Y, Y-coordinates of knots corresponding to the x -coordinates
COEFF, spline coefficients resulting from SUBROUTINE SPLINE
OUTPUT ((COEFAD(I, J), $\mathrm{I}=1,3), \mathrm{J}=1, \mathrm{~N}-1$)
For a given interval $\mathrm{J},\left[\mathrm{X}_{\mathrm{J}}, \mathrm{X}_{\mathrm{J}+1}\right]$
$\operatorname{COEFAD}(1, \mathrm{~J})=\mathbf{a}$
$\operatorname{COEFAD}(2, \mathrm{~J})=\mathrm{b}$
$\operatorname{COEFAD}(3, \mathrm{~J})=c$
where $f_{J}(X)=Y_{J}+a\left(X-X_{J}\right)+b\left(X-X_{J}\right)^{2}+c\left(X-X_{J}\right)^{3}$ is the cubic in that interval.

2.3 SUBROUTINE SINTRP (N, X, Y, COEFAD, XO, YO, YOP, YOPP, IERR)

INPUT N, \# of knots, $2 \leq N \leq 6$
X, X-coordinates of knots in ascending order
Y, Y-coordinates of knots corresponding to the X-coordinates
COEFAD, spline coefficients resulting from SUBROUTINE ADJUST
XO, arbitrary X coordinate
OUTPUT YO, interpolated value.
YOP, first derivative at XO.
YOPP, second derivative at XO.
IERR $=0$ for normal return
$=\quad 1$ if $\mathrm{XO}<\mathrm{X}(1)$
$=\quad 3$ if $\mathrm{XO}>\mathrm{X}(\mathrm{N})$
2.4 SUBROUTINE SINTEG (N, X, Y, COEFAD, X1, X2, S, IERR)

INPUT $\quad N$, 非 of knots, $2 \leq N \leq 6$
X, X-coordinates of knots in ascending order
Y, Y-coordinates of knots corresponding to X-coordinates
COEFAD, spline coefficients resulting from SUBROUTINE ADJUST X1, X2, endpoints for integration

OUTPUT S, integral of the spline function from $X 1$ to $X 2$. Return 0 . if the endpoints of the spline don't span [$\mathrm{X} 1, \mathrm{X} 2$] or $[\mathrm{X} 2, \mathrm{X} 1]$.

IERR = 0 for normal return
$=\quad 1$ if endpoints of spline don't span $[\mathrm{X} 1, \mathrm{X} 2]$ or $[\mathrm{X} 2, \mathrm{X} 1]$.
Note: If IERR $\neq 0$ after calling SPLINE, then ADJUST, SINTRP and SINTEG will not bè called.

3.0 SUPPLEMENTARY INFORMATION

$$
\begin{array}{ll}
f_{1}=a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3} & x_{1} \leq x \leq x_{2} \\
f_{2}=b_{0}+b_{1} x+b_{2} x^{2}+b_{3} x^{3} & x_{2} \leq x \leq x_{3}
\end{array}
$$

Solve for a in the matrix equation $\mathrm{Ca}=\mathrm{d}$

				C					a		d
(1)	10	0	2	$6 \mathrm{X}_{1}$	0	0	0	0	$\left(a_{0}\right)$		
(2)	0	0	0	0	0	0	2	$6 X_{3}$	a_{1}		S_{1}
(3)	1	X_{1}	x_{1}^{2}	x_{1}^{3}	0	0	0	0	a_{2}		Y_{1}
(4)	1	X_{2}	x_{2}^{2}	x_{2}^{3}	0	0	0	0	a_{3}	$=$	Y_{2}
(5)	0	0	0	0	1	X_{2}	x_{2}^{2}	x_{2}^{3}	b_{0}		Y_{2}
(6)	0	0	0	0	1	x_{3}	x_{3}^{2}	x_{3}^{3}	b_{1}		Y_{3}
(7)	0	1	$2 \mathrm{X}_{2}$	$3 x_{2}^{2}$	0	-1	$-2 \mathrm{X}_{2}$	$-3 x_{2}^{2}$	b_{2}		0
(8)	0	0	2	$6 \mathrm{X}_{2}$	0	0	-2	$-6 x_{2}$	(b_{3}		0

(1) 2nd derivative at left-most endpoint given, S_{0}

$$
\begin{aligned}
& \mathrm{f}_{1}=\mathrm{a}_{1}+2 \mathrm{a}_{2} \mathrm{X}+3 \mathrm{a}_{3} \mathrm{x}^{2} \\
& \mathrm{f}_{1}^{\prime \prime}=2 \mathrm{a}_{2}+6 \mathrm{a}_{3} \mathrm{X} \\
& \mathrm{f}_{1}^{\prime \prime}\left(\mathrm{X}_{1}\right)=\mathrm{S}_{\overrightarrow{0}}-2 \mathrm{a}_{2}+6 \mathrm{a}_{3} \mathrm{X}_{1}=\mathrm{S}_{0}
\end{aligned}
$$

(2) 2nd derivative at right-most endpoint is given, S_{1}

$$
\begin{aligned}
& f_{2}^{\prime \prime}(X)=2 b_{2}+6 b_{3} x \\
& f_{2}^{\prime}\left(x_{3}\right)=S_{1} \Rightarrow 2 b_{2}+6 b_{3} x_{3}=S_{1}
\end{aligned}
$$

(3) f_{1} passes through $\left(X_{1}, Y_{1}\right)$

$$
f_{1}\left(X_{1}\right)=a_{0}+a_{1} X_{1}+a_{2} x_{1}^{2}+a_{3} x_{1}^{3}=Y_{1}
$$

(4) f_{1} passes through $\left(X_{1}, Y_{1}\right)$
(5) f_{2} passes through $\left(X_{2}, Y_{2}\right)$
(6) f_{2} passes through $\left(X_{3}, Y_{3}\right)$
(7) $\quad \mathrm{f}^{\prime}{ }_{1}\left(\mathrm{X}_{2}\right)=\mathrm{f}_{2}\left(\mathrm{X}_{2}\right)$ (first derivative continuous at $\left(\mathrm{X}_{2}, \mathrm{Y}_{2}\right)$)

$$
\begin{aligned}
& a_{1}+2 a_{2} x_{2}+3 a_{3} x_{2}^{2}=b_{1}+2 b_{2} x_{2}+3 b_{3} x_{2}^{2} \\
& a_{1}+2 a_{2} x_{2}+3 a_{3} x_{2}^{2}-b_{1}-2 b_{2} x_{2}-3 b_{3} x_{2}^{2}=0
\end{aligned}
$$

(8) $\mathrm{f}_{1}\left(\mathrm{X}_{2}\right)=\mathrm{f}_{2}\left(\mathrm{X}_{2}\right)$ (second derivative continuous at $\left(\mathrm{X}_{2}, \mathrm{Y}_{2}\right)$)

$$
\begin{aligned}
& 2 a_{2}+6 a_{3} x_{2}=2 b_{2}+6 b_{3} x_{2} \\
& 2 a_{2}+6 a_{3} x_{2}-2 b_{2}-6 b_{3} x_{2}=0
\end{aligned}
$$

APPENDIX E: PROBLEM \#2 TEST CASE

INPUT	$\mathrm{N}=4$	I	$\mathrm{X}(\mathrm{I})$
		$\mathrm{Y}(\mathrm{I})$	
	2	1.	2.
	3	2.	4.
	4	3.	2.
		4.	2.

$$
\begin{aligned}
& \mathrm{SDL}=0 . \\
& \mathrm{SDR}=0 . \\
& \mathrm{X} 0=3.5 \\
& \mathrm{X} 1=1.5 \\
& \mathrm{X} 2=2.5
\end{aligned}
$$

OUTPUT

SPLINE OUTPUT --

$\mathrm{X}(\mathrm{I}), \mathrm{Y}(\mathrm{I})$	1.0000	2.0000	2.0000	4.0000	3.0000	2.0000
	4.0000	2.0000				

COEFF, SPLINE 1 . $000000-.400000 \quad 3.600000-1.200000$
COEFF, SPLINE $2-25.600000 \quad 38.000000-15.600000 \quad 2.000000$
COEFF, SPLINE 3 50.000000-37.600000 9.600000 -. 800000
$\operatorname{IERR}(S P L I N E)=0$

ADJUST OUTPUT --
COEFF, SPLINE 1 3.200000 . 000000 -1.200000
COEFF, SPLINE $2-.400000-3.600000 \quad 2.000000$
COEFF, SPLINE $3-1.600000 \quad 2.400000-.800000$

SINTRP+SINTEG--YO $=1.700000 \mathrm{YOP}=.200000 \mathrm{YOPP}=2.400000$	IERR(SINTRP) $=0$		
S	$=3.750000$		IERR(SINTEG) $=0$

APPENDIX F: PROBLEM \#3 SPECIFICATIONS

1.0 GENERAL

Given a spherical earth, any point on its surface can be described by two angles (spherical polar coordınates). These angles are specified by defıning a pair of reference planes. The first plane is called the "equator" plane, and this plane divides the earth into two hemispheres: the northern hemisphere and the southern hemisphere. The second plane, the "Greenwich" plane, is normal to the equator plane (it contains the polar axis) and also divides the earth into two hemispheres, east and west. One of the angles mentioned above is the "longitude" which is the dihedral angle between (a) the Greenwich plane and (b) a plane perpendicular to the equator (contaıning the polar axis) and passing through the point described. Longitude is measured positive east of Greenwich. The other angle, the "latitude", is the angle formed by (a) a ray from the center of the earth through the point and (b) the projection of the ray on the equator plane. Latitude is measured positive north of the equator. There 1s, thus, a one-to-one correspondence between every point on the sphere and every ordered pair (θ, ϕ), where $0<\theta \leq 2 \pi$ and $\frac{-\pi}{2}<\phi \leq \frac{\pi}{2}$. (θ is called longitude and ϕ is called latitude).

If two points not collinear with the center of the earth are given, it is possible to define the "azımuth" of the path from the first to the second as follows: the azimuth is the dihedral angle between (a) the plane surface bounded by the ray from the center of the earth to the first point and the ray from the center of the earth to the north pole and (b) the plane surface bounded by the ray from the center of the earth to the first point and the ray from the center of the earth to the second point. The azimuth is positive if the second point is further east than the first and negative if the second is west of the first. If the first and second point have the same longitude or either (but not both) is at a pole, then the azimuth is zero if the second point is north of the first, and is π (not $-\pi$) if the second points is south of the first. Note that if the two points are collinear with the center of the earth, then the azimuth of the path from the first to the second is undefined.

A great circle is the intersection between the earth sphere and a plane through the center of the earth. The great circle distance between two points is the product of the radius of the earth (3440 n . mi.) and the angle (in radians) between rays joining the center of the earth and the two points. (NOTE: the angle is always less than or equal to π).

2.0 MATHEMATICS

If the longitude and latitude (θ and ϕ) of any point P are given, then a unit vector directed toward P can be expressed in "Cartesian" coordinates by the transformation equations:

$$
\text { P: } \quad \begin{aligned}
& \mathrm{X}=\cos \phi \cos \theta \\
& \mathrm{Y}=\cos \phi \sin \theta \\
& \mathrm{Z}=\sin \phi
\end{aligned}
$$

A unit vector is one for which $X^{2}+Y^{2}+Z^{2}=1$. If two non-collinear unit vectors U_{1} and U_{2} are given, a vector P , normal to the plane containıng them, is given by:

$$
\text { P: } \quad \begin{aligned}
& \mathrm{X}=\mathrm{Y}_{1} \mathrm{Z}_{2}-Y_{2} Z_{1} \\
& \mathrm{Y}=\mathrm{Z}_{1} \mathrm{X}_{2}-Z_{2} X_{1} \\
& \mathrm{Z}=\mathrm{X}_{1} \mathrm{Y}_{2}-\mathrm{X}_{2} \mathrm{Y}_{1}
\end{aligned}
$$

This vector can be normalized (1.e., converted to a unit vector) by dividing each component by the vector length (the square root of the sum of the squares of its components). The unit vector, P^{\prime}, along P is given by:

$$
\text { P': } \quad \begin{aligned}
& X^{\prime}=X / \sqrt{X^{2}+Y^{2}+Z^{2}} \\
& Y^{\prime}=Y / \sqrt{X^{2}+Y^{2}+Z^{2}} \\
& Z^{\prime}=Z / \sqrt{X^{2}+Y^{2}+Z^{2}}
\end{aligned}
$$

Now, P^{\prime} is a unit vector normal to the plane containing U_{1} and U_{2}. The direction of P^{\prime} relative to the directions of U_{1} and U_{2} is the direction a right hand screw would advance if turned from U_{1} toward U_{2}.

The angle between two vectors can be found by the following equation:
$X_{1} X_{2}+Y_{1} Y_{2}+Z_{1} Z_{2}=\left(\sqrt{X_{1}{ }^{2}+Y_{1}{ }^{2}+Z_{1}^{2}}\right)\left(\sqrt{X_{2}{ }^{2}+Y_{2}{ }^{2}+Z_{2}^{2}}\right) \cos \zeta$
where ζ is the required angle.
Note that if the vectors are perpendicular (i.e., $\zeta=\pi / 2$) then $\cos \zeta=0$ and

$$
X_{1} X_{2}+Y_{1} Y_{2}+Z_{1} Z_{2}=0
$$

The dihedral angle between two planes is equal to the angle between two vectors normal to the planes, provided care is taken to be sure the directions of the normals are properly defined.

3.0 DESCRIPTION OF SUBROUTINE

Given the longitude and latitude of two points, write a subroutine named CALC to find:
I. The great circle distance between the two points (in nautical miles)
II. The azimuth of the path from the first to the second (in radians)

Further, given the longitude and latitude of a third point and an angle α, a small circle on the surface of the earth whose "radius" is α may be defined. Here α is not really the radius of the circle but is the angle between (a) the ray from the center of the earth to the center of the small circle and (b) the ray from the center of the earth to any point on the circle. Note that the great circle distance from the center of the small circle to any point on the circumference is the radius of the earth (3440 n. mı.) tımes the specifıed angle, α (in radians).
III. Find all the intersections (if any) of the great circle path connecting points 1 and 2 and the small circle defined by point 3 and list them in the order encountered as the path is traversed from point 1 toward point 2. Note that only points between 1 and 2 are desired.

The calling sequence for the subroutine should be:
CALL CALC (LOC1, LOC2, LOC3, ALFA, DIST, AZMUTH, NINT, INT1, INT2) with

LOC1, LOC2, LOC3, INT1, and INT2 dimensioned 2,
where:
LOC1, LOC2, LOC3 are (LAT, LON) (in radians) of points 1, 2, and 3 respectively.
ALFA is the angle (in radians) defining the small circle.
DIST is the great circle distance (in nautical miles) from point 1 to point 2.
AZMUTH is the azimuth (in radians) of the path from point 1 to point 2.
NINT is the number of intersections of the great circle path and the small circle (0,1 or 2).

INT1, INT2 are (LAT, LON) (in radians) of the intersections. If NINT $=0$, then INTI and INT2 should be set to (0,0). If NINT $=1$ then INT2 should be $(0,0)$.

4.0 SUPPLEMENTARY INFORMATION

The definition of the azımuth needs more expansion when the two points, P_{1} and P_{2}, and the center of the earth all lie in one plane. In this case, the path from P_{1} to P_{2}, will pass over a pole. (Remember that if P_{1} and P_{2} are collinear with the center of the earth, then the azimuth is undefined.)

In this case, first determine the shortest path from P_{1} to P_{2}. Then determine the direction of this path when leaving P_{1}. If the direction is north, then azimuth $=0$. Otherwise, the direction is south and azimuth $=\pi$.

APPENDIX G: PROBLEM \#3 TEST CASE

INPUT

(1) LOCl: | 0.692315 | |
| :--- | :--- |
| | 3.395404 |

(2) LOC2: -0.831659
5.836354
(3) LOC3: 0.493327
2.400971

ALPHA: 1.561159

OUTPUT
DIST:
9020.571289

AZIMUTH:
2.075972

NINT: $\quad 1$
INT1:
0.197828
4.068534

INT2:
0.0
0.0

APPENDIX H: EXPERIMENT DATA FOR SUBJECT PROGRAM A1

Explanation: Repetition no.

1.	$\begin{aligned} & 1(1) \\ & 14.8 \end{aligned}$	$\begin{aligned} & 1 \text { (2) } \\ & 14.8 \end{aligned}$	$\begin{aligned} & 268(3,5) \\ & 3035.9 \end{aligned}$		
2.	$\begin{aligned} & 1(1) \\ & 14.8 \end{aligned}$	$\begin{aligned} & 37(2) \\ & 289.7 \end{aligned}$	$\begin{aligned} & 116(3) \\ & 1314.8 \end{aligned}$	$\begin{aligned} & 56(5,6) \\ & 631.4 \end{aligned}$	
3.	$\begin{aligned} & 1(1) \\ & 14.8 \end{aligned}$	$\begin{aligned} & 36(2) \\ & 283.2 \end{aligned}$	$\begin{aligned} & 164(5,6) \\ & 1857.2 \end{aligned}$		
4.	$\begin{aligned} & 1(1) \\ & 14.7 \end{aligned}$	$\begin{aligned} & 19(2) \\ & 152.3 \end{aligned}$	$\begin{aligned} & 249(6) \\ & 2824.6 \end{aligned}$		
5.	$\begin{aligned} & 1 \text { (1) } \\ & 14.7 \end{aligned}$	$\begin{aligned} & 5(2) \\ & 45.1 \end{aligned}$	$\begin{aligned} & 604(4) \\ & 6851.0 \end{aligned}$	$\begin{aligned} & 217(8) \\ & 2452.3 \end{aligned}$	
6.	$\begin{aligned} & 1(1) \\ & 14.7 \end{aligned}$	$\begin{aligned} & 3(3) \\ & 30.2 \end{aligned}$	$\begin{aligned} & 1(2) \\ & 11.3 \end{aligned}$	$\begin{aligned} & 952(4) \\ & 10,750.6 \end{aligned}$	$\begin{aligned} & 4072(5,6) \\ & 46,164.0 \end{aligned}$
7.	$\begin{aligned} & 1(1) \\ & 14.8 \end{aligned}$	$\begin{aligned} & 9(2) \\ & 75.9 \end{aligned}$	$\begin{aligned} & 499 \text { (4) } \\ & 5664.8 \end{aligned}$	$\begin{aligned} & 244(6) \\ & 2763.6 \end{aligned}$	
8.	$\begin{aligned} & 1 \text { (1) } \\ & 14.7 \end{aligned}$	$\begin{aligned} & 2(2) \\ & 22 \end{aligned}$	$\begin{aligned} & 436(4) \\ & 4943.4 \end{aligned}$	$\begin{aligned} & 68 \text { (6) } \\ & 769.0 \end{aligned}$	
9.	$\begin{aligned} & 1(1,2) \\ & 14.8 \end{aligned}$	$\begin{aligned} & 491(3) \\ & 5565.7 \end{aligned}$	$\begin{aligned} & 219(5) \\ & 2472.9 \end{aligned}$		
10.	$\begin{aligned} & 1(1) \end{aligned}$	$\begin{aligned} & 17(2) \\ & 137.2 \end{aligned}$	$\begin{aligned} & 278 \text { (3) } \\ & 3152.3 \end{aligned}$	$\begin{aligned} & 476(4) \\ & 5381.4 \end{aligned}$	$\begin{aligned} & 342(6) \\ & 3859.7 \end{aligned}$
11.	$\begin{aligned} & 1(1) \\ & 14.7 \end{aligned}$	$\begin{aligned} & 18(2) \\ & 144.5 \end{aligned}$	$\begin{aligned} & 282(3,5) \\ & 3197.0 \end{aligned}$		
12.	$\begin{aligned} & 1(1) \\ & 14.9 \end{aligned}$	$\begin{aligned} & 19(2) \\ & 152.3 \end{aligned}$	$\begin{aligned} & 361(3,7) \\ & 4092.5 \end{aligned}$		
13.	$\begin{aligned} & 1(1) \\ & 14.9 \end{aligned}$	$\begin{aligned} & 13(2) \\ & 106.7 \end{aligned}$	$\begin{aligned} & 291(3) \\ & 3295.9 \end{aligned}$	$\begin{aligned} & 78(4) \\ & 882.0 \end{aligned}$	$\begin{aligned} & 378(10) \\ & 4269.0 \end{aligned}$
14.	$\begin{aligned} & 1 \text { (1) } \\ & 14.9 \end{aligned}$	$\begin{aligned} & 3(2) \\ & 30.2 \end{aligned}$	$\begin{aligned} & 28(3) \\ & 316.5 \end{aligned}$	$\begin{aligned} & 423(4) \\ & 4775.4 \end{aligned}$	$\begin{aligned} & 2152(8) \\ & 24,294.9 \end{aligned}$
15.	$\begin{aligned} & 1(2) \\ & 14.6 \end{aligned}$	$\begin{aligned} & 1(1) \\ & 14.8 \end{aligned}$	$\begin{aligned} & 36(5,6) \\ & 406.8 \end{aligned}$		

	anation:	Repetition no.		Failure case no. (Error no.) Time to failure in elapsed seconds		
16.	$\begin{aligned} & 1(1) \\ & 14.9 \end{aligned}$	$\begin{aligned} & 8(2) \\ & 68.2 \end{aligned}$	$\begin{aligned} & 79 \text { (3) } \\ & 896.5 \end{aligned}$	$\begin{aligned} & 155(4) \\ & 1752.2 \end{aligned}$	$\begin{aligned} & 533(8) \\ & 6006.8 \end{aligned}$	
17.	$\begin{aligned} & 1(1) \\ & 14.8 \end{aligned}$	$\begin{aligned} & 13(2) \\ & 106.3 \end{aligned}$	$\begin{aligned} & 492(3) \\ & 5574.4 \end{aligned}$	$\begin{aligned} & 26(6) \\ & 292.3 \end{aligned}$		
18.	$\begin{aligned} & 1(2) \\ & 14.7 \end{aligned}$	$\begin{aligned} & 1(1) \\ & 14.9 \end{aligned}$	$\begin{aligned} & 113(4) \\ & 1280.8 \end{aligned}$	$\begin{aligned} & 248(5) \\ & 2812.6 \end{aligned}$		
19.	$\begin{aligned} & 1(1) \\ & 14.7 \end{aligned}$	$\begin{aligned} & 13(2) \\ & 106.7 \end{aligned}$	$\begin{aligned} & 1185(5,8) \\ & 13,436.0 \end{aligned}$			
20.	$\begin{aligned} & 1(1) \\ & 14.9 \end{aligned}$	$\begin{aligned} & 14(2) \\ & 114.5 \end{aligned}$	$\begin{aligned} & 390(4) \\ & 4418.5 \end{aligned}$	$\begin{aligned} & 970(3) \\ & 10,997.0 \end{aligned}$	$\begin{aligned} & 898(6) \\ & 10,018 . \end{aligned}$	
21.	$\begin{aligned} & 1(1) \\ & 14.8 \end{aligned}$	$\begin{aligned} & 1(2) \\ & 14.5 \end{aligned}$	$\begin{aligned} & 121(3) \\ & 1372.4 \end{aligned}$	$\begin{aligned} & 60(6) \\ & 677.5 \end{aligned}$		
22.	$\begin{aligned} & 1(1) \\ & 14.7 \end{aligned}$	$\begin{aligned} & 15(2) \\ & 122.0 \end{aligned}$	$\begin{aligned} & 365(4) \\ & 4136.5 \end{aligned}$	$\begin{aligned} & 1525(3) \\ & 17,274.2 \end{aligned}$	$\begin{aligned} & 447(5) \\ & 5039.5 \end{aligned}$	$\begin{aligned} & 1002 \text { (9) } \\ & 11,318.0 \end{aligned}$
23.	$\begin{aligned} & 1 \text { (2) } \\ & 14.8 \end{aligned}$	$\begin{aligned} & 1(1) \\ & 14.8 \end{aligned}$	$\begin{aligned} & 933(3) \\ & 10,574.3 \end{aligned}$	$\begin{aligned} & 331(5) \\ & 3737.0 \end{aligned}$		
24.	$\begin{aligned} & 1(1,2) \\ & 14.7 \end{aligned}$	$\begin{aligned} & 492(8) \\ & 5580.9 \end{aligned}$				
25.	$\begin{aligned} & 1(2) \\ & 15.0 \end{aligned}$	$\begin{aligned} & 2(1) \\ & 22.3 \end{aligned}$	$\begin{aligned} & 446(4) \\ & 5062.2 \end{aligned}$	$\begin{aligned} & 318(8) \\ & 3598.4 \end{aligned}$		
26.	$\begin{aligned} & 1(1) \\ & 14.7 \end{aligned}$	$\begin{aligned} & 5(2) \\ & 45.6 \end{aligned}$	$\begin{aligned} & 338(4) \\ & 3835.2 \end{aligned}$	$\begin{aligned} & 2126(8) \\ & 24,091.9 \end{aligned}$		
27.	$\begin{aligned} & 1(1) \\ & 14.7 \end{aligned}$	$\begin{aligned} & 8(2) \\ & 68.2 \end{aligned}$	$\begin{aligned} & 346(4) \\ & 3920.7 \end{aligned}$	$\begin{aligned} & 615(8) \\ & 6974.6 \end{aligned}$		
28.	$\begin{aligned} & 1(1) \\ & 14.9 \end{aligned}$	$\begin{aligned} & 11(2) \\ & 91.6 \end{aligned}$	$\begin{aligned} & 1098(4) \\ & 12,454.3 \end{aligned}$	$\begin{aligned} & 133(5) \\ & 1503.7 \end{aligned}$		
29.	$\begin{aligned} & 1(1) \\ & 14.6 \end{aligned}$	$\begin{aligned} & 5(2) \\ & 45.0 \end{aligned}$	$\begin{aligned} & 95(8) \\ & 1077.6 \end{aligned}$			
30.	$\begin{aligned} & 1(1) \\ & 14.9 \end{aligned}$	$\begin{aligned} & 8(2) \\ & 68.3 \end{aligned}$	$\begin{aligned} & 922(6) \\ & 10,459.8 \end{aligned}$			

APPENDIX H: EXPERIMENT DATA FOR SUBJECT PROGRAM A1 (Continued)

Explanation:	Repetition no.	Fallure case no. (Error no.) Time to failure in elapsed seconds

31.	1 (1)	7 (2)	384 (4)	$\begin{aligned} & 116(5,6) \\ & 1313.9 \end{aligned}$		
	14.9	61.0	4353.3			
32.	1 (1)	3 (2)	$\begin{aligned} & 184(5,6) \\ & 20857,6 \end{aligned}$			
	14.9	29.9				
33.	1 (1)	6 (2)	195 (4)	$\begin{aligned} & 633(8) \\ & 7180.8 \end{aligned}$		
	14.7	53.6	2210.8			
34.	1 (1)	19 (2)	38 (3)	$\begin{aligned} & 397(4) \\ & 4484.5 \end{aligned}$	$\begin{aligned} & 2689(5,6) \\ & 30,366.7 \end{aligned}$	
	14.7	152.2	429.4			
35.	1 (2)	1(1)	$70(8)$			
	14.7	14.8				
36.	1 (1)	19 (2)	1010 (6)			
	15.0	152.4	11,455.0			
37.	1 (1)	21 (2)	7 (4)	532 (3)	1205 (8)	
	14.6	167.9	78.4	6031.0	13,619.9	
38.	1 (1)	11 (2)	1311 (4)	337 (3)	367 (10)	
	14.9	91.4	14,862.0	3821.3	4148.5	
39.	1 (1)	1(2)	31 (3)	717 (4)	$\begin{aligned} & 1515(10) \\ & 17,132.9 \end{aligned}$	
	14.9	14.8	351.2	8100.0		
40.	2 (1)	6 (2)	$\begin{aligned} & 251(5,6) \\ & 2847.1 \end{aligned}$			
	22.3	52.9				
41.	1 (1)	2 (2)	158 (4)	1326 (3)	258 (5)	$\begin{aligned} & 278(8) \\ & 3138.1 \end{aligned}$
	14.8	22.3	1790.3	15,024.1	2915.2	
42.	1 (1)	5 (2)	205 (3)	709 (4)	$\begin{aligned} & 1307(5,6) \\ & 14,753.5 \end{aligned}$	
	14.8	45.0	2325.8	8011.6		
43.	1 (2)	1 (1)	841 (4)	9 (3)	$\begin{aligned} & 539(10) \\ & 6092.6 \end{aligned}$	
	14.5	14.8	9543.3	101.8		
44.	1 (1)	4 (2)	80 (3)	203 (4)	$\begin{aligned} & 868(5,6) \\ & 9797.8 \end{aligned}$	
	14.8	37.7	907.2	2291.1		
45.	1 (1)	6 (2)	375 (4)	$1154(3,5)$	$\begin{aligned} & 1200(10) \\ & 13,550.5 \end{aligned}$	
	14.9	53.1	4256.7	13,065.0		

APPENDIX H: EXPERIMENT DATA FOR SUBJECT PROGRAM AI (Contınued)

Explanation:	Repetition no.	Fallure case no. (Error no.)
		Time to failure in elapsed seconds

46.	$1(1)$	$21(2)$	$521(8)$		
	14.7	167.8	5908.2		
47.	$1(1)$	$18(2)$	$1155(4)$	$385(5,6)$	
	14.9	144.5	$13,088.0$	4359.1	
48.	$1(2)$	$1(1)$	$13(3)$	$513(4)$	$7(5)$
	14.8	14.6	147.3	5793.2	78.6
49.	$1(1)$	$24(2)$	$45(4)$	$1796(3,5,6)$	
	14.9	190.6	508.6	$20,369.4$	
50.	$1(2)$	$2(1)$	$442(4)$	$249(6)$	
	14.6	22.2	5013.7	2821.0	

APPENDIX I: EXPERIMENT DATA FOR SUBJECT PROGRAM BI

Explanation:		Repetition no.		Fallure case no. (Error no.) Time to fanlure in elapsed second		
1.	4 (1)	$1(2,3) *$	10 (4)	167 (8)		
	43.8	10.5	111.6	1872.9		
2.	3 (1)	$1(2,3)$	46 (4)	142 (5)	298 (6)	
	32.7	10.6	514.8	1593.2	3325.9	
3.	7 (1)	1(2)	3 (3)	27 (5)	310 (4)	3287 (7)
	76.9	10.5	32.9	302.1	3459.7	36,732.8
4.	2 (1)	$2(2,3)$	12 (5)	166 (4)	3961 (6)	
	21.5	21.7	133.5	1851.9	44,254.6	
5.	4 (1)	2 (3)	1 (2)	7 (4)	337 (5)	581 (6)
	43.7	21.8	10.5	77.9	3784.8	6489.3
6.	6 (1)	5 (2)	1(3)	14 (4)	776 (5)	5956 (8)
	65.9	55.0	10.5	156.2	8707.3	66,536.0
7.	12 (1)	5 (2)	2 (3)	114 (4)	793 (5)	150 (8)
	132.6	55.2	21.9	1279.8	8896.8	1673.0
8.	9 (1)	$1(2,3)$	10 (4)	$454(5,6)$		
	99.3	10.5	112.0	5093.0		
9.	3 (1)	3 (3)	1(2)	108 (4)	185 (5)	660 (7)
	32.5	32.8	10.5	1210.8	2076.1	7366.8
10.	36 (1)	$1(2,3)$	65 (4)	646 (5)	2607 (8)	
	399.4	10.4	729.6	7240.0	29,143.9	
11.	6 (1)	1 (2)	1 (3)	127 (5)	52 (4)	967 (6)
	66.0	10.4	10.6	1425.9	579.3	10,805.1
12.	2 (1)	$3(2,3)$	52 (4)	119 (7)		
	21.5	32.9	584.1	1334.6		
13.	4 (1)	4 (3)	3 (2)	193 (4)	34 (5)	57 (6)
	43.8	44.3	32.8	2167.4	380.7	635.7
14.	8 (1)	3 (2)	1 (3)	74 (5)	7 (4)	1001 (6)
	88.2	32.8	10.5	830.0	77.3	11,190.1
15.	22 (1)	2 (2)	2 (3)	97 (4)	1152 (5)	4911 (8)
	243.8	21.6	21.7	1089.0	12,919.2	54,877.0

* For explanation regarding errors \#2 and 3, see comments on pages 39 and 53.

APPENDIX I: EXPERIMENT DATA FOR SUBJECT PROGRAM BI (Contınued)

Explanation:	Repetition no.	Fallure case no. \quad(Error no.)\quadTime to failure in elapsed seconds

16.	2 (1)	5 (3)	5 (2)	39 (5)	13 (4)	814 (7)
	21.6	55.5	55.3	437.6	144.2	9101.1
17.	1 (1)	6 (2)	10 (3)	66 (4)	381 (5)	369 (6)
	10.5	66.5	111.3	740.8	4272.3	4125.7
18.	3 (1)	4 (3)	5 (2)	87 (4)	31 (5)	1963 (6)
	32.5	44.0	55.2	976.3	346.8	21,943.1
19.	5 (1)	$5(2,3)$	166 (7)	193 (4)		
	54.8	55.2	1861.9	2161.1		
20.	1(1)	1 (2)	9 (3)	47 (4)	205 (5)	215 (6)
	10.3	10.4	100.1	527.2	2297.4	2401.3
21.	12 (1)	$2(2,3)$	67 (4)	492 (5)	1461 (6)	
	132.6	21.7	752.1	5515.1	16,343.9	
22.	11 (1)	$2(2,3)$	321 (5)	104 (4)	3239 (7)	
	121.4	21.7	3605.2	1160.7	36,223.7	
23.	1 (1)	$3(2,3)$	84 (4)	401 (5)	3368 (8)	
	10.4	32.8	944.4	4497.4	37,647.8	
24.	5 (1)	$1(2,3)$	116 (4)	677 (5)	528 (8)	
	54.8	10.4	1301.9	7591.7	5903.9	
25.	5 (1)	$1(2,3)$	2 (4)	25 (5)	2124 (6)	
	54.9	10.5	21.8	279.6	23,742.8	
26.	19 (1)	$1(2,3)$	21 (4)	$49(5,6)$		
	210.5	10.6	235.1	549.2		
27.	3 (1)	$1(2,3)$	19 (4)	5.2 (5)	1442 (6)	
	32.6	10.5	212.8	5744.3	16,123.9	
28.	5 (1)	1 (3)	3 (2)	244 (4)	323 (5)	1683 (7)
	55.2	10.7	32.8	2739.3	3624.0	18,809.7
29.	1 (1)	1 (3)	1 (2)	207 (4)	108 (5)	$1919(6,8)$
	10.4	10.5	10.5	2324.8	1212.0	21,448.0
30.	11 (1)	$1(2,3)$	112 (4)	48 (5)	449 (6)	
	121.5	10.5	1257.6	537.9	5018.4	

APPENDIX I: EXPERIMENT DATA FOR SUBJECT PROGRAM BI (Continued)

Explanation:		Repetition no.		Failure case no. (Error no.) Time to fallure in elapsed second		
31.	2 (1)	2 (2)	1 (3)	24 (4)	50 (8)	
	21.4	21.6	10.7	269.0	559.8	
32.	6 (1)	$1(2,3)$	11 (5)	62 (4)	755 (6)	
	65.9	10.6	123.0	691.4	8438.7	
33.	9 (1)	3 (3)	3 (2)	199 (4)	77 (5)	294 (8)
	99.4	33.0	32.6	2234.1	863.8	3283.0
34.	10 (1)	$1(2,3)$	8 (4)	40 (5)	564 (8)	
	110.6	10.5	89.0	448.1	6302.9	
35.	11 (1)	1(3)	4 (2)	165 (4)	77 (5)	3270 (6)
	121.6	10.5	44.3	1852.9	860.8	36,540.6
36.	2 (1)	3 (3)	2 (2)	156 (4)	768 (5)	1854 (7)
	21.5	32.9	21.6	1752.9	8613.8	20,728.5
37.	18 (1)	1 (2)	6 (3)	48 (4)	7 (5)	1313 (6)
	199.4	10.4	66.9	539.0	77.7	14,677.5
38.	2 (1)	$1(2,3)$	8 (5)	117 (4)	373 (9)	
	21.4	10.4	89.3	1306.1	4168.9	
39.	2 (1)	$1(2,3)$	93 (4)	518 (5)	1668 (6)	
	21.6	10.4	1044.2	5815.6	18,651.1	
40.	7 (1)	3 (3)	2 (2)	491 (4)	576 (5)	6030 (9)
	77.1	32.8	21.7	5519.2	6462.0	67,377.9
41.	8 (1)	2 (2)	3 (3)	154 (4)	104 (5)	415 (6)
	88.3	21.6	33.3	1730.0	1165.4	4632.5
42.	4(1)	$2(2,3)$	77 (5)	213 (4)	3387 (7)	
	43.7	21.7	866.0	2377.4	37,832.4	
43.	3 (1)	4 (2)	1 (3)	176 (4)	980 (5)	1560 (6)
	32.6	44.1	10.6	1976.9	10,990.4	17,406.5
44.	5 (1)	1 (3)	2 (2)	95 (4)	162 (5)	282 (8)
	54.8	10.7	21.7	1067.8	1816.5	3149.3
45.	1(1)	2 (2)	1 (3)	50 (4)	267 (5)	1258 (6)
	10.4	21.6	10.4	562.1	2992.6	14,066.7

APPENDIX I: EXPERIMENT DATA FOR SUBJECT PROGRAM B1 (Continued)

Explanation:	Repetition no. \quadFailure case no. \quad (Error no.)	

46.	$1(1)$	$1(2,3)$	$487(4)$	$44(5)$	$6372(7)$	
	10.4	10.5	5476.5	493.8	$71,233 . C$	
47.	$3(1)$	$1(2)$	$11(3)$	$49(4)$	$139(5)$	$1642(7)$
	32.6	10.5	122.3	549.9	1557.9	$18,357.2$
48.	$6(1)$	$1(2)$	$2(3)$	$67(4)$	$345(5)$	$1582(9)$
	66.1	10.4	21.8	752.9	3868.5	$17,689.7$
49.	$2(1)$	$5(3)$	$2(2)$	$201(4)$	$890(5)$	$3702(6)$
	21.5	55.1	21.7	2260.3	9984.2	$41,360.2$
50.	$13(1)$	$1(2)$	$1(3)$	$371(5)$	$17(4)$	$1264(6)$
	143.8	10.5	10.5	4167.7	188.5	$14,126.6$

APPENDIX J: EXPERIMENT DATA FOR SUBJECT PROGRAM A2

| Explanation: | Repetition no. | | Failure case no.
 Time to failure in elapsed seconds | |
| :--- | :--- | :--- | :--- | :--- | :--- |
| | | | | |
| (Error no.) | | | | |

APPENDIX J: EXPERIMENT DATA FOR SUBJECT PROGRAM A2 (Continued)

Explanation:
Repetition no.
Fallure case no. (Error no.)
Time to failure in elapsed seconds

16.	$\begin{aligned} & 1(1) \\ & .012 \end{aligned}$	$\begin{aligned} & 4(2) \\ & .121 \end{aligned}$	$\begin{aligned} & 47(3) \\ & .980 \end{aligned}$	$\begin{aligned} & 49(4) \\ & .879 \end{aligned}$	$\begin{aligned} & 3375(5) \\ & 50.844 \end{aligned}$
17.	$\begin{aligned} & 1(1) \\ & .008 \end{aligned}$	$\begin{aligned} & 11(2) \\ & .250 \end{aligned}$	$\begin{aligned} & 27(4) \\ & .590 \end{aligned}$	$\begin{aligned} & 27(3) \\ & .887 \end{aligned}$	$\begin{aligned} & 2504(5) \\ & 38.367 \end{aligned}$
18.	$\begin{aligned} & 2(1) \\ & .031 \end{aligned}$	$\begin{aligned} & 6(2) \\ & .150 \end{aligned}$	$\begin{aligned} & 7(3) \\ & .129 \end{aligned}$	$\begin{aligned} & 50(4) \\ & .898 \end{aligned}$	$\begin{aligned} & 3789(5) \\ & 56.688 \end{aligned}$
19.	$\begin{aligned} & 1(1) \\ & .012 \end{aligned}$	$\begin{aligned} & 6(2) \\ & .150 \end{aligned}$	$\begin{aligned} & 47(3) \\ & 2.410 \end{aligned}$	$\begin{aligned} & 132(4) \\ & 2.293 \end{aligned}$	$\begin{aligned} & 245(5) \\ & 3.680 \end{aligned}$
20.	$\begin{aligned} & 2(1,2) \\ & .047 \end{aligned}$	$\begin{aligned} & 20(3) \\ & .449 \end{aligned}$	$\begin{aligned} & 44(4) \\ & .988 \end{aligned}$	$\begin{aligned} & 4121(5) \\ & 62.219 \end{aligned}$	
21.	$\begin{aligned} & 1(1,4) \\ & .012 \end{aligned}$	$\begin{aligned} & 10(2) \\ & .320 \end{aligned}$	$\begin{aligned} & 127(3) \\ & 6.770 \end{aligned}$	$\begin{aligned} & 10,894(5) \\ & 249.656 \end{aligned}$	
22.	$\begin{aligned} & 1(1) \\ & .008 \end{aligned}$	$\begin{aligned} & 1(2) \\ & .020 \end{aligned}$	$\begin{aligned} & 19(4) \\ & .328 \end{aligned}$	$\begin{aligned} & 6(3) \\ & .090 \end{aligned}$	$\begin{aligned} & 2575(5) \\ & 39.992 \end{aligned}$
23.	$\begin{aligned} & 1(1) \\ & .008 \end{aligned}$	$\begin{aligned} & 12(2) \\ & .270 \end{aligned}$	$\begin{aligned} & 7(4) \\ & .281 \end{aligned}$	$\begin{aligned} & 25(3) \\ & 1.660 \end{aligned}$	
24.	$\begin{aligned} & 1(1) \\ & .008 \end{aligned}$	$\begin{aligned} & 3(2) \\ & .070 \end{aligned}$	$\begin{aligned} & 22(4) \\ & .461 \end{aligned}$	$\begin{aligned} & 38(3) \\ & 3.910 \end{aligned}$	
25.	$\begin{aligned} & 1(1) \\ & .012 \end{aligned}$	$\begin{aligned} & 2(2) \\ & .039 \end{aligned}$	$\begin{aligned} & 50(4) \\ & 1.031 \end{aligned}$	$\begin{aligned} & 16(3) \\ & 1.520 \end{aligned}$	
26.	$\begin{aligned} & 2(1) \\ & .031 \end{aligned}$	$\begin{aligned} & 5(2) \\ & .141 \end{aligned}$	$\begin{aligned} & 14(4) \\ & .223 \end{aligned}$	$\begin{aligned} & 2(3) \\ & .262 \end{aligned}$	
27.	$\begin{aligned} & 1(1) \\ & .012 \end{aligned}$	$\begin{aligned} & 2(2) \\ & .061 \end{aligned}$	$\begin{aligned} & 10(3) \\ & .332 \end{aligned}$	$\begin{aligned} & 26(4) \\ & 1.137 \end{aligned}$	
28.	$\begin{aligned} & 1(1) \\ & \hline 020 \end{aligned}$	$\begin{aligned} & 1(2) \\ & .051 \end{aligned}$	$\begin{aligned} & 64(4) \\ & .961 \end{aligned}$	$\begin{aligned} & 30(3) \\ & 1.301 \end{aligned}$	
29.	$\begin{aligned} & 1(2) \\ & .020 \end{aligned}$	$\begin{aligned} & 1(1) \\ & .010 \end{aligned}$	$\begin{aligned} & 20(4) \\ & .289 \end{aligned}$	$\begin{aligned} & 52(3) \\ & 1.113 \end{aligned}$	
30.	$\begin{aligned} & 1(1) \\ & .020 \end{aligned}$	$\begin{aligned} & 7(2) \\ & .180 \end{aligned}$	$\begin{aligned} & 66(3) \\ & 1.000 \end{aligned}$	$\begin{aligned} & 1(4) \\ & .027 \end{aligned}$	

APPENDIX J: EXPERIMENT DATA FOR SUBJECT PROGRAM A2 (Continued)

Explanation:	Repetition no.	Failure case no. Time to failure in elapsed seconds		
31.	$1(1)$	$6(2)$	$2(4)$	$16(3)$
	.012	.160	.051	.973

APPENDIX J: EXPERIMENT DATA FOR SUBJECT PROGRAM A2 (Contınued)

Explanation:	Repetition no.		Failure case no. Time to fallure in elapsed seconds	
46.	$1(1)$	$1(2)$	$20(3)$	$15(4)$
	.012	.020	.410	.277
47.	$2(1)$	$10(2)$	$62(3)$	$137(4)$
	.039	.250	1.102	2.621
48.	$1(1)$	$3(2)$	$1(3)$	$29(4)$
	.012	.080	.031	.527
49.	$1(1)$	$6(2)$	$26(4)$	$44(3)$
	.020	.191	.551	1.918
50.	$1(1)$	$2(2)$	$8(3)$	$145(4)$
	.020	.070	.129	2.500

APPENDIX K: EXPERIMENT DATA FOR SUBJECT PROGRAM B2

Explanation:	Repetition no.	$\begin{array}{l}\text { Fallure case no. } \\ \text { Time to failure in elapsed seconds }\end{array}$	
1.	$2(1,2)$	$1880(3)$	
	.148	85.055	

APPENDIX K: EXPERIMENT DATA FOR SUBJECT PROGRAM B2 (Contınued)

Explanatıon:	Repetition no.	Fallure case no.
		Time to failure in elapsed seconds.)

16.	$\begin{aligned} & 16(1) \\ & .320 \end{aligned}$	$\begin{aligned} & 12(2) \\ & .227 \end{aligned}$	$\begin{aligned} & 4067(3) \\ & 93.25 \end{aligned}$
17.	$\begin{aligned} & 14(2) \\ & .270 \end{aligned}$	$\begin{aligned} & 4(1) \\ & .100 \end{aligned}$	$\begin{aligned} & 23,398(3) \\ & 905.889 \end{aligned}$
18.	$\begin{aligned} & 17(1) \\ & .363 \end{aligned}$	$\begin{aligned} & 34(2) \\ & .621 \end{aligned}$	$\begin{aligned} & 11,416(3) \\ & 238.797 \end{aligned}$
19.	$\begin{aligned} & 12(1) \\ & .262 \end{aligned}$	$\begin{aligned} & 42(2) \\ & .789 \end{aligned}$	$\begin{aligned} & 13,551(3) \\ & 388.720 \end{aligned}$
20.	$\begin{aligned} & 19(1) \\ & .363 \end{aligned}$	$\begin{aligned} & 33(2) \\ & .621 \end{aligned}$	$\begin{aligned} & 14,895(3) \\ & 835.157 \end{aligned}$
21.	$\begin{aligned} & 4(1) \\ & .066 \end{aligned}$	$\begin{aligned} & 18(2) \\ & .309 \end{aligned}$	$\begin{aligned} & 3074 \text { (3) } \\ & 86.406 \end{aligned}$
22.	$\begin{aligned} & 8(1) \\ & .137 \end{aligned}$	$\begin{aligned} & 9(2) \\ & .160 \end{aligned}$	$\begin{aligned} & 3853 \text { (3) } \\ & 164.168 \end{aligned}$
23.	$\begin{aligned} & 6(2) \\ & .113 \end{aligned}$	$\begin{aligned} & 2(1) \\ & .041 \end{aligned}$	$\begin{aligned} & 33,447(3) \\ & 1418.960 \end{aligned}$
24.	$\begin{aligned} & 1(2) \\ & .020 \end{aligned}$	$\begin{aligned} & 5(1) \\ & .121 \end{aligned}$	$\begin{aligned} & 1532(3) \\ & 25.430 \end{aligned}$
25.	$\begin{gathered} 2(1) \\ 039 \end{gathered}$	$\begin{aligned} & 43(2) \\ & .762 \end{aligned}$	$\begin{aligned} & 16,366(3) \\ & 266.973 \end{aligned}$
26.	$\begin{aligned} & 10(1) \\ & .188 \end{aligned}$	$\begin{aligned} & 2(2) \\ & .031 \end{aligned}$	$\begin{aligned} & 1526(3) \\ & 24.949 \end{aligned}$
27.	$\begin{aligned} & 2(1) \\ & .031 \end{aligned}$	$\begin{aligned} & 10(2) \\ & .180 \end{aligned}$	$\begin{aligned} & 37,447(3) \\ & 621.170 \end{aligned}$
28.	$\begin{aligned} & 6(1) \\ & .109 \end{aligned}$	$\begin{aligned} & 49(2) \\ & .961 \end{aligned}$	$\begin{aligned} & 1532 \text { (3) } \\ & 25.69 \end{aligned}$
29.	$\begin{aligned} & 11(1) \\ & .188 \end{aligned}$	$\begin{aligned} & 56(2) \\ & 1.027 \end{aligned}$	$\begin{aligned} & \text { 12,000 Truncated } \\ & 234.92 \end{aligned}$
30.	$\begin{aligned} & 3(1) \\ & .059 \end{aligned}$	$\begin{aligned} & 16(2) \\ & .281 \end{aligned}$	

APPENDIX K: EXPERIMENT DATA FOR SUBJECT PROGRAM B2 (Contınued)

Explanation:	Repetıtion no.	Failure case no. \quad (Error no.)
		Time to failure in elapsed seconds

31.	$8(1)$	$28(2)$
	.211	.551
32.	$2(1)$	$29(2)$
	.063	.492
33.	$18(1)$	$14(2)$
	.391	.219
34.	$11(2)$	$27(1)$
	.316	.670
35.	$3(1)$	$37(2)$
	.051	.699
36.	$12(1)$	$65(2)$
	.293	1.137
37.	$17(1)$	$40(2)$
	.480	.730
38.	$8(1)$	$3(2)$
	.184	.051
39.	$4(1)$	$38(2)$
	.141	.648
40.	$14(1)$	$39(2)$
	.449	.770
41.	$3(1)$	$56(2)$
	.090	1.039
42.	$2(1)$	$7(2)$
	.063	.168
43.	$7(1)$	$2(2)$
	.148	.039
44.	$3(1)$	$53(2)$
45.	$13(1)$	$119(2)$
	.352	2.090

APPENDIX K: EXPERIMENT DATA FOR SUBJECT PROGRAM B2 (Continued)

	anation:	Repetıtion no.	Failure case no. (Error no.) Time to failure in elapsed seconds
46.	$\begin{aligned} & 6(1) \\ & .160 \end{aligned}$	$\begin{aligned} & 6(2) \\ & .098 \end{aligned}$	
47.	$\begin{aligned} & 3(1) \\ & .090 \end{aligned}$	$\begin{aligned} & 66(2) \\ & 1.281 \end{aligned}$	
48.	$\begin{aligned} & 5(1) \\ & .109 \end{aligned}$	$\begin{aligned} & 56(2) \\ & .988 \end{aligned}$	
49.	$\begin{aligned} & 3(1) \\ & .117 \end{aligned}$	$\begin{aligned} & 3(2) \\ & .051 \end{aligned}$	
50.	$\begin{aligned} & 2(1) \\ & .031 \end{aligned}$	$\begin{aligned} & 12(2) \\ & .211 \end{aligned}$	

APPENDIX L: EXPERIMENT DATA FOR SUBJECT PROGRAM A3

APPENDIX L: EXPERIMENT DATA FOR SUBJECT PROGRAM A3 (Continued)

Explanation:		Repetition no.		Fanlure case no. Time to failure in	
16.	$\begin{aligned} & 2(2) \\ & 2 \end{aligned}$	$\begin{aligned} & 3(1) \\ & 2 \end{aligned}$	${ }_{8}^{12}(5,7)$	$\begin{aligned} & 40(6) \\ & 16 \end{aligned}$	
17.	$2_{2}^{(1)}$	$\begin{aligned} & 4(2) \\ & 2 \end{aligned}$	$\begin{aligned} & 38(4) \\ & 25 \end{aligned}$		
18.	$\begin{aligned} & 4(1) \\ & 1 \end{aligned}$	$\begin{aligned} & 5(2) \\ & 3 \end{aligned}$	$\begin{aligned} & 44 \text { (6) } \\ & 21 \end{aligned}$	$\begin{aligned} & 59(5) \\ & 33 \end{aligned}$	$\begin{aligned} & 4(10) \\ & 2 \end{aligned}$
19.	$\begin{aligned} & 12(1) \\ & 7 \end{aligned}$	$\begin{aligned} & 12(7) \\ & 8 \end{aligned}$	$\begin{aligned} & 18(2) \\ & 12 \end{aligned}$	$\begin{aligned} & 26 \text { (6) } \\ & 16 \end{aligned}$	$\begin{aligned} & 13(10) \\ & 9 \end{aligned}$
20.	$5(1)$	$\begin{aligned} & 8(6) \\ & 5 \end{aligned}$	$\begin{aligned} & 1(2) \\ & 0 \end{aligned}$	$\begin{aligned} & 50(5) \\ & 27 \end{aligned}$	$\begin{aligned} & 109(8) \\ & 48 \end{aligned}$
21.	$1_{1}^{(1)}$	$\begin{aligned} & 13(2) \\ & 7 \end{aligned}$	$\begin{aligned} & 20(6,10) \\ & 8 \end{aligned}$		
22.	$\begin{aligned} & 3(1) \\ & 0 \end{aligned}$	$\begin{aligned} & 8(2) \\ & 3 \end{aligned}$	$\begin{aligned} & 9(5) \\ & 5 \end{aligned}$	$\begin{aligned} & 52(6) \\ & 29 \end{aligned}$	$\begin{aligned} & 42(4) \\ & 19 \end{aligned}$
23.	$\begin{aligned} & 2(1) \\ & 1 \end{aligned}$	$\begin{aligned} & 7(6) \\ & 3 \end{aligned}$	$\begin{aligned} & 25(2) \\ & 13 \end{aligned}$	$\begin{aligned} & 35(4) \\ & 16 \end{aligned}$	
24.	$\begin{aligned} & 5(1) \\ & 3 \end{aligned}$	$\begin{aligned} & 8(5) \\ & 4 \end{aligned}$	$\begin{aligned} & 42(2) \\ & 28 \end{aligned}$	$\begin{aligned} & 48(6,10) \\ & 30 \end{aligned}$	
25.	$\begin{aligned} & 2(1) \\ & 1 \end{aligned}$	$\begin{aligned} & 19 \text { (6) } \\ & 10 \end{aligned}$	$\begin{aligned} & 63(5) \\ & 33 \end{aligned}$	$\begin{aligned} & 23(2) \\ & 17 \end{aligned}$	$\begin{aligned} & 16(3) \\ & 10 \end{aligned}$
26.	${ }_{1}^{1}(1)$	$\begin{aligned} & 1(4) \\ & 0 \end{aligned}$			
27.	$\begin{aligned} & 3(1) \\ & 2 \end{aligned}$	$\begin{aligned} & 2(6) \\ & 1 \end{aligned}$	$\begin{aligned} & 2(2) \\ & 0 \end{aligned}$	$\frac{12(5)}{4}$	$\begin{aligned} & 53(7) \\ & 32 \end{aligned}$
28.	$\begin{aligned} & 1(1) \\ & 0 \end{aligned}$	$\begin{aligned} & 12(5) \\ & 6 \end{aligned}$	$\begin{aligned} & 45(7) \\ & 45 \end{aligned}$	$\begin{aligned} & 45(2) \\ & 21 \end{aligned}$	$\begin{aligned} & 3(4) \\ & 1 \end{aligned}$
29.	$\begin{aligned} & 1(1) \\ & 0 \end{aligned}$	$\begin{aligned} & 4(7) \\ & 1 \end{aligned}$	$\begin{aligned} & 34(4) \\ & 22 \end{aligned}$		
30.	$\begin{aligned} & 2(1) \\ & 1 \end{aligned}$	$\begin{aligned} & 60(2) \\ & 28 \end{aligned}$	$\begin{aligned} & 34(5) \\ & 13 \end{aligned}$	$\begin{aligned} & 153(6) \\ & 84 \end{aligned}$	$\begin{aligned} & 38(7,10) \\ & 24 \end{aligned}$

APPENDIX L: EXPERIMENT DATA FOR SUBJECT PROGRAM A3 (Continued)

Explanation:		Repetition no.		Failure case no. Time to failure in	
31.	$\begin{aligned} & 6(1,2) \\ & 1 \end{aligned}$	$\begin{aligned} & 30(7) \\ & 17 \end{aligned}$	$\begin{aligned} & 18(5) \\ & 10 \end{aligned}$	$\begin{aligned} & 2(6) \\ & 0 \end{aligned}$	
32.	$\begin{aligned} & 2(1) \\ & 0 \end{aligned}$	$\begin{aligned} & 60(2) \\ & 32 \end{aligned}$	$\frac{15}{7}(5)$	$\begin{aligned} & 45(6) \\ & 15 \end{aligned}$	$\begin{aligned} & 21(3) \\ & 14 \end{aligned}$
33.	$\begin{aligned} & 13(1) \\ & 12 \end{aligned}$	$\begin{aligned} & 46 \text { (7) } \\ & 22 \end{aligned}$	$\begin{aligned} & 21(2) \\ & 12 \end{aligned}$	$\begin{aligned} & 100(3) \\ & 58 \end{aligned}$	$\begin{aligned} & 37(6) \\ & 18 \end{aligned}$
34.	$\begin{aligned} & 1(1) \\ & 2 \end{aligned}$	$\begin{aligned} & 21(6) \\ & 10 \end{aligned}$	$10(7)$	$\begin{aligned} & 13(5) \\ & 6 \end{aligned}$	$\begin{aligned} & 24(2) \\ & 11 \end{aligned}$
35.	$2(1)$	$\begin{aligned} & 5(3) \\ & 3 \end{aligned}$	$\begin{aligned} & 2(7) \\ & 0 \end{aligned}$	$\begin{aligned} & 15(2) \\ & 7 \end{aligned}$	$\begin{aligned} & 13(6) \\ & 9 \end{aligned}$
36.	$\begin{aligned} & 1(1) \\ & 0 \end{aligned}$	$\begin{aligned} & 25(2) \\ & 14 \end{aligned}$	$2^{3(6)}$	$\begin{aligned} & 77(7,10) \\ & 41 \end{aligned}$	
37.	$\begin{aligned} & 1(1) \\ & 1 \end{aligned}$	$\begin{aligned} & 17(5) \\ & 8 \end{aligned}$	$\begin{aligned} & 9(2) \\ & 7 \end{aligned}$	$\begin{aligned} & 9(6) \\ & 5 \end{aligned}$	$\frac{9}{7}(10)$
38.	$\begin{aligned} & 2(1) \\ & 2 \end{aligned}$	$2(8)$			
39.	$\begin{aligned} & 5(1) \\ & 3 \end{aligned}$	$1_{1}^{(6)}$	$\begin{aligned} & 51^{(2)} \\ & 26^{2} \end{aligned}$	$\begin{aligned} & 58(5) \\ & 26 \end{aligned}$	$\begin{aligned} & 209(3) \\ & 102 \end{aligned}$
40.	$\begin{aligned} & 5(1) \\ & 4 \end{aligned}$	$\frac{12}{6}$	$\begin{aligned} & 50(6) \\ & 38 \end{aligned}$	$\begin{aligned} & 5(2) \\ & 4 \end{aligned}$	$\begin{aligned} & 73(10) \\ & 45 \end{aligned}$
41.	$\begin{aligned} & 3(1) \\ & 1 \end{aligned}$	$\begin{aligned} & 40(8) \\ & 21 \end{aligned}$			
42.	$\begin{aligned} & 1(1) \\ & 0 \end{aligned}$	$\begin{aligned} & 8(5) \\ & 6 \end{aligned}$	$1(2)$	$\begin{aligned} & 23(6) \\ & 13 \end{aligned}$	$\begin{aligned} & 17(10) \\ & 9 \end{aligned}$
43.	$\begin{aligned} & 4(1) \\ & 2 \end{aligned}$	$\begin{aligned} & 18(6) \\ & 10 \end{aligned}$	$\begin{aligned} & 27 \text { (5) } \\ & 17 \end{aligned}$	$\begin{aligned} & 63(2) \\ & 42 \end{aligned}$	$\begin{aligned} & 12(8) \\ & 7 \end{aligned}$
44.	$\begin{aligned} & 10(2) \\ & 8 \end{aligned}$	$\begin{aligned} & 3(1) \\ & 1 \end{aligned}$	$\begin{aligned} & 7(3,9) \\ & 5 \end{aligned}$		
45.	$\begin{aligned} & 1(1) \\ & 1 \end{aligned}$	$\frac{11(8)}{5}$			

APPENDIX L: EXPERIMENT DATA FOR SUBJECT PROGRAM A3 (Continued)

Explanation:	Repetition no.		Fallure case no. Time to failure in		
46.	$3(1)$	$70(2)$	$151(5)$	$34(6)$	$125(10)$
	2	40	91	19	78
47.	$5(1)$	$12(5)$	$57(4)$		
	2	5	45		
48.	$6(1)$	$20(3)$	$7(5)$	$23(6)$	$85(2)$
	3	11	4	12	44
49.	$2(1)$	$19(6)$	$9(2)$	$4(7,10)$	
	1	11	5	1	
50.	$1(2)$	$3(1)$	$16(7)$	$15(3)$	$13(5)$
	2	2	6	12	8

APPENDIX M: EXPERIMENT DATA FOR SUBJECT PROGRAM B3

Explanation:	Repetition no.	Fallure case no. Time to falure in elapsed CRU's

1.	$\begin{aligned} & 3(1) \\ & 2 \end{aligned}$	$21(2)$	$\begin{aligned} & 145(6) \\ & 62 \end{aligned}$			
2.	$\begin{aligned} & 2(1) \\ & 1 \end{aligned}$	$\begin{aligned} & 23(2) \\ & 10 \end{aligned}$	$\begin{aligned} & 157(5) \\ & 66 \end{aligned}$	$\begin{aligned} & 388(4) \\ & 221 \end{aligned}$	$\begin{aligned} & 75(3) \\ & 32 \end{aligned}$	$\begin{aligned} & 206(7) \\ & 91 \end{aligned}$
3.	$\begin{aligned} & 4(2) \\ & 3 \end{aligned}$	$\begin{aligned} & 2(1) \\ & 2 \end{aligned}$	$\begin{aligned} & 54 \text { (7) } \\ & 21 \end{aligned}$			
4.	$\begin{aligned} & 4(1) \\ & 3 \end{aligned}$	$4(2)$	$\begin{aligned} & 9(5) \\ & 5 \end{aligned}$	$\begin{aligned} & 77 \text { (7) } \\ & 43 \end{aligned}$		
5.	$\begin{aligned} & 1(1) \\ & 1 \end{aligned}$	$\begin{aligned} & 23(2) \\ & 15 \end{aligned}$	$\begin{aligned} & 111(4) \\ & 52 \end{aligned}$	$\begin{aligned} & 28(7) \\ & 12 \end{aligned}$		
6.	$\begin{aligned} & 1(1) \\ & 1 \end{aligned}$	$\begin{aligned} & 23(2) \\ & 10 \end{aligned}$	$\begin{aligned} & 162(4) \\ & 74 \end{aligned}$	$\begin{aligned} & 34(5) \\ & 18 \end{aligned}$	$\begin{aligned} & 755(7) \\ & 354 \end{aligned}$	
7.	$\begin{aligned} & 3(1) \\ & 2 \end{aligned}$	$\begin{aligned} & 5(2) \\ & 0 \end{aligned}$	$\begin{aligned} & 51(5) \\ & 30 \end{aligned}$	$\begin{aligned} & 259(7) \\ & 139 \end{aligned}$		
8.	$2 \text { (1) }$	$\begin{aligned} & 16(2) \\ & 9 \end{aligned}$	$\begin{aligned} & 31(5) \\ & 13 \end{aligned}$	$\begin{aligned} & 312(7) \\ & 166 \end{aligned}$		
9.	$\begin{aligned} & 3(1) \\ & 2 \end{aligned}$	$2(2)$	$\begin{aligned} & 7(5) \\ & 2 \end{aligned}$	$\begin{aligned} & 80(7) \\ & 53 \end{aligned}$		
10.	$\begin{aligned} & 1(1) \\ & 0 \end{aligned}$	$\begin{aligned} & 23(2) \\ & 14 \end{aligned}$	$\begin{aligned} & 190(5) \\ & 97 \end{aligned}$	$\begin{aligned} & 83(7) \\ & 44 \end{aligned}$		
11.	$\begin{aligned} & 2(1) \\ & 0 \end{aligned}$	$\begin{aligned} & 23(2) \\ & 15 \end{aligned}$	$\begin{aligned} & 60(5) \\ & 26 \end{aligned}$	$\begin{aligned} & 166(7) \\ & 94 \end{aligned}$		
12.	$\begin{aligned} & 4(1) \\ & 2 \end{aligned}$	$\begin{aligned} & 10(2) \\ & 5 \end{aligned}$	$\begin{aligned} & 60(5) \\ & 34 \end{aligned}$	$\begin{aligned} & 554(4) \\ & 312 \end{aligned}$	$\begin{aligned} & 318(3) \\ & 154 \end{aligned}$	$\begin{aligned} & 1128(6) \\ & 520 \end{aligned}$
13.	$\begin{aligned} & 1(1) \\ & 1 \end{aligned}$	$\begin{aligned} & 19(2) \\ & 10 \end{aligned}$	$\begin{aligned} & 158(5) \\ & 77 \end{aligned}$	$\begin{aligned} & 141(4) \\ & 81 \end{aligned}$	$\begin{aligned} & 833(7) \\ & 390 \end{aligned}$	
14.	$\begin{aligned} & 1(1) \\ & 0 \end{aligned}$	$\begin{aligned} & 5(2) \\ & 1 \end{aligned}$	$\begin{aligned} & 12(5) \\ & 7 \end{aligned}$	$\begin{aligned} & 155(4) \\ & 83 \end{aligned}$	$174 \text { (7) }$ 67	
15.	$6(1)$	$\begin{aligned} & 5(2) \\ & 2 \end{aligned}$	$\begin{aligned} & 246(5) \\ & 117 \end{aligned}$	$\begin{aligned} & 380(4) \\ & 194 \end{aligned}$	$\begin{aligned} & 624(7) \\ & 308 \end{aligned}$	

APPENDIX M: EXPERIMENT DATA FOR SUBJECT PROGRAM B3 (Continued)

| Explanation: | Repetition no. \quadFallure case no.
 \quad Time to fallure in elapsed CRU's |
| :--- | :--- | :--- |

16.	$7(1)$	$1(2)$	$8(7)$
	4	0	5
17.	$1(1)$	$9(2,4)$	$72(7)$
	1	6	32

18.	$1(1)$	$26(2)$	$68(4)$	$105(5)$
	1	13	32	48

19.	$2(2)$	$1(1)$	$82(7)$
	1	1	35
20.	$2(2)$	$8(1)$	$134(7)$
	0	2	62

21.	$1(2)$	$2(1)$	$247(5)$	$467(7)$
	0	0	116	250

22. | $1(1)$ | $6(2)$ | $211(5)$ | $54(4)$ | $351(7)$ |
| :--- | :--- | :--- | :--- | :--- |
| | 0 | 1 | 88 | 29 |

23.	$3(1)$	$6(2)$	$328(7)$
	2	0	141

24.	$3(2)$	$1(1)$	$70(6)$
1	1	27	

25. | $1(1)$ | $14(2)$ | $51(5)$ | $571(7)$ |
| :--- | :--- | :--- | :--- |
| | 0 | 6 | 28 |

26.	$1(1)$	$8(2)$	$61(4)$	$593(5)$	$539(3)$	$785(7)$
	1	5	26	238	225	364

27.	$3(1)$	$2(2)$	$165(7)$
	1	1	75

28.	$2(1)$	$10(2)$	$92(5)$	$26(4)$	$107(7)$
0	7	39	20	51	

29.	$2(1)$	$9(2)$	$32(7)$
0	4	15	

30.	$4(1)$	$1(2)$	$49(5)$	$186(4)$	$546(7)$
	2	0	17	103	257

APPENDIX M: EXPERIMENT DATA FOR SUBJECT PROGRAM B3 (Continued)

Explanation: Repetition no. Failure case no. (Error no.)
Time to failure in elapsed CRU's

31.	$2(1)$	$7(5)$	$14(2)$	$338(7)$
	1	5	7	179
32.	$2(1)$	$7(2)$	$76(5)$	$681(7)$
	1	3	28	391
33.	$1(1)$	$4(2)$	$72(5)$	$109(7)$
	0	4	32	55

34.	$1(1)$	$3(2)$	$96(7)$
0	1	43	

35.	$2(1)$	$6(2)$	$122(4)$	$21(5)$	$216(3)$
	1	1	55	10	102

36.	$7(2)$	$1(1)$	$69(5)$	$231(6)$
	2	1	32	117

37.	$2(1)$	$5(2,3)$	$114(5)$	$236(6)$
	1	2	52	90

38.	$2(1)$	$1(2)$	$459(3)$	$14(5)$	$405(7)$
	2	1	197	7	185

39. | $4(1)$ | $6(2,4)$ | $134(5)$ | $1022(7)$ |
| :--- | :--- | :--- | :--- |
| | 2 | 3 | 63 |

40.	$2(1)$	$25(2)$
	12	$89(6)$
	12	

41.	$1(1)$	$21(2)$	$46(7)$
	1	13	23

42.	$1(1)$	$5(2)$	$64(5)$
1	4	28	$144(7)$
	12		

43.	$2(2)$	$2(1)$	$2(4)$	$226(6)$
1	2	1	105	

44.	$5(1)$	$4(2)$	$65(7)$
	2	1	30

45.	$6(1)$	$7(2)$	$31(5)$	$27(6)$
	1	4	13	12

APPENDIX M: EXPERIMENT DATA FOR SUBJECT PROGRAM B3 (Continued)

Explanation:	Repetition no.		$\begin{array}{l}\text { Failure case no. } \\ \text { Time to failure in }\end{array}$	
46.	$1(1)$	$1(2,4,5)$	$669(7)$	
	0	0	279	
47.	$16(1)$	$21(2)$	$395(5)$	$46(7)$
	6	14	181	24

*For sale by the National Technical Information Service, Springfield, Virginia 22161

End of Document

[^0]: * Hidden errors, incorrectly identified as detectable.

