v

@ https://ntrs.nasa.gov/search.jsp?R=19820013026 2020-03-21T08:48:32+00:00Z

/Vﬂ_f,'/‘/ LK~ 162, e

NASA CR-165836

NASA-CR- 16583‘

“ﬁ 9 200 13026

Software Reliability: Repetitive Run

Experimentation and Modeling

Phyllis M. Nagel
James A. Skrivan

Boeing Computer Services Company
Space and Military Applications Division
Seattle, Washington 98124

Contract No NASI-16481
February 1982

NASAN

National Aeronautics and
Space Administration

Langley Research Center
Hampton Virginia 23665

,-'; ‘r;[‘sn*va'] m(NT]
LISRATY RgpY
Fra o rar

JANGLEY RESTARCY CENTER
LIBRARY, NASA
HEPIITIN, VRGIIA

- ARy

All Blank Pages

/

Intentionally Left Blank

To Keep Document Continuity

BCS-40366

SOFTWARE RELIABILITY: REPETITIVE RUN
EXPERIMENTATION AND MODELLING

Prepared Under Contract NAS1-164381

By

Phyllis M. Nagel
James A. Skrivan

Boeing Computer Services Company
Space and Military Applications Division
Seattle, Washington 98124

For

National Aeronautics and Space Administration

February 1982

NE2 20780

2=

PREFACE

The authors are much indebted to many of their colleagues in the Consulting Division
and the Space and Military Applications Division of BCS for their assistance and
counsel. In particular, special gratitude should be extended to:

e Mr. John R. Brown for his management of the project and his long-standing
support and understanding of the problem.

e The two programmers for denying many of their professional instincts for
timely debugging 1n order to support the goals of this experiment.

e Mr. Kerry Whitaker for his contributions in sizing and designing the original
experiment, and

e Dr. Roberto Altschul for encouraging interest in log linear models and for
the methodology for estirnating the nonlinear parameter set.

Finally the authors would like to thank Dr. D. R. Miller of the Department of

Operations Research, George Washington University, for his many stimulating and
exceedingly helpful discussions.

111

CONTENTS

1.0 SUMMARY AND INTRODUCTION

1.I SUMMARY
1.2 INTRODUCTION

2.0 EXPERIMENT
2.1 BASIC HYPOTHESIS ON ERROR DETECTION

2.1.1 Relationship Between the Error Set and
the Input Set

2.1.2 Usage Distribution
2.1.3 Error Detection
2.1.4 Sampling Method

2.2 EXPERIMENTAL FEATURES

Overall Controls
Run Repetitions
Detection-Order Effects
Initialization and Static Detectors
Dynamic Detectors
Debugging and Static Debug Tests
Ripple Effect
Flow of Experiment
Run Si1zing
0 Problem and Programmer as Design Factors
1 Data Base

. = s e e =
s s o e

—— OO NAMNNFTWN —

3.0 OPERATIONAL DESCRIPTION

3.1 GENERAL

3.2 OVERHEAD PROGRAMS
3.2.1 Test Driver
3.2.2 Experiment Driver

3.2.2.1 Input-Data Generator
3.2.2.2 Comparator
3.2.2.3 Results Writer
3.2.3 Error Identifier
3.3 COMPUTER/LANGUAGE ENVIRONMENT

BITS System

3.3.1
3.3.2 VAX/VMS System

Page

[e)

000000 NN NN

10
11
13

13
13

13
13

13
17
17
17
19

19
19

CONTENTS (Continued)

4.0 EXPERIMENT DATA COLLECTION

V1

i ol

.1
.2
3

.l

4.5

INTRODUCTION
PROGRAMMER DESCRIPTIONS
PROBLEM #1

Bl Sl e
¢« o o o
W W ww
o« o o o
=W N -

=5
b W
N\ \n

4.3.7

Background
Specifications
Test Cases

Usage Distribution

34,1 Coordinates
3.4.2 LCM and PUM Elements
3.4.3 Parameters

i S

Correct Version
Error Descriptions

.3.6.1 Subject Program Al
-3.6.2 Subject Program Bl

Run Results

4.3.7.1 Subject Program Al
4.3.7.2 Subject Program Bl

PROBLEM #2

FEFEsE
FEEEEE
AN FTWN —

4.4.7

Background
Specifications
Test Case

Usage Distribution
Correct Version
Error Descriptions

1 Subject Program A2
-2 Subject Program B2

Run Results

4.7.1 Subject Program A2
4.7.2 Subject Program B2

PROBLEM #3

4.5.1
4.5.2
4.5.3

Background
Specifications
Test Case

21
21
21

21
22
22
22

22
22
24

24
24

25
26

27

27
27

27
27
30
30

30
30

31
31

32

32
32

32
32

32
32

4.5,

7

CONTENTS (Continued)

Usage Distribution
Correct Version
Error Descriptions

4.5.6.1 Subject Program A3
4.5.6.2 Subject Program B3

Run Results

4.5.7.1 Subject Program A3
4.5.7.2 Subject Program B3

5.0 DATA ANALYSIS

5.1 TESTING THE HYPOTHESIS OF EXPONENTIAL
INTERFAILURE TIME

P e
WS WN

UNEQUAL ERROR PROBABILITY HYPOTHESIS

STATE PROBABILITY ESTIMATES

RANDOM INFLUENCES ON THE STAGE PROBABILITIES
PROPOSED MODEL FOR SOFTWARE RELIABILITY BASED

ON COX'S PROPORTIONAL HAZARDS FAILURE MODEL

5.
5.

6 PROGRAM FEATURES AS PREDICTORS
7 RIPPLE EFFECT

6.0 CONCLUSIONS

REFERENCES

APPENDIX A:
APPENDIX B:
APPENDIX C:
APPENDIX D:
APPENDIX E:
APPENDIX F:
APPENDIX Gt
APPENDIX H:
APPENDIX I:

APPENDIX 3J:
APPENDIX K:
APPENDIX L:
APPENDIX M:

SOFTWARE ERROR CATEGORIES

PROBLEM #1 SPECIFICATIONS

PROBLEM #1 TEST CASES

PROBLEM #2 SPECIFICATIONS

PROBLEM #2 TEST CASE

PROBLEM #3 SPECIFICATIONS

PROBLEM #3 TEST CASE

EXPERIMENT DATA FOR SUBJECT PROGRAM Al
EXPERIMENT DATA FOR SUBJECT PROGRAM Bl
EXPERIMENT DATA FOR SUBJECT PROGRAM A2
EXPERIMENT DATA FOR SUBJECT PROGRAM B2
EXPERIMENT DATA FOR SUBJECT PROGRAM A3
EXPERIMENT DATA FOR SUBJECT PROGRAM B3

Page
32

32

35
35

36

36
36

39
39
43
43

48
50

}
—

: 0w >
— e bt e e

FELEQTTO

z v
Tr

vil

2.2.8-1
3.1-1
3.2.1-1
3.2.2-1
3.2.3-1
4.3.4.1-1
4.3.7.1-1
4.3.7.2-1
4.4.7.1-1
4.4.7.2-1
4.5.7.1-1
4.5.7.2-1
5.1-1

5.3-1

5.3-2

5.4-1

5.4-2

5.5-1

5.5-2

5.6-1

LIST OF FIGURES

Experiment Flow Diagram

Experiment Software Structure

Test Driver Macro Flowchart
Experiment Driver Macro Flowchart
Error Identifier Macro Flowchart
Usage Distribution for Coordinates
Trace of Runs for Subject Program Al
Trace of Runs for Subject Program Bl
Trace of Runs for Subject Program A2
Trace of Runs for Subject Program B2
Trace of Runs for Subject Program A3
Trace of Runs for Subject Program B3
Survivor Function vs. t for Subject Programs Al and B3

Estimated Error Rate as a Function of Errors
Corrected Using Original Data

Estimated Error Rate as a Function of Errors
Corrected Using Modified-origin Data

Histograms of Stage Probability Estimates for
Subject Program Al as a Function of the Number
of Errors Corrected

Histograms of Stage Probability Estimates for
Subject Program Bl as a Function of the Number
of Errors Corrected

Predicted Error Rate from the Proportional Hazards
Model, Using Original Data

Predicted Error Rate from the Proportional Hazards
Model, Using Modified-Origin Data

Inverse of Halstead's Volume vs. Predicted Slope
(Modified Data), Proportional Hazards Model

23
28
29
33
34
37
38
uy

47

49

51

52

58

59

61

1X

5.1-1

5.1-2

5.2-1
5.3-1

5.5-1

5.5-2

5.5-32

5.6-1

LIST OF TABLES

Comparison of Exponential-Mixture Density With
Exponential Density

Lilliefors K-S Test Statistics for the Exponential
Distribution

Spectfic Error Probabilities - Ranked Estimates
Estimated Stage Probabulities

Proportional Hazards Model Parameters Based on
Original Error Rate Data

Proportional Hazards Model Parameters Based on
Modified Origin Data

Estimates for Error Probability Per Program Execution
Based on the Proportional Hazards Model

Subject Program Measures

Page
41

42

45
be

54

55

57

60

X1

1.0 SUMMARY AND INTRODUCTION

1.1 SUMMARY

Boeing Computer Services has conducted carefully designed and controlled soft-
ware-development experiments with analysis in support of software-reliability esti-
mation and modelling. Two programmers individually designed and coded three
FORTRAN programs each from three problem specifications. These programs were
then executed in repetitive run sampling, where a run 1s a sequence of interfailure
times recorded on each of a series of program states.

The run data has been used to verify that interfailure times are exponentially
distributed, to obtain good estimates of the failure rates of individual errors and to
demonstrate how widely the rates vary. This latter fact invalidates many of the
popular software reliability models now 1n use. In addition, 1t was observed that the
log failure rate of interfailure time was nearly linear as a function of the number of
errors corrected.

Cox's proportional hazards model has all of the observed characteristics of the
experiment data and 1s proposed as a new model of reliability. Maxtmum likelihood
estimates for the unknown parameters were obtained for all six programs using
nonlinear optimization techniques. Statistical tests on these estimates indicate there
are strong programmer and problem effects on the background failure rate. Results
also show that over 80% of the observed variation in the logarithm of the failure-rate
data can be explained by the proportional hazards model. A tentative physical
predictor was proposed based on Halstead's information criterra N which might be
used 1n forecasting model parameters.

1.2 INTRODUCTION

Since the importance of good models for predicting software reliability 1s undeniable,
it 1s an anomaly that so little model development has been based on insights gained
from specific experimental results. Predicated on the belief that there 1s much to be
learned regarding the man-in-the-loop process of software development before
modeling can be effective, an experiment has been conducted that both attempts to
extend the information base and provide experimental verification of some of the
popular assumptions regarding the failure structure of software. This experiment
differs from other software experiments in several regards. The emphasis is on the
prediction of software reliability from the traditional point of view of risk assess-
ment rather than as a management tool i1n software development. The experiment
utilizes the concepts of formal statistical design and experimental control and by
replicating the design makes 1t possible to examine the detection process when errors
are not 1dentically distributed.

The design of this experiment has been chosen to explore only a few of the issues of
software reliability and does not try to include the entire set of factors thought to
influence the software error structure. Two primary self-imposed constraints were
adopted. First of all, by concentrating on reliability assessment, the experiment
consciously avoids all of the issues behind time and accuracy growth of software
undergoing redefinition, and explores only those related to problems with fixed
specifications. Secondly, the experiment assumes that the detection of errors in a

program depends only on the interaction of the error set, the criteria or detector
establishing correctness and the probability of detection of each error given the
detection mechanism. Thus, except for the process of error removal, the probability
of detection for a specific error remains fixed throughout the experiment.

Data from software reliability tests has traditionally consisted of a record of the
successive Interfailure times following the detection and correction of sequential
errors. In the present context such a set of data will be called a program run. Since
fixing a program by correcting an error 1s equivalent to a program design change, a
run of data consists of a single observation on life length for each of a sequence of
design configurations that are different but possibly connected. It 1s this fact that
has inhibited the statistical investigation of the properties of software reliability.

The experiment reported here enriches the data base by increasing the sample size of
each of the design stages. This has been accomplished by replicating runs. Each run
consists of a reinitialization of the program to its original design configuration and a
repetition of the process of obtaining interfailure times with different independent
sequences of randomly generated input data.

With this data several modeling properties of the software failure phenomenon have
been investigated. In particular these include investigations of:

a. The exponential assumption as the distribution of interfailure time.

b. The assumption of equal error probability implicitly assumed in the Jelinski-
Moranda [1], Shooman [2], and Schick-Wolverton [3] models versus the
unequal error detection probability proposed by Littlewood and Verrall [4]
and further investigated by Littlewood| 5].

c. The consequences of the results of a. and b. (above) on reliability considera-
tions.

d. The effect of programmer on the error characteristics for a fixed problem
specification.

e. The effect of problem on a given programmer's error performance.

f. The number of program executions to failure versus interfailure time
measured 1n computer resource units (CRU's) as a base in which to measure
rehability, where here, a program execution means a complete processing of
the 1nput case from the beginning of the program to the final output,
correct or tncorrect,

g. Potential physical features of the program to use as predictors of the error
structure.

This report 1s presented in six sections. Section 2 contains a detailed description of
the experiment with reference to 1ts design and the controls imposed to insure data
integrity. Sections 3 and 4 provide details of the actual experiment. Section 3
describes the computer programs written to maintain the flow of the experiment and
conduct error detection. Section 4 outlines the problems and specifications selected
for this experiment together with the experience histories of the programmers

involved and their programs written from the specifications. This section also
includes some discussion on the nature of the errors manifested during the experi-
ment. In Section 5, descriptive statistics of the observed data are provided and the
investigations referenced above are described. Detatls are then given of a proposed
new model of software reliability. Section 6.0 provides conclusions of the study.

2.0 EXPERIMENT

2.1 BASIC HYPOTHESIS ON ERROR DETECTION

By assuming that failure rates are simple functions of the total number of errors in a
program, currently popular software-error models imply implicitly that errors are
equally probable. The belief 1n this property has not only influenced the modeling of
software reliability, 1t has also influenced the design of software-error experiments
and the types of data that have been collected to date. Based on the complicated
structural relationship that exists between an error and the forces causing 1its
manifestation, it seems quite possible, however, that errors are not equally probable.
This experiment therefore has been designed specifically to explore the exact nature
of these probabilities.

2.1.1 Relationship Between the Error Set and the Input Set

There 1s a correspondence between an error in the program and a subset of the set of
all possible inputs to the program whose elements can detect the error where the
word input stands for the complete vector of quantities required for a single program
execution. Some subsets no doubt are larger than others and some may only consist
of a single input. Sets can overlap i1f some inputs can detect more than one error and
therefore the correspondence between the subsets and the errors is not necessarily
one to one. One subset contained in another may mean that the contained error 1s
nested and cannot be detected until the other error 1s first corrected.

Depending on the experiment, it may or may not be the case that the incidence of an
input 1n the intersection set of two or more errors causes the correction of all of the
errors involved. In this experiment, however, all errors detectable by a given input
are corrected before testing is resumed.

If an error exists that can only be detected by a region of the set of inputs to the
program that 1s rarely used in practice, the probability of detection 1s necessarily
small. It is also true (for experiments designed as this one 1s) that the unreliability of
a program containing a fixed error set is the probability of the union of these error-
detecting subsets of the input set.

2.1.2 Usage Distribution

Once a program has been declared operational the dynamic influences on the
development of the program are stabilized. At this time the program is intended to
be used 1n an operating environment defined in terms of the values and frequencies of
the inputs selected for execution. It is relative to this operating environment, then,
that the question of reliability 1s posed, and if the environment changes so will the
statements regarding reliability.

The set of all potential uses of a program 1mposes a probability distribution on the set
of all possible program inputs. This reflects that some regions of the set of inputs
are more Interesting or more popular than others. This distribution, sometimes called
the "usage" distribution, 1s described in Brown and Lipow [6]). Since there 1s a
correspondence between an error in the program and a subset 1n the input set whose
elements can detect the error, the probability of detection of an error 1s the

probability of sampling at random, according to the usage distribution, In 1ts
associated subset.

The usage distribution, therefore, plays a critical role in determining error probabili-
ties and 1t 1s quite possible that some errors are more probable than others either
because their associated input subsets are larger or because their subsets are more
likely to be selected in execution. Furthermore, all statements regarding the
reliability of a program are really referencing the interplay between the probabilistic
forces of the usage distribution and the error structure of the program.

2.1.3 Error Detection

Since 1t 1s true that the detection of an error implies the existence of a detector,
then 1t also follows that the type of detector in use influences the probability of
detection and therefore has an 1mpact on the reliability of the program. That 1s, in
the sense of the user's knowledge of an error as opposed to its fundamental existence,
the detector defines the error.

2.1.4 Sampling Method

Three major influences on the reliability of a program have been discussed: the
existing error set, the usage distribution and the error-defining detector that judges
output correctness. There is, however, one other factor that can be extremely
tmportant in some contexts that has to do with the nature of the sampling from the
usage distribution. In most experiments described in the hterature, sampling
proceeds by independent sampling with replacement and reliability 1s unaffected. In
some fields of application, however, such as avionics, there 1s time dependence in the
input stream. The existence of this autocorrelation in the sampling can exercise
considerable influence over a program's reliability performance. A manifestation of
this potential influence is the concept of software-error "bursts"[7].

2.2 EXPERIMENTAL FEATURES

2.2.1 Overall Controls

The specifications for each of the problems considered in the experiment included
complete definitions of the usage distributions to be employed and all detectors.
Controls on the error set included controlling for problem, controlling for program-
mer and controlling the definition of a program's initial state in terms of the test
cases 1t must successfully pass. Data was sampled independently and with replace-
ment at all times.

2.2.2 Run Repetitions

Traditional software experiments remove errors without allowing for the probabilistic
tmpact of the detected error on subsequent error detection. In order to be able to
measure this impact the present experiment was designed to provide some informa-
tion about "what was there" from a probabilistic point of view. This was achieved by
repetitively sampling a program from 1ts initial error state (state 0) through n errors,
obtawning a series of runs. A run then conststs of n observed times to failure on each
of n sequential program stages.

2.2.3 Detection Order Effects

This method of sampling introduces two other concepts which must be defined,
namely those of program stage and program state. A program stage refers to the
number of errors that have been corrected since sampling began with the program in
Its initial state. A program state 1s a listing of errors by number that have been
detected and corrected since the imitialization. In traditional experiments the
concept of state was not recognized. In this experiment observing runs makes 1t
possible to not only study how errors are distributed but also to study the
consequences of removing errors in a random order.

Time to next failure of a program is conditional on the error state of the program at
the time of the last failure. Since the order of error removal 1s random, 1t 1s of
interest not only to study the magnitude of the error probabilities but also the effect
of order on these estimates. For this experiment not only 1s the interfailure time
recorded at the time of program failure, but also each observed error 1s diagnosed
and recorded by number so that the exact conditioning 1s known at all times.

2.2.4 Initialization and Static Detectors

Once the program 1is released from the programmer, the code must satisfy all
compiler checks and correctly execute a set of predetermined "reasonable" test
cases, numbering at most three. These tests form a set of static detectors that are
intended to stabilize the 1nitial error set of each program in order to form a common
initial base from which to compare different programs as a function of the number of
errors corrected. In traditional experiments there has been little attempt to control
for a common "initial denominator', and comparing error structures across different
programs was further thwarted in this regard.

Later i1n the paper a second initialization criterion 1s proposed that seems even more
useful at providing a stronger, more consistent basis for comparing dissimilar
programs.

Other static detectors such as the program DAVE [8] were considered as joint
detectors with the above set to insure greater commonality in the initial state.
However, the potential return compared to the cost of their use did not seem
justified until the problem is better understood.

2.2.5 Dynamic Detectors

For each of the problems selected for this experiment, an existing program satisfying
the specifications for the problem has been in use for some time. The output of this
pre-existing program, executed with identical inputs to the program on test, 1s used
as a comparator to determine the correctness of the new program. Although absolute
correctness in any sense cannot be assured by this method, a program that has
recelved extensive prior use has already been through many and varied tests in its
Lifetime and is felt to be a reasonable norm. The use of other norms, however, can
change the judgment of a program's reliability.

In addition to this comparator, the operating system itself has some detecting ability

that causes the program to stop, or "bomb off", during execution. The famtliar
system-interrupt message, "division by zero," 1s an example of a failure detected by

7

an operating system. This detecting ability must be considered as part of the
dynamic detecting environment that defines errors.

Other dynamic detectors were considered, particularly those employing the technique
of dynamic assertion to test selected program variable states [9). Again the use of
these detectors seemed unjustified at this time on the grounds of cost, although the
technique seems useful and may be considered at some future date.

2.2.6 Debugging and Static Debug Tests

When an incorrect execution of the program 1s detected, the inputs to the program
are saved while the bug is corrected. The corrected program 1s then subjected to the
same static tests as in the original set. That 1s, 1t must satisfy all compiler checks
and correctly execute the original test cases. In addition, 1t must also correctly
execute the saved last input case. An incorrect execution at this time indicates one
of two possibilities: the bug causing failure has not yet been corrected; or the saved
Input 1s causing an additional simultaneous error from one or more errors in the
original error set.

By saving the last input case and forcing the correction of all errors detected by this
input, the experument can both provide a measure of the probability of the
Intersection and give a slightly better estimate of the marginal error probabilities.

To clarify this last observation 1t should be noted that In many situations one error
can dominate another due to the ordered nature of a program's execution. That 1s,
one error 1s always detected before another when an input 15 selected in the
Intersection. By referencing a Venn diagram Involving the intersecting sets A and B,
1f A dominates B and the inputs are not fully explored to determine when they fall in
the intersection, the program measures the probability of B as P(ANB) before A 1s
observed and P(ANB) + P(ANB) after A 1s removed. On the other hand, by exploring 1f
a given input 1s In the intersection, the probability of B 1s measured the same before
or after the dominating error 1s removed.

2.2.7 Ripple Effect

When an execution of the program 1s declared in error, the nature of the error is
Investigated to determine if the error was introduced at an earlier stage as part of
the debugging process. If so, separate books are kept of the error in order to track
the growth of unreliability as well as the growth of reliability if this seems indicated.

2.2.8 Flow of Experiment

Figure 2.2.8-1 illustrates the flow of the experiment for a single problem and a single
programmer's code. The process 1s in fact based on a simulation until failure of
various program states. It begins with an initial version of the program that has
successfully passed all of the static tests. Random Input 1s then generated according
to the usage distribution defined in the problem specifications and the prograin is
executed with these inputs. Sitmultaneously, the comparator is executed with these
same inputs and correctness of the program on test i1s determined. If correct the
process is repeated with new inputs generated independently until an error 1s
detected. Once detected the error 1s analyzed, recorded in the proper account with
an error number and corrected. At the point where all static tests including the

PROBLEM

SPECIFICATION

PROGRAMMER

Y

CODE

Y

P et |

A= OoXxX00

LmMmMmuneo —;m-—

REPEAT K TIMES

pag= !

Y

DYNAMIC
DETECTORS

Figure 2.2.8-1. Experiment Flow Diagram.

¥ \d
STATE STATE
2 n
DYNAMIC || DYNAMIC
DETECTORS DETECTORS

re-execution of the last input case have correctly executed, simulation can begin on
another cycle with the program in this new state.

It was the intent originally to continue cycling until 5 or 6 bugs had been discovered
or truncate the process at the predetermined number of executions. In practice
neither of these rules was followed too closely, and termination usually occurred
when a bug was discovered that was extremely time consuming to correct. Most
programs manifested 5 or 6 errors before this occurred.

Repeated runs on the same program are conducted starting from the same initial
state, lL.e., state 0. The experimental flow for each run is exactly the same but the
simulated input stream 1s generated independently and hence different for each run.
Thus each run has the opportunity of generating different random errors in different
orders. As a consequence each run represents a random walk through the set of
possible errors, and therefore experiences random conditioning at each stage.

2.2.9 Run Sizing

In order to determine how many runs were sufficient to obtain stable estimates of the
error probabilities, 1t was decided to base the size on the probability structure that
exists initially since all runs are 1n a common state during this stage. Assuming that
each execution of the program has a fixed probability p of failure, then the
probability that the first failure will occur on the 1'th execution is expressable 1n
terms of the geometric distribution:

P(1) = (l-p)l—lp

For k independent runs, let Ly 1oy weny I be the k values each expressing the number of
times the program was executed in its initial state before failure occurred. Then the
maximum likelihood estimate for p 1s

A k

p =
1
2 J
It can be shown that the asymptotic variance of 6 is

2
Var (f) = L(lk_‘lL

Therefore an asymptotic 95% confidence interval on the maximum likelithood esti-
mator is

2(1-p)

B+ 1.96 ”

If k 1s chosen on the basis of the half length L of the resulting confidence interval,
then since

2
L =1.96 M

k can be calculated from

. - _3.84p2(1-p)
= 2
L

10

If p<.05andk = 50, then L < .014. Similarly if p < .0l and k = 50, then L < .0028.
Thus k = 50 was selected as sufficiently discerning.

2.2.10 Problem and Programmer as Design Factors

To control for the effect that programmer and problem may have on the corre-
sponding error structure of a program, a factorial design consisting of two program-
mers A and B, each programming the same three problems, labelled 1, 2 and 3, from
their specifications, formed the basic experiment. Each of the six programs Al
through B3 thus formed were executed through 50 runs each of which consisted of at
least four stages. Within time constraints, the programmers designed, coded and
tested their programs using FORTRAN IV.

2.2.11 Data Base

The data base developed from this experiment consisted of a record, for each of the
six programmer-problem combinations, of the number of executions until failure for
each stage, the interfatlure time (in terms of both the number of input cases to
failure and computer-resource units (CRU's)), and the number of the error causing
failure. A number was assigned each new error as i1t was encountered. This data base
then provided complete knowledge of the error state of the program at each stage
and detailed knowledge of the time to failure of the program conditioned on each of
these states.

11

3.0 OPERATIONAL DESCRIPTION

3.1 GENERAL

In order to gather statistics on software failure detection/error correction, the
subject programs must be embedded in a software-test environment (Figure 3.1-1).
There 1s a unique, but quite similar environment for each of the three problem
specifications. In reality, the subject programs are subprograms which are called in
three separate programs: 1) test driver; 2) experiment driver; and 3) error 1dentifier.
The latter two programs are indirectly linked via the failed-cases file —- the
experiment driver writes all failed cases to the file and the error identifier reads
those failed cases. These three overhead programs and the failed-cases file are
discussed 1n the following sections.

The experiment was run on two computer systems: 1) the Boeing Intelligent Terminal
System (BITS); and 2) the DEC VAX/VMS System. BITS, a microcomputer-based
system, was chosen for the first problem because of fixed rental and sole use by the
study. VAX/VMS, a virtual-memory minicomputer-based system, was used because of
the need for more storage and faster execution time. These systems and the support
software are described in Section 3.3.

3.2 OVERHEAD PROGRAMS
3.2.1 Test Driver

The test driver is the program which determines if the subject programs pass the
predefined test cases to bring the subject program to state 0. The principal
components of the test driver are: 1) test-case data; 2) correct version; 3) subject
program; and 4) comparator to determine correctness. The macro flowchart 1s shown
in Figure 3.2.1-1.

3.2.2 Experiment Driver

The experiment driver is the program which executes the subject program using
randomly-generated data, and determines correctness by executing the correct
version and comparing the results. The principal components of the experiment
driver are: 1) parameter input; 2) input-data generator; 3) correct version; 4) subject
program; 5) comparator and 6) results writer. The macro flowchart of the
experiment driver 1s given in Figure 3.2.2-1.

3.2.2.1 Input-Data Generator
Each of the three problem specifications contains descriptions of the joint distribu-

tion of the input-data 1tems. Random data from these distributions are obtained
using a standard library random number generator.

13

TEST EXPERIMENT ERROR
DRIVER DRIVER IDENTIFIER

14

FAILED
CASES
FILE

SUBJECT SUBJECT SUBJECT
PROGRAMS PROGRAMS PROGRAMS

Figure 3.1-1. Experiment Software Structure.

¢l

TEST
DRIVER

INPUT
PARAMETERS

INPUT
TEST
CASE

Figure 3.2.1-1.

EXECUTE
CORRECT
VERSION

EXECUTE
SUBJECT
PROGRAM

Test Driver Macro Flowchart.

COMPARE
AND WRITE
RESULTS

91

INPUT
PARAMETERS

COMPARE
AND WRITE
RESULTS

EXPERIMENT

DRIVER
GENERATE EXECUTE EXECUTE
INPUT CORRECT SUBJECT
DATA VERSION PROGRAM
GENERATE WRITE
RANDOM INCORRECT
NUMBERS RESULTS

ELAPSED
TIME

Figure 3.2.2-1. Experiment Driver Macro Flowchart.

3.2,2.2 Comparator

The comparator in the experiment driver 1s used to determine correctness of the
subject program. Simply stated, the comparator ts program code to compare every
output-data i1tem of the subject program with the corresponding item of the correct
version. An error flag i1s set when a difference 1n output 1s noted.

3.2.2.3 Results Writer

The results writer 1s code in the experiment driver to record the following informa-
tion: 1) incorrect output as the result of a software failure; 2) number of input-data
cases run to software fatlure; 3) CRU's to the software failure; and %) failed input-
data case.

The incorrect output helps to identify the potential software error(s) causing the
failure. The 1dentification of errors and their associated error numbers in each run
required the careful matching of various program states with the failed input-data
cases. By running selected program states with the failed cases and recording
successes, the error numbers can be accurately assigned. Multiple errors can also be
identified with this procedure, or equivalently, computer program. The program,
called the error 1dentifier, 1s described in 3.2.3.

The recorded failed case 1s actually the initial seed of the random number generator
assoclated with the failed case. The volume of written data 1s thus greatly reduced.
However, the price paid 1s the execution time required in the error identifier to
regenerate the full input data of the failed case.

These data are written on the failed-cases file which i1s permanent disk storage. This
file 1s then easily referenced by the error identifier program at a later time.

The failed-case file 1s organized by the subject program states that produced the
failures. In other words, all the failed cases from a particular program state are
grouped together on the file, with some header information identifying that group of
cases.

3.2.3 Error Identifier

The error identifier 1s the program which executes any state of the subject program
using the failed-cases file. The structure of the error identifier 1s much like the
experiment driver, in that they both use the correct version and a comparator to
determine success. The macro flowchart 1s given in Figure 3,2.3-1.

The 1dentification of the software errors corresponding to all failures of a particular
subject program state involves multiple executions of the error identifier using the
program In other states. The following steps constitute the runs of the experiment to
tdentify errors.

I. Run the experiment driver with a subject program in a given state,
producing a failed-cases file F.

2. Correct one software error E in the program in state S, which yields the
program in state S.E.

17

8T

INPUT
PARAMETERS

ERROR
IDENTIFIER

EXECUTE
CORRECT
VERSION

Figure 3.2,3-1.

Error Identifier Macro Flowchart.

EXECUTE
SUBJECT
PROGRAM

COMPARE
AND WRITE
RESULTS

3. Run the error identifier with S.E. and F.
4. Identify all successful cases with error E.
5. Repeat steps 2-4.

This procedure will identify all known single errors which caused the failures.
Multiple errors are identified by correcting two or more errors at a time in the
program 1n state S.

Imphicit in the above discussion 1s what appears to be previous knowledge of all
errors. In practice, the programmers were given software failures from initial
executions of the experiment driver. They then identified the associated errors and
made their corrections. In some cases no corrections were made. These errors are
discussed in Sections 4.3.6, 4.4.6, and 4.5.6.

3.3 COMPUTER/LANGUAGE ENVIRONMENT

3.3.1 BITS System

BITS 1s an integrated system of intelligent terminal hardware and software developed
by BCS. The hardware consists of a Terak 8510A microcomputer using the l6-bhit
LSI-11 microprocessor. Primary memory 1s 56K bytes, and secondary memory
consists of two eight-inch floppy disk drives with a combined capacity of about 512K
bytes.

The software available on BITS includes a file manager, text editor, communications
capability, together with Pascal, BASIC and FORTRAN compilers. The FORTRAN
compiler, utilized 1n this study, closely conforms to Standard ANSI FORTRAN 77.

3.3.2 VAX/VMS System

VAX (Virtual Address Extension) system together with VMS (Virtual Memory Opera-
tion System), 1s a high-performance multi-programming system based on 32-bit
architecture. Virutal memory features, plus disk storage of over one gigabyte,
remove the storage restrictions for most applications programs.

There 1s a full suite of software available on the VAX, including an operating system,

text editors and compilers. The FORTRAN compiler contains all the features of
Standard ANSI FORTRAN 77.

19

4.0 EXPERIMENT DATA COLLECTION

4.1 INTRODUCTION

This chapter and the referenced appendices present the data-collection results of the
experiment., Also included 1s a brief description of the programmers' backgrounds.

There are three parallel sections (4.3, 4.4, and 4.5) corresponding to the three
problems of the experiment. Each of these sections together with corresponding
appendices gives, in detatl, background information on the problem specifications and
correct version, descriptions of test cases and the usage distribution for the
experiment runs.

A tabulation of software errors is given for each subject program. The identified
errors are categorized using the categories in [10]. These categories are given in
Appendix A.

4.2 PROGRAMMER DESCRIPTIONS

Two scientific programmers were used for all three problems. Programmer A
received a B.S. degree in Computer Science 1n 1979 and joined BCS in June 1979 as a
programmer. His principal job has been to support and enhance a geometry package
used to design wing and body configurations. His emphasis in the field of computer
science 1s structured software design, development and languages, including
FORTRAN, Pascal, ALGOL, SNOBOL and COBOL.

Programmer B received a B.S. degree 1n Computer Science 1n 1975 and joined BCS 1n
January 1976 as a programmer. He has worked on nuclear-waste engineering and
radiation-monitoring problems, using FORTRAN on a variety of machines. Later
assignments have involved integration testing on the AWACS program using JOVIAL
language, and conversion of a missile-stmulation program and graphics package from
an IBM machine to the VAX/VMS system.

4.3 PROBLEM #1

4.3.1 Background

TRW [10] conducted an extensive study of software reliability 1n 1973 which included
an experiment similar to that of the present study. Two experienced programmers
were given specifications for a mussile-tracking simulation problem. Then each
programmer designed, coded and tested his own version using FORTRAN 1V.

The experiment consisted of many executions of the resulting programs, using a
predefined usage distribution. Reliability estimates were made from the percentage
of successful cases to the total number of cases run. However, there was no error-
correction process as that in this study.

The same problem specifications, test cases and usage distribution 1n the TRW study

were used In the present study. However, additional specifications, including input
and output descriptions, were necessary to resolve certain ambiguities.

21

4.3.2 Specifications

In general, the specifications require geometric calculations involving an input set of
two-dimensional coordinates representing radar tracks. Fifteen such calculations
then became conditions to be logically combined to determne 1f a make-believe
missile should be launched.

The complete specifications for problem #1 are presented in Appendix B. Sections
1.0 - 4.0 of Appendix B are from [10). Sections 5.0 - 7.0 of Appendix B were added as
part of the present study.

4.3.3 Test Cases

Three test cases were used to bring both subject programs Al and Bl to state 0. All
three cases were chosen from [lOi The test cases and the corresponding correct
output are presented 1n Appendix C.

4.3.4 Usage Distribution

The following usage distribution (see 2.1.2) describes the input data used for
problem #1.

4.3.4.1 Coordinates

Figure 4.3.4.1-1 1llustrates the distribution from which the two-dimensional coordi-
nates simulating a radar track are drawn. Each Input case requires 5 such
coordinates.

Approximately 95% of the time the two-dimensional coordinates are drawn uniformly
from area A, and 5% of the time from the combined 4 subareas labeled B. Each
coordinate 1s rounded to the nearest 0.1.
4.3.4.2 LCM and PUM Elements
120 elements of the Logical Connector Matrix (LCM) satisfying L such that i < j
(where 1 is the row index and j the column index) were generated fr'dm the following
distributions:
for 1 and j equal to 1,2,3,4,5,6,7,8,9,10,11 and i < Js Llj =2
for all other i and j where 1 < j, Pr { LiJ =0 } =.78
Pr{L1j=1 }=.20
Pril;=2}=.02
the Lu for which i =) were computed internally from the equation L11 = le.

Fifteen diagonal elements, P » of the Preliminary Unlocking Matrix (PUM) were
generated by selecting 0 or 1, each with probabulity 0.5.

22

4 T

0 1 B

20 +

10

10 20 30

40

P(A)
P(B)

95%, uniformly distributed within A
5%, uniformly distributed within B

Figure #.3.4.1-1. Usage Distribution for Coordinates.

23

4.3.4.3 Parameters

The 15 Launch Interceptor Conditions (LIC) required the following parameters (listed
by the appropriate LIC):

1) 4 = 14.5

2) r = 7.1

3) €, = 0

4) A = 50

5 M = 15Q=3

6) None

7) N = b € = 15.0
(8-11) Nj = Mp=ng=ng=lym; =my=my=m =]

12) ng = 5

13) L = 0

14) R = 0

15) E = 0

4.3.5 Correct Version

Correctness of output was determined by comparing the subject programs' output
with that from one program written in the TRW study.

Program "MYRON" was written by a senior-level applications programmer, as part of
the TRW project. The program consisted of approximately 298 lines of non-comment
source code of FORTRAN 1V.

After program MYRON passed the three test cases in Appendix C, 1000 randomly
generated nput cases from the usage distribution of Section 4.3.4 were executed with
program MYRON. Based on three software failures among these cases, the reliability
of program MYRON was estimated to be 0.997.

As part of the present study, the software error caustng the three failures above was
corrected. The resulting program was then assumed to be correct. However, in the
course of the experiment two additional software errors in MYRON were corrected.
After the corrections were made, the experiment was rerun with what i1s now
assumed the correct version.

4.3.6 Error Descriptions

In the course of the experiment for problem #1, subject program Al had 9 different
software failures detected and the corresponding errors corrected. An additional
software error, manifested in small inaccuracies between Al and the correct version,
was left uncorrected. Subject program Bl had 9 different software errors corrected.
All errors are discussed 1n the following sections.

24

4.3.6.1 Subject Program Al

ERROR CLASSIFICATION
NUMBER CODE
1 A600
2 A600
3 A600
4 B600
5 A600
6 B400
7 B400
8 A600
9 A600
10 A600

DESCRIPTION

An 1Incorrect algorithm was used for
coverage of three coordinates by a
circle of given radius.

An ncorrect equation was used to
calculate the area of the triangle.

The use of arccos to determine linear-
1ty of three points was naccurate.

An Incorrect comparison was used
when determining 1f the difference
between abscissa of adjacent points
were negative.

There was a division by zero when
coordinates were 1dentical in the cal-
culation of the area of the triangle
defined by three coordinates.

There was an accuracy failure in an
algorithm for coverage of three co-
ordinates by a circle of a given radius
when two coordinates were 1dentical.

This error 1s identical to #6 except 1t
1s located 1n a separate, but indepen-
dent section of the program.

The tolerance introduced for error #3
had to be made larger. This 1s an
example of the ripple effect, Section
5.7.

The tolerance introduced for error #6
had to be made larger. (Ripple effect.)

The tolerance introduced for error #8
was too large. No correction was
made, because a new algorithm was
probably required, not just a simple
tolerance change. (Ripple effect.)

25

4.3.6.2 Subject Program Bl

ERROR CLASSIFICATION
NUMBER CODE

1 A400
D100*

2 F300*

3 A600%*

A A600

5 A900

6 B400

7 A600

8 A600
D100

9 A900

DESCRIPTION

Conversion to radians of an argument
for arccos was redundant. In addition,
p1 was not initialized everywhere.

The squaring of a negative quantity
was done using a power-series expan-
slon, not just squaring the quantity,
l.e., W**2,0 was used instead of W**2
or W*W,

In the algorithm for coverage of three
coordinates by a circle of a given
radius, a term was left out of an
equation.

There was a division by zero, when
adjacent coordinates were the same.

The argument for arccos was greater
than 1.0 when three coordinates
formed a line.

An exact comparison of floating-point
variables was used, instead of allowing
a tolerance.

An Incorrect algorithm was used for
LIC(7) when the first and last coordi-
nates were 1dentical.

The area of the triangle defined by
three coordinates was not set to zero
when the coordinates formed a line.

When the area of the triangle defined
by three coordinates was exactly equal
to the test criteria (parameter A), a
value shghtly greater than A was cal-
culated.

* Hidden errors, incorrectly 1dentified as detectable.

26

4.3.7 Run Results
4.3.7.1 Subject Program Al

Figure 4.3.7.1-1 presents the results of the experiment for subject program Al. This
figure, as well as those for the remaining programs (4.3.7.2-1, 4.4.7.1-1, 4.4.7.2-1,
4.5.7.1-1 and 4.5.7.2-1), traces the 50 runs for the particular program. The figure 1s
composed of levels, or stages, of prograin states, where each stage i1s defined by the
number of errors detected. Beginning with state 0, the occurring program states and
thetr frequencies are shown for the 50 runs. The encircled number(s) represent a
program state, 1n particular, the error numbers of the corrected errors. For example,
12 1s a given subject program with errors #1 and #2 corrected. A subject program at
state 0 is tdentified with 0 following the program name and dash, e.g., Al-0. The
directed line segments represent the random walk of the subject program going from
one state to another, 1.e., having one or more errors corrected. The number to the
left of this line segment 1s the number of runs experiencing that particular change In
state.

For example, using Figure 4.3.7.1-1 and beginning with state 0 (Al1-0), 40 of the runs
had error #1, 8 had error #2 and 2 had multiple errors, #! and #2, occurring with the
same input cases. As shown in the table to the right of the figure, these 50 runs
required a total of 51 input cases for the first error(s) to occur.

From these states (48 at stage 1, 2 at stage 2), the runs continue to another stage.
Note that not all 50 runs continue through all stages, because some errors detected
are not corrected. In general, the number of input cases per run required to detect
errors increases as the stage increases.

4.3.7.2 Subject Program Bl

Figure 4.3.7.2-1 1llustrates the results of the software failure detection/error
correction process.

4.4 PROBLEM if2

4.4.1 Background

The Boeing Intelligent Terminal System (BITS) includes a library of general-purpose
scientific subroutines. Included in the library are routines for spline-function
interpolation. These routines have received extensive testing and subsequent use at
Boeing for over ten years. Functions of several of these routines were used for
specifications of problem #2 and the library routines themselves became the basis of
the correct version (see 4.4.5).

27

8¢

Figure 4.3.7.1-1.

Trace of Runs for Subject Program Al.

ERRORS

DETECTED TOTAL
(STAGE) |RUNS| CASES

1 50 51

2 50 Libb

3 50 [18,835

‘ i 43 118,316
5 19 117,586

6 8 | 2,480

39

123 Figure
456

21 13

13

ERRORS

DETECTED TOTAL

(STAGE) | RUNS | CASES
1 50 328
2 50 107
3 50 89
4 50 5,484
5 50 14,3?5
6 46 | 81,595
7 1 0

4.3.7.2-1. Trace of Runs for Subject Program Bl.

4.4.2 Specifications

Specifications for problem #2 were developed as part of the present study. In
general, four subroutines were required: (1) routine to calculate coefficients of the
spline passing through the input coordinates; (2) routine to calculate coefficients
when the spline polynomials are expressed in an alternate form; (3) routine to
interpolate at an arbitrary point using the spline coefficients, and (4) a routine to
integrate along the spline between arbitrary endpoints.

The complete specifications for problem #2 are given in Appendix D.

4.4.3 Test Case

One test case was used to bring both subject programs A2 and B2 to state 0. The test
case and the corresponding correct output are presented in Appendix E.

4.4.4 Usage Distribution

Three coordinates are drawn randomly from the distribution shown in Figure
4.3.4.1-1. Each coordinate 1s rounded to the nearest 0.1.

Each 1nput data case also requires three X-coordinates - one for the point of
Interpolation and two to define the limits of integration. These points are drawn
from the following distribution:

B A B
[;] R S .]
i] A []
-40 -30 -20 -10 0 10 20 30 40

P(A) = 95%, uniformly distributed within A
P(B) = 5%, uniformly distributed within B

Each of these X-coordinates 1s rounded to the nearest 0.1.

4.4.5 Correct Version

The correct results for three of the four required routines were those from the
library routines based on which problem #2 was selected (see 4.4.1). The so-called
correct results for the routine performing integration were computed in a routine
written specifically for the project. This latter routine received extensive peer
review and testing.

4.4.6 Error Descriptions

For problem #2, subject program A2 had five different software failures detected
with four errors corrected. The fifth software fallure was when a subject program
output item was not within 1% relative error of the corresponding correct-version
output item. In this case, there was no correction made to the software.

30

Subject program B2 had three different software failures, with two failures resulting
In corresponding software-error corrections. One software failure was similar to the
relative-error failure mentioned above. As with subject program A2, there was also
no correction made for this failure in subject program B2.

4.4.6.1 Subject Program A2

ERROR CLASSIFICATION
NUMBER CODE DESCRIPTION
1 B400 An nfinite loop occurred because a
B600 switch of variables was not made 1n a
D800 sort algorithm.

2 A600 The upper limit of the range of inte-
gration was incorrectly calculated
when both lLimits were within the
range of one spline.

3 A600 The integral was incorrect when the
upper limit equaled the largest X-
coordinate defining the splines.

4 A600 The interpolated value was incorrect
when the point for interpolation
equaled the largest X-coordinate de-
fining the splines.

5 A600 There was an accuracy failure 1n some

output item (relative error > 1%).

4.4.6.2 Subject Program B2

ERROR CLASSIFICATION
NUMBER CODE DESCRIPTION

1 A800 The integral was not calculated when
the lower limit was greater than the
upper limit.

2 A600 The integral was incorrect when the
upper limit equaled the largest X-
coordinate defining the splines.

3 A600 There was an accuracy failure in some

output item (relative error > 1%).

31

32

4.4.7 Run Results
4.4.7.1 Subject Program A2

Figure 4.4.7.1-1 presents the results of the software failure detection/error correc-
tion process.

4.4.7.2 Subject Program B2

Figure #.4.7.2-1 illustrates the results of the software failure detection/error
correction process.

4.5 PROBLEM #3
4.5.1 Background

The use of problem #3 i1n the experiment was motivated by existing routines used for
earth-satellite calculations. Such calculations, involving analytic geometry and
vector analysis, determine distances, aztmuths and intersections on the earth.

4.5.2 Specifications

Specifications for problem #3 were developed for the project by a senior-level
computer scientist who has had experience with the particular application stated
above. The complete specifications are presented in Appendix F.

4.5.3 Test Case

One test case was used to bring both subject programs A3 and B3 to state 0. The test
case and the corresponding correct output are presented in Appendix G.

4.5.4 Usage Distribution

As stated in the specifications for problem #3 (Appendix F), three latitude- longxtude
coordinates on the earth are required inputs, as well as an angle between 0~ and 180°.
The distribution for the latitude-longitude coordinates was uniform over the sphere,
but rounded to the nearest 5 _in both latitude and longitude. The distribution for the
angle was uniform between 0° and 180° with no rounding.

4.5.5 Correct Version

The existing routines mentioned in Section 4.5.1 became the nucleus of the "correct
version" program which was designed, coded and tested for the study by the
senior-level computer scientist who developed the specifications. His version
recelved extensive peer review plus many tests designed to simulate the usage
distribution to be used in the experiment.

4.5.6 Error Descriptions

For problem #3, subject program A3 had seven different software failures, for which
five distinct software errors were corrected. One failure for which no error was
corrected 1nvolved the wrong number of intersections found (see Section 1.0,

£e

ERRORS
DETECTED TOTAL
(STAGE) | RUNS | CASES

2 50 178

3 50 1,323

4 49 2,567

1235

AT @

@ 5 22 {162,142

Figure 4.4.7.1-1. Trace of Runs for Subject Program A2,

he

12

28

Figure 4.4.7.2-1.

ERRORS

DETECTED TOTAL

(STAGE) | RUNS | CASES
1 50 345
2 50 1,903
3 28 1259,110

Trace of Runs for Subject Program B2.

Appendix F). The second such fatlure occurred when the relative error of an output
item from A3 compared to the correct version was greater than 1%. Time and
budget constraints precluded software error corrections for these two failures.

Similarly, subject program B3 had ten different software failures for which six
software errors were corrected. Two of the remaining software failures which did
not lead to corrections correspond to similar failures for program A3 above, with an
additional two failures involving a division by zero and an incorrect azimuth.

4.5.6.1

ERROR
NUMBER

1

Subject Program A3

CLASSIFICATION
CODE

A600

A800

A900

A600

A600

A600

A600

4.5.6.2 Subject Program B3

ERROR
NUMBER

1

CLASSIFICATION
CODE

A800

A600

DESCRIPTION

The determination of the sign of the
azimuth was incorrect.

There were uninitialized variables
when cross-product calculations were
bypassed under certain conditions.

The argument for arccos was greater
than 1.0 or less than -1.0.

The algorithm to determine intersec-
tions calculated the wrong point of
Intersection.

The azimuth was incorrectly calcula-
ted when the path went through either
the north or south pole.

The algorithm for calculating inter-
sections failed to determine the cor-
rect number of intersections.

There was an accuracy failure 1n some
output ttem (relative error > 1%).

DESCRIPTION

The determination of the sign of the
azimuth was not done.

The algorithm to determine the order

of the two Intersection points was
incorrect.

35

36

ERROR
NUMBER

10

4.5.7 Run Results

CLASSIFICATION
CODE

A900

A600

A900

A600

A600

A600

A600

A600

4.5.7.1 Subject Program A3

The results of the software fatlure de

Figure 4.5.7.1-1.

%.5.7.2 Subject Program B3

The results of the failure detection

4.5.7.2-1.

DESCRIPTION

The argument for arccos was greater
than 1.0 or less than -1.0.

The algorithm to determine intersec-
tions failed to find a correct intersec-
tion point.

The argument for arcsin and/or arccos
was greater than 1.0 or less than -1.0.

The sign of the calculated azimuth
was incorrect, when the magnitude of
the azimuth 1s pi.

Determination of colinearity of two
coordinates and the center of the
earth was incorrect.

There was an accuracy failure 1n some
output item (relative error > 1%).

There was division by zero when de-
termining intersections.

The azimuth was incorrectly calcula-
ted as 0, when the correct value was

pi.

tecnon/error correction process are shown in

/error correction process are illustrated in Figure

A

A3-1

43 7

Figure 4.5.7.1-1. Trace of Runs for Subject Program A3.

ERRORS

DETECTED TOTAL
(STAGE) | RUNS | CASES
1 50 | 137
2 50 | 482
3 | 49 |4,875
4 35 17,690
5 | 17 |7,050
6 4| 3,220

TOTAL

5.0 DATA ANALYSIS

The results contained in the following sections depend on the structure of the
experiment performed. In particular, they reflect the specific features of the usage
distributions employed, the detectors imposed to define the errors, and the sampling
techniques utilized during experimentation.

The data base obtained from this experiment and on which the following analyses are
conducted 1s presented in Appendices H-M. For each program the listing consists of
run number and for each stage the number of executions to failure, the number of the
error causing failure and the interfailure time.

One difficulty with this data should be noted. At the beginning of the experiment,
the concept of how an error should be strictly defined was not completely understood.
After some experience 1t was finally established that only those program errors
causing the specific program failure would be corrected between states. In addition,
it was also established that errors would be separately defined, 1.e., labeled
separately, only 1f for some input cases one would occur without the other. In other
words two errors would be separately labeled 1f the intersection of the two error sets
was strictly contained in, and not equal to, thewr union. Thus, errors that always
occur together are defined as a single error and are removed together.

Unfortunately, the realization of this difficulty did not occur early enough to prevent
a slight degradation of the data base. Specifically the distortion occurred for errors
##2 and #3 of subject program Bl, the first program to be studied. At the time of the
debugging of error #1, programmer B was allowed to fix another line of code. This
line of code had two intriguing properties. First of all, because of the way the
computer was initialized and the specifications of the problem, this line of code,
though incorrect, would not have resulted in a computational error, and thus falls in
the class of hidden errors with respect to the set of error detectors utilized 1n this
problem. Secondly, correcting this line of code permitted entry into a section of the
subroutine containing errors #2 and #3. The code in this part of the subroutine,
however, was not essential to the solution of the problem as specified, and as long as
1t was bypassed made no difference. Thus, errors #2 and #3 were hidden by the
existence of the initital hidden error.

5.1 TESTING THE HYPOTHESIS OF EXPONENTIAL INTERFAILURE TIME

One of the major assumptions of most reliability models 1s that the conditional
distribution of interfailure time given the number of errors corrected is exponentially
distributed. When all errors are identically distributed or if the conditioning is on
state rather than stage, this assumption appears consistent with the error detection
process as commonly understood. If measured execution time, however, is highly
truncated or widely varies with input, time may have to be measured 1n numbers of
executions to failure to observe exponential behavior.

When errors are not identically distributed, interfailure time, conditioned on the
number of errors corrected, 1s not necessarily exponentially distributed. In fact, if
state conditioning produces exponentially distributed interarrival times, then stage
conditioning results 1n times which are distributed according to a mxture of
exponentials having one component for each state contributing to the stage. Thus,

39

for example, if there are three failure modes for a given program and 1f t 1s the
interfailure time to the second failure given that one error has been detected and
corrected, then t has density:

(0= { A O, eh e [0y ext] +2, (0 + 2y
exp [-()\1 +)\3) t] +Az3 (A +)\2) .
exp [~ + 2 1] /A +Ay 41y

where)\l 1s the fatlure rate of the 1th error source.
In general, a mixture of exponentials 1s a monotone decreasing function and 1s
difficult to distingwish from the exponential itself. Its hazard function 1s a
decreasing function. Table 5.1-1 compares values of the function f(t), above, when
A, =5,A, =10, A, = 15 with values of a comparable exponential function having the
same firs momen?.

Some statistical goodness-of-fit tests have been performed on the data to establish if
the exponential assumption s preferable against various alternative classes. Unfor-
tunately none of these tests are sensitive enough to distinguish between an exponen-
tial and an exponential mixture. The tests performed were variations of the
Kolmogoroff-Smirnov goodness-of-fit test developed specifically for the exponential
with unknown parameter by Finkelstein and Schafer [11) and by Lilliefors [12]. Both
tests are described in Mann, Schafer and Singpurwalla [131.

Table 5.1-2 gives the results of the test. In all cases, regardless of the data type, the
exponential assumption is preferable to the alternatives to which these tests are
sensitive. It does appear, however, that when few errors have been corrected in the
early program stages this may not be the case due to the truncation effects of
execution time.

Proschan's test for DFR distributions, Barlow and Proschan [14], could also be used 1n
this context. This test appears to be particularly powerful in sensing differences
coming from mixtures of exponential distributions. To date the computations in this
test have not been completed.

For the problems considered in this experiment, constant execution time 1s a
reasonable assumption. For problems demonstrating widely varying execution times
or when there are sizable truncation effects, the equivalency of time and number of
program executions may not hold.

Kalbfleish and Prentice [15] point out that if a data set 1s exponential, the log of the
survivor function estimate plotted against t should approximate a straight line
through the origin. The survivor function in the case of noncensored data 1s defined
by

F(t(l)) = .I. - I/n

40

TABLE 5.1-1
COMPARISON OF EXPONENTIAL-MIXTURE DENSITY WITH EXPONENTIAL DENSITY

N=3

)\1=5,)\2= 10,)\3= 15

Exponential Exponential

t Mixture (Same Mean)
0 18.33 17.65

.01 15.16 14.79
.02 12.55 12.40

.03 10.41 10.39

04 8.64 8.71

.05 7.19 7.30

.07 4.99 5.13
.10 2.92 3.02

15 1.22 1.25

.2 .52 .52

3 .10 .09

41

42

TABLE 5.1-2
LILLIEFORS K-S TEST STATISTIC
FOR THE EXPONENTIAL DISTRIBUTION

#-Of-Input-Cases Based

Subject Statistic

Program Stage (Maxd) ' d.f.
Al 2 139 50
Al 3 .089 50
Al 4 .101 42
Bl 4 .0602 50
B3 4 L0641 36

Execution-Time Based

Subject Statistic
Program Stage (Max 6) d.f.
Al 3 .0892 50

Significance

(ot =.05)

Not sig.
Not sig.
Not sig.
Not sig.

Not sig.

Significance

(ot =.05)

Not sig.

Figure 5.1-1 plots these quantities for two different stages and problems. There
appears to be some deviations from the exponential in the tail. Whether this i1s due to
real effects coming from a non-constant hazard function or random effects due to
the variation In the tail 1s not known.

5.2 UNEQUAL ERROR PROBABILITY HYPOTHESIS

One of the primary concerns of this research is to determine if errors occur with
unequal probabilities within a program. Estimates of these errors by number are
given 1n Table 5.2-1 for all six subject programs. The estimates are based on looking
at each run not as a series of stages but as a continuous uninterrupted run until the
error of interest occurs. The number of executions until the error 1s manifested 1s
distributed as the geometric distribution. The same 1s true for all other errors in the
program. Thus the individual error estimates are based on the same estimator as that
discussed in Section 2.2.9.

To compare two error estimates from the same run and statistically test for equality
the following procedure was adopted. The numbers of correct cases to occurrence of
each of the errors were subtracted run by run obtaining a set of k differences. It was
then assumed that the mean of these differences was approximately normally
distributed with mean zero if the errors are identically distributed. A t statistic was
then used to evaluate 1f the observed mean difference was significantly different
from zero, based on the observed standard deviation. For every program there were
at least two errors which manifested a significant difference. Indeed by looking at
the magnitude of the range of the error estimates, this hypothesis appears to be
extremely well substantiated. In fact, it seems very unlikely that errors are ever
identically distributed across an entire program error set.

5.3 STATE PROBABILITY ESTIMATES

Given that the above hypothesis is true, 1t 1s of great interest to measure its impact
on the observed error structure of a program in a varlety of situations. Table 5.3-1
gives estimates of the stage probabilities for, each of the six programs of this
experiment. The probability given for the i stage can be interpreted as the
conditional probability that the program will fail in a single-execution given that 1-1
errors have been corrected. This statement presumes then that the first stage 1s
based on a program 1n its initial state as defined by the static detectors and that this
1s the state of the program with all of 1ts errors intact.

Figure 5.3-1 1s a plot of the absolute value of the logarithm of the error probabilities
versus an approximate measure of the number of errors corrected at that stage. This
graph presents the first experimental measure of a program's behavior through time,
under repeated conditions, taking into account both the probabilities of the errors in
the error set and their random order of observation. Several features of this graph
are notable.

43

w

| LN (SURVIVOR FUNCTION) |
—— N

W

| LN (SURVIVOR FUNCTION)|
— N}

iy

PROGRAM Al
3rd Error

i | | | 1

2000 4000 6000 8000 10,000 12,000 14,000 16,000
TIME (CRU's) TO FAILURE
1 |] | D] i |
PROGRAM B3
4th Error

] | 1 { i | 1

100 200 300 400 500 600 700 800

PROGRAM EXECUTIONS TO FAILURE

Figure 5.1-1. Survivor Function vs. t for Subject Programs Al and B3,

TABLE 5.2-1
SPECIFIC ERROR PROBABILITIES - RANKED ESTIMATES

Prob. of Prob. of
Error Occurrence Per Error Occurrence Per
Program No. Program Execution Program No. Program Execution
Al 1 8.20x107! Bl 1 1.52x10"1
2 9.63x102 2 1.07x107!
4 1.22x1072 3 1.02x10°!
3 8.17x10™* 4 6.89x10~>
5 u43x107* 5 2.41x1073
6 4.12x107* 6 2.46x107%
8 2.49x10™* 7 1.18x10™%
10 1.15x107% 8 1.18x107*
7 1.92x10"°
9 1.92x107°
A2 1 7.83x10"1 B2 1 1.31x10°1
2 1.87x10°1 2.26x1072
3 1.72x1072 3 1.03x107*
4 1.66x102
5 Lutx10™
A3 1 2.37x10"1 B3 1 3.29x10" !
2 1.78x10°2 2 8.13x1072
6 1.16x10"2 5 4.55x1073
5 1.03x102 7 1.75x1073
7 4,08x10™3 4 1.53x10™2
10 3.15x1073 6 3.84x10~*
3 2.51x10™3 3 3.08x10™"
4 2.37x10">
8 1.38x107>
9 1.97x10™*

45

46

ESTIMATED STAGE PROBABILITIES

PROGRAM

Al

Bl

A2

B2

A3

B3

TABLE 5.3-1

STAGE

W WN - W N W FEWN - AN WN — AN WN -

WS WN -

PROB. OF
ERROR PER

EXECUTION

.9803
.1068
.002602
.002104
001176
.0007659

1524
4673
4098
009117
.003483
.0005359

8065
2632
.03759
.01909
.0001374

1449
02625
.0001033

2488

05376
03524
.02691
02302

3650
.1037
.01021
.004681
002411

10 -

| LN (STAGE PROBABILITY) |

Figure 5.3-1.

2 3 4 5
NUMBER OF ERRORS CORRECTED

[y

Estimated Error Rate as a Function of Errors Corrected,
Using Original Data.

47

First of all, although controls were imposed on the experiment to insure as much
commonality as possible in the definition of the initial program stage, this was an a
prior: definition. In fact what seems more desirable 1s a definition of the first stage
that may be data dependent but that causes error probabilities across all programs to
cluster. This 1s equivalent to defining the initial stage by a program feature that
implies a certain state of probabilistic commonality. High error probabilities 1mply
that a program 1s not well checked out. Check out is also very difficult to control in
as much as programming time and programmer attention interact at this end of the
scale with error discovery. Therefore, since highly probable errors are not interes-
ting 1n forecasting software reliability, a redefinition of the initial program state in
terms of a minimum p level might be potentially useful. This level was chosen to be
In p= -1.0 or p=.37. Figure 5.3-2 is a replot of the data in 5.3-1 with this definition
of zero on the horizontal scale. The data is nicely compressed at zero with small
range indicating some commonality. The usefulness of this definition is further
explored 1n the next section.

One of the most striking characteristics of the data in Figures 5.3-1 and 5.3-2
regardless of the question of origin is the degree of linearity in each of the graphs.
This suggests the model for the basic reliability structure behind these programs that
is developed in the following section. In these graphs there is also a hint of a
cornection between the probability structure and the programmer as well as between
the structure and the problem. The modeling effort referred to above enables these
1deas to be subjected to statistical evaluation to some degree, and it also provides a
framework in which to test program attributes that may be indicators of unrelia-
bility.

Another point about these graphs worth noting but of seeming little value to the
current data analysis 1s the very low probabilities observed in what appears to be the
early stages of programs A2 and B2. These two errors are both of the same type and
both reflect a failure of the program to compute with the accuracy required by the
problem specifications. It 1s not surprising then that such errors have similar
probabilities in both programs.

5.4 RANDOM INFLUENCES ON THE STAGE PROBABILITIES

The randomness in the estimates of the stage probabilities has two sources. One
source is due to the natural sampling variation in any exponentially sampled variable
(or nearly exponential as in this case). This can be extensive for the exponential
because the standard deviation equals the mean, and as the rate decreases it behaves
more and more as a uniformly-distributed variable over an increasing range. The
second source depends on the fact that the order of error detection can be random.

Figures 4.3.7.1-1 and 2, 4.4.7.1-1 and 2, and 4.5.7.1-1 and 2 have already demonstra-
ted that program failures follow a random walk through the error space. The walk
forms a pure death Markov process since the next error state of a program depends
only on the transition probabilities and on those errors that have been corrected prior
to execution and not on the time or order of correction. The frequencies of
particular paths can be used to determine their transition probabilities. Most of the
programs written for this experiment demonstrated a wide variety of walk behavior.
Only for program B2 has the walk been concentrated primarily along a single path.

43

| v (sTace proBaBILITY) |

Figure 5.3-2.

10 1

Bx § Do x

Al

A2
B2
A3
B3

v T

1 2 3
NUMBER OF ERRORS CORRECTED

Estimated Error Rate as a Function of Errors Corrected,

Using Modified-origin Data.

> 4

49

To evaluate the impact of these sources of randomness on the p estumates (which in
turn are proportional to the failure rates when execution time 1s constant),
histograms of the individual run estimates of p are given in Figures 5.4-1 and 5.4-2
for two of the programs. The sample mean and standard deviations are also given for
each histogram in order to provide measures of the randomness in the failure rate
estimates based on a single observation. Since single-point estimators are the
current practice in traditional software reliability estimation, these histograms
tlustrate that the error in such observations can be considerable.

2.5 PROPOSED MODEL FOR SOFTWARE RELIABILITY BASED ON COX'S PRO-
PORTIONAL HAZARDS FAILURE MODEL

Based on the evidence of Section 5.1, 1t can now be assumed that interfailure time 1s
nearly exponentially distributed with rate proportional to p. In addition, the evidence
In Figures 5.3-1 and 5.3-2 suggests that log p 1s nearly linear with respect to stage.
A model that incorporates both of these ideas 1s explored 1n Kalbfleisch and
Prentice [15] based on a model originally developed by Cox [16]. The model, called
the proportional hazards model, specifies a hazard function of the form

Alt;z) = At)eZB

where A(t) 1s the base line hazard function that may or may not be time dependent
and where z 1s a vector of covariates or factors. Thus by providing multiplicative
shocks to the hazard function the vector z can alter the rate at which an individual
program proceeds along the time axis.

In the context of software reliability 1t 1s anticipated that z as a mimmum should
consist of a covariate representing the stage level, 1.e., the number of corrected
errors. In addition, the vector could include other covariates representing physical
features of the program as well as the experimental test factors such as the problem
and programmer factors. New covariates can be tested for their predicting ability as
the model also provides a framework 1n which to statistically evaluate potential new
explanatory covariates.

Since within a stage 1t has been demonstrated that the hazard rate 1s nearly constant,
this implies that the model for software is much simpler than the model explored by
Cox as A(t) must be constant. Under these circumstances then, the distribution of
within- stage life length reduces to the exponential

f(t;z) = A eZB exp(-)\eth)

A program has been developed that provides maximum likelihood estimates for A and
B based on the Newton-Raphson optimization technique applied to this problem
outlined 1n [15]. Two models have been explored using this program. Both are based
o, an expansion oﬁ_‘the exponent in the hazard function in the following terms for the
1~ problem and j- programmer

6 =log)\lj+z,8

1 1)

:ﬂ+a1+ﬂj+ yljk

50

159

1 ERROR CORRECTED

10

1.0

S T> » XxI

= 3460
.3726

.1068

50

Figure 5.4-1.

PROGRAM Al

NO. OF OCCURRENCES

2 ERRORS CORRECTED 3 ERRORS CORRECTED
10 10
0 4 0 2
.002 4 .0021
.004 1 .004 4
.006 ¢ .006 1
.008 - .008 4
. c—— — — —— — — ___—’_1_———-—
001 o oOl b
.02 4] .02 4
.03 4 .03 «
.04 —l- .04 4
005 -
.06 “] 2
.07 “ .11 I]
-14T X = .0109 1244 X = .0083
:| s = .1023 s = ,0179
15 N A
p = .0026 p = .0025
n =49 n=42

4 ERRORS CORRECTED

10
P

.001 <

.002 +
.003 4
.004 +

.005 1

.006 1

.007 -:|
.008 <

Histograms of Stage Probability Estimates for Subject Program Al

as a Function of the Number of Errors Corrected.

SoT> v X

n

.0099
.0316

.0012

20

PROGRAM Bl
NO. OF OCCURRENCES

0 ERRORS CORRECTED 1 ERROR CORRECTED 2 ERRORS CORRECTED
10 0 20 10
0 A 11 ‘s A
. 1254 l-
.250¢
. 3754
.500
.625
.750¢
.875
1.0 -
X = .41 X = ,68 X = .56
s = .72 s = .33 s = .35
P = .153 D = .467 P = .326
n = 50 n =50 n=29
3 ERRORS CORRECTED 4 ERRORS CORRECTED 5 ERRORS CORRECTED
10 10 10
0 - o .
.00033 < H
.00066 -
.001
.005 -
0104 I T
.025 « =
.040-—}]
.055 ¢
070
085 —J
.10 ““ff_“ N
1.00
X = .04 X = .02 X = ,002
s = ,08 s = .03 s = ,003
A A A
p = .00912 p = .00348 p = .000539
n =50 n=2>50 n =44

Figure 5.4-2. Histograms of Stage Probability Estimates for Subject Program Bl
as a Function of the Number of Errors Corrected.

52

where
a = problem factor, 1=1,2,3
= programmer factor,)=1,2
= program/programmer dependent slope
k = number of errors corrected, k=0,1,2,...
and
Bo+a + B] = 1nit1al stage-one failure rate and background failure rate.

The data for the first model is based on the definition of the stage indicator
tllustrated by Figure 5.3-1 and the second model uses the definition of the indicator
illustrated in Figure 5.3-2. Thus the two models differ only in the definition of k for
programs Al and A2. Model 2 modifies the definition and starts counting with k=0
only when In p < -1 for that stage and omits all prior error data. Model 1 on the
other hand includes all of the observed data, and starts counting k=0 according to the
original definition of a stage.

Because the problem with the data of program Bl was not completely understood at
the time of the development of the proportional hazards model, the data fromn errors
#2 and #3 was omitted. It now appears that the best compromise with this difficulty
would be to 1gnore the existence of these errors, group their data with the data of
error #4 as if they had not been recorded, relabel error #4 as #2 and relabel stages 3,
4, ... as stages 1, 2, The effect of these changes has not as yet been investigated.

The model for § was chosen specifically as a first attempt to explain the nature of
the dependence of the error structure on problem and programmer. The design,
however, 1s limited 1n that only the structure of the non-covariate (1.e., non z) part of
the model 1s explored relative to these effects. To understand to what extent the
slopes depend on these factors, a model of the form
01]_ 7 +a1+BJ+(¢+ }’1+ €]+ }’lj)k

must be analyzed. The first § model therefore explores the dependence of the initial,
stage one, or background failure rate on the two factors. The second representation
of @ permits the testing of the dependence of the shocks to this failure rate as a
function of these factors. Unfortunately the limited amount of data did not permit
the exploration of this second representation.

The results of the nonlinear estimation process are summarized in Tables 5.5-1 and
5.5-2. For the model based on the first definition of k the tests conducted on the
coefficients indicate that all ten of the fitted free parameters are significantly
different from zero except @, and the conclusion on a, affects only the relative
location of the three a parame"ters as they have sum zero. For the second definition
of k, the tests indicate that all of the coefficients are significantly non zero. Thus
for both models, the non k dependent part of the expansion of @ depends on both
factors. That 1s, there is a significant programmer and a significant problem factor
explaining the background failure rate.

53

TABLE 5.5-1

PROPORTIONAL HAZARDS MODEL PARAMETERS

BASED ON ORIGINAL ERROR RATE DATA

Standard Significance
Coefficients Variance Deviation (0t =.05)
Constant
M = -1.2602 .002604 .05103 Sig.
Problem Levels
al = -.02389 006144 .07839 Not Sig.
012 = 5711 004629 .06803 Sig.
013 = - 5472 -
Programmer Levels
Bl = 4158 002854 05342 Sig.
B 9 = 4158 -
Slopes
yAl yAZ 7A3) -1.1000 -1.8562 -.3002
7’51 yBZ ')’53 -1.0902 -3.7898 -1.0193
004406 001570 002754
Var (?) =
.0009986 007047 .003288
.06637 .03963 05248
s.d. (¥) =
.03160 08395 05734

First stage (background) error rate exponent (estimated)

-.8682 2732
(log)\l)z(ﬂ+al+ﬂ) =
J) -1.6999 -.1.1049
First stage failure rate (estimated)
4197 1.3142*
(A) =
) .1829 3312%

* Unconstrained model
54

-1.3916
-2.2232

2487
.1083

TABLE 5.5-2
PROPORTIONAL HAZARDS MODEL PARAMETERS

BASED ON MODIFIED ORIGIN DATA

. Standard Significance
Coefficients Variance Deviation (at=.05)
Constant
M =-1.9394 .003022 05497 Sig.
Problem Levels
al = -.8740 .007538 .08682 Sig.
a,-= .5102 .005507 07421 Sig.
(s 4 3 = c3638 - - —
Programmer Levels
BA = -.3026 .003010 05486 Sig.
BB =.3026 -- -- --
Slopes
7'51 752 7’53 - .9067 -3.7781 -1.4001
.01097 .003503 .002663
Var (7’) =
.001257 007115 .003333
1047 05918 05161
s.d. (¥) =
.0355 08435 .05773

First stage (background) failure rate exponent (model)

-3.1161 -1.7319 -1.8782

(log)\l)=(u+ai+ﬁ) =
)) -2.5109 -1.1267 -1.2730
First stage fatlure rate (model)
04433 .1770 .1529
(A .) =
) .08120 3241 .2800

55

A number of tests of equality were also conducted to determine 1f any of the pairwise
Y's across problems for a given programmer or across programmers for a given
problem were equal. Only 1solated cases failed to reject so that some interaction
between the two factors seems to exist. To what extent the main effects explain the
slopes 1s not known.

Table 5.5-3 and Figures 5.5-1 and 5.5-2 compare the raw estimates of the p values
and the In p values to the predicted values based on the proportional hazards model
with parameter estimates from Tables 5.5-1 and 5.5-2. In general the model does
reasonably well in predicting log failure rate.

Since a methodology for evaluating the quality of the fit for the two models does not
exist at this time, 1t 1s difficult to measure 1f the new definition of the initial state
of the program increases the efficiency of the modeling. The variance of the residual
not explained by the model can be compared, however, to the original data‘2 variance,
based on the data in Figures 5.5-1 and 5.5-2, in order to obtain a pseudo R” value for
comparison purposes. For model 1 the percentage reduction in variance due to the
model 1s 80.7%. For model 2 the percentage reduction 1s 83.5%. Thus there 1s a
slight but not appreciable advantage for this problem set in using the new definition
of the initial state.

5.6 PROGRAM FEATURES AS PREDICTORS

Several physical features of the subject programs have been measured as possible
predictors of the error failure rate. Table 5.6-1 gives these features for all the
subject programs. In general these are in the form of counts of such features as
program length, total branch modes including the statements GO TO, DO, IF and
CALL and two of Halstead's [17] program measures; his length measure N and his
total error predictor E. Both of Halstead's measures depend on counting the number
of operators and the number of operands in the program, neither of which has been
precisely defined for all cases. There 1s no particular rationale behind these choices
of physical features for consideration except that "length" measures and "complexity"
measures of a program seem reasonable as "first look" predictors. This set i1s cursory
and 1s not intended to be exhaustive in any way.

In general, these program features are all poor predictors of both slope and first
stage faitlure rate. Figure 5.6-1, however, demonstrates that the slopes of program-
mer B suggest a linearly increasing trend with the inverse of Halstead's length
measure N. (This 1s also true of E because N and E are nearly linearly dependent in
this range.) Thus, for this programmer, as Halstead's length increases the failure rate
for fixed k increases.

The behavior of the programs written by programmer A are much less consistent with
regard to this measure. A possible reason for this discrepancy might be that the
programming time for this programmer was not as consistently controlled as for
programmer B, particularly for program Al due to outside factors. Program Al
seems to be an outlier with regard to every single physical measure and seems to
have a much smaller failure rate than 1ts length and complexity would indicate.

56

TABLE 5.5-3
ESTIMATES FOR ERROR PROBABILITY PER PROGRAM EXECUTION,
BASED ON THE PROPORTIONAL HAZARDS MODEL

MODEL MODEL
EXPERIMENT PREDICTIONS PREDICTIONS
BASED (ORIGINAL (MODIFIED
PROGRAM STAGE ESTIMATES ORIGIN) ORIGIN)
Al 1 .9803 4197
2 1068 05678 04430
3 .002602 .007689 007936
4 002104 001041 001422
5 001176 .0001409 .0002546
6 .0007659 .00001907 .00004561
Bl 1 1524 .1829 .0812
4 009117 006947 .005348
5 .003483 .002335 .002160
6 .0005359 .007850 .0008721
A2 1 8065 1.3142%
2 «2632 2054 1770
3 .03759 03209 .02230
4 01909 .005015 .002809
5 .0001374 .0007836 .0003538
B2 1 J449 3312 3241
2 02625 .007486 007411
3 .0001033 .0001692 .0001694
A3 1 2488 2487 1529
2 05376 A117 08417
3 03524 .05109 04633
4 02691 .02255 02550
5 .02302 .01012 01404
B3 I 3650 .1083 .2800
2 1037 04864 06904
3 01021 .02185 01702
4 .004681 .009816 004198
5 002411 004410 .001035

* Unconstrained Model

57

58

| Lv (sTAGE PRoBABILITY) |

Figure 5.5-1.

Al
Bl
A2
82
A3
83

ax dpD o X

T v T L

1 2 3 4 5
NUMBER OF ERRORS CORRECTED

Predicted Error Rate from the Proportional Hazards Model,
Using Original Data.

| L (sTAGE proBABILITY) |

Figure 5.5-2.

10 1

V3

s% Do x

Al
Bl
A2
82
A3
83

1 2 3
NUMBER OF ERRORS CORRECTED

Predicted Error Rate from the Proportional Hazards Model,

Using Modified-origin Data.

59

Programmer

Programmer

Programmer

60

TABLE 5.6-1 SUBJECT PROGRAM MEASURES

Problem
1 2 3
632 320 294
236 186 145
Length
1 2 3
232 150 126
107 109 79
Operators
1 2 3
2354 1453 1437
1239 902 1156

Halstead's Length N

Problem
1 2 3
179 62 6l
87 50 41

Branch Count

1 2 3
266 185 198
m 111 145

Operands
1 2 3
4.56 2.58 2.63
2.9 1.42 2.46

Halstead's Error Prediction E

.0015

B2
.0010 4
B3
B
1/ N 1
A3 Al
.0005 +
A2
] { | !
1 | | R
0 ! 2 3 :

Figure 5.6-1. Inverse of Halstead's Length vs. Predicted Slope
(Modified Data), Proportional Hazards Model.

61

5.7 RIPPLE EFFECT

In only one program did the correction of an error introduce additional errors. Since
so little data was available with which to model this effect, no attempt was made to
include it as a special case in the proportional hazards model. It suffices to point out
that the model is sufficiently general to include shocks that increase as well as
decrease the failure rate.

62

6.0 CONCLUSIONS

The results of this experiment have proven useful in exploring the foundations of the
probabilistic process of detecting software errors. The data has been used to
statistically verify that interfailure time 1s exponentially distributed and to prove
that errors can occur with widely different failure rates. This fact invalidates many
of the more popular software reliability models now in use. It was also observed that
log failure rate was nearly linear as a function of the number of errors corrected.

It was demonstrated that Cox's proportional hazards life model has all of the
observed characteristics of the data noted above and 1s proposed as a new model for
predicting software reliability. The model specifies a log linear hazard function
depending on a covariate representing the number of errors corrected. Maximum
likelihood estimates for the unknown parameters of this model were obtained for all
six subject programs using nonlinear optimization techniques. Tests on these
estimates indicate that there are strong programmer and problem effects in the
background failure rate. Results also show that over 80% of the observed variation in
the logarithm of the failure rate data can be explained by the proportional hazards
function model. A tentative physical predictor was proposed based on Halstead's
information criterion N that might prove useful in forecasting model parameters.

Forecasting software reliability based on physical program features 1s a subject 1n 1ts
infancy. Probabilistic models with parameters that require statistical estimation
from operational experience on a program do, however, offer forecasting alterna-
tives. If operational usage data can be simulated, then repetitive run sampling
designs provide a rich statistical base for estimating these parameters. Repetitive
run sampling 1s no different from the standard method of recording software error
data in a single run, with regard to the number of different errors detected. Both
methods will uncover the same errors on the average in the same number of program
executions. The differences occur in the amount and kind of interim information, on
the frequency of error occurrence and the effects of conditioning, recorded during
testing. These potential uses of the additional information gained during repetitive
sampling can only be conjectured, but based on the experiences of this study 1t
appears very promising.

This 1s the first software reliability model to be based on the results of a carefully
designed and controlled software experiment. These results indicate that software
error detection has many of the attributes of a predictable structure. The process of
completely understanding the nature of the problem, however, has just started and
much additional research 1s necessary to substantiate these results on more complica-
ted problems written by more experienced personnel under the same controlled
conditions.

63

1.

10.

1l

12.

13.

REFERENCES

Jelinski, F. and Moranda, P, B., "Software Reliability Research," Statistical
Computer Performance Evaluation, W. Freiberger, Ed., New York: Academic,
1972.

Shooman, M. L., "Probabilistic Models for Software Reliability Prediction,"
Probabilistic Models for Software, W. Freiberger, Ed.,, New York: Academic,
1972.

Schick, G. J. and Wolverton, R. W., "An Analysis of Competing Software
Reliability Models," IEEE Transactions on Software Engineering, Vol. SE-4,
No. 2, March 1978.

Littlewood, B. and Verrall, J. L., "A Bayesian Reliability Growth Model for
Computer Software," 1973 IEEE Symposium on Computer Software Reliability,
New York, 1973,

Littlewood, B., "What Makes A Reliable Program - Few Bugs, or a Small Failure
Rate?," AFIPS Conference Proceedings, Vol. 49, 1980.

Brown, J. R. and Lipow, M. "Testing for Software Reliability," Proceedings,
1975 International Conference on Reliable Software, IEEE Cat. No.
75-CHO%940-7CSR, 1975.

Migneault, G. E., " Emulation Applied to Reliability Analysis of Reconfigurable,
Highly Reliable, Fault-Tolerant Computing Systems," AGARD Conference
Proceeding, No. 261, 1980.

Fosdick, Lloyd D. and Osterweil, L. J., "DAVE - A Fortran Program Analysis
System," Computer Science and Statistics, 8th Annual Symposium on the
Interface, 1975.

Stucki, L. G. and Foshee, G. L., "New Assertion Concepts for Self Metric
Software Validation," Proceedings, 1975 International Conference on Reliable
Software, IEEE Cat. No. 75-CH0940-7CSR, 1975.

Brown, J. R. and Buchanan, H. N., "The Quantitative Measurement of Software
Safety and Reliability," TRW SDP 1776, TRW Systems Group, Redondo Beach,
California, 1973.

Finkelstein, J. M. and Schafer, R. E., "Improved Goodness-of-Fit Tests,"
Biometrika, 58:3, pp. 641-645, 1971.

Lilliefors, H. W., "On the Kolmogoroff-Smirnov Test for the Exponential
Distribution With Mean Unknown," Journal of the American Statistical Associ-
ation, pp. 387-389, March 1980.

Mann, N. R., Schafer, R. E., and Singpurwalla, Nozer D., Methods for Statistical
Analysis of Reliability and Life Data, Wiley: New York, 1974,

65

14.

15.

16‘

17.

66

REFERENCES (Continued)

Barlow, Richard E. and Proschan, Frank, Mathematical Theory of Reliability,
Wiley: New York, 1965.

Kalbfleisch, J. D. and Prentice, R. L., The Statistical Analysis of Failure Time
Data, Wiley: New York, 1980.

Cox, D. R., "Regression Models and Life Tables," Journal of the Royal
Statistical Society, Series B, Vol. 34, pp. 187-220, 1972.

Halstead, M. A., Elements of Software Engineering, Elsenter: New York, 1977.

A000

B0O0O

C000

D000

Al100
A200
A300
A400
A500
A600
A700
A800
A900

B100
B200
B300
B400
B500
B600

B700

C100
C200
C300
C400
C500
Ce600

D050
D100
D200
D300
D400
D500
D600
D700
D800
D900

APPENDIX A: SOFTWARE ERROR CATEGORIES

From Brown and Buchanan [10]

COMPUTATIONAL ERRORS

Incorrect operand in equation

Incorrect use of parenthesis

Sign convention error

Units or data conversion error
Computation produces an over/under flow
Incorrect/inaccurate equation used
Precision loss due to mixed mode

Missing computation

Rounding or truncation error

LOGIC ERRORS

Incorrect operand 1n logical expression
Logic activities out of sequence

Wrong variable being checked

Missing logic or condition tests

Too many/few statements n loop

Loop 1terated incorrect number of times
(including endless loop)

Duplicate logic

DATA INPUT ERRORS

Invalid input read from correct data file
Input read from incorrect data file
Incorrect input format

Incorrect format statement referenced
End of file encountered prematurely
End of file missing

DATA HANDLING ERRORS

Data file not rewound before reading

Data initialization not done

Data nitialization done improperly

Variable used as a flag or index not set properly
Variable referred to by the wrong name

B1t manipulation done incorrectly

Incorrect variable type

Data packing/unpacking error

Sort error

Subscripting error

E000

F000

G000

| (0]0]0)

1000

APPENDIX A: SOFTWARE ERROR CATEGORIES (Continued

E100
E200
E300
E400
E500
E600
E700
E800

F100
F200
F300
F400
F500
F600
F700

G100
G200
G300
G400

H100
H200
H300

1100
1200
1300
1400
1500
1600

DATA OUTPUT ERRORS

Data written on wrong file

Data written according to the wrong format statement
Data written in wrong format

Data written with wrong carriage control

Incomplete or missing output

Output field size too small

Line count or page eject problem

Output garbled or misleading

INTERFACE ERRORS

Wrong subroutine called

Call to subroutine not made or made in wrong place
Subroutine arguments not consistent in type, units, order, etc.
Subroutine called is nonexistent

Software/data base interface error

Software/user interface error

Software/software interface error

DATA DEFINITION ERRORS

Data not properly defined/dimensioned
Data referenced out of bounds

Data being referenced at incorrect location
Data pointers not incremented properly

DATA BASE ERRORS

Data not initialized in data base
Data initialized to incorrect value
Data units are incorrect

OPERATION ERRORS

Operating system error (vendor supplied)
Hardware error

Operator error

Test execution error

User misunderstanding/error
Configuration control error

Jooo

K000

X0000

APPENDIX A: SOFTWARE ERROR CATEGORIES (Continued)

Ji100
J200
J300
J400
J500
J600
J700
J800
J900

K100
K200
K300
K400
K500

X0001!
X0002
X0003
X0004
X0005

OTHER

Time limit exceeded

Core storage limit exceeded

Output line Iimit exceeded

Compilation error

Code or design inefficient/not necessary
User/programmer requested enhancement
Design nonresponsive to requirements

Code delivery or redelivery

Software not compatible with project standards

DOCUMENTATION ERRORS

User manual

Interface specification
Design specification
Requirements specification
Test documentation

PROBLEM REPORT REJECTION

No problem

Void/withdrawn

Out of scope - not part of approved design
Duplicates another problem report
Deferred

APPENDIX B: PROBLEM #1 SPECIFICATIONS

From Brown and Buchanan [10]

1.0 LAUNCH INTERCEPTOR CONDITIONS (LIC)

Conditions were specified in such a way that the resulting program would be similar
to a Site Defense program attempting to correlate radar tracking returns. Nineteen
parameters were required as input to precisely specify these conditions. The Launch
Interceptor Conditions (LIC) were defined as follows:

1)

2)

3)

4)

5)

6)

7)

8)

9)

10)

Any two consecutive data points are a distance greater than the length, £,
apart,

Any three consecutive data points cannot all be contained within or on a
circle of radius r.

Any three consecutive data points form an angle, a, where a < (7 - €_) or a
> (m + €,). Being measured here 1s the angle a's deviation from 180
degrees. “The second of the three consecutive points 1s always at the
vertex of the angle.

Any three consecutive data points form a triangle with area greater than
A. The three points are at the triangle's vertices.

Any M consecutive data points lie in more than Q quadrants. Where there
is ambiguity as to which quadrant contains a given point, priority of
decision will be by quadrant number, i.e., I, II, III, IV. For example, the
data point (0,0) is in quadrant I. Also, the point (-1,0) is in quadrant II.
The point (0,-1) is 1n quadrant IIl.

For any two consecutive data points, P 1 and Pz, the difference of their
abscissas is negative, i.e., (X2 - X1)< 0.

At least one of any N consecutive data points lies a distance greater than
€ from the line joining the first and last of these points.

Any two data points (with n, consecutive intervening points) are a distance
greater than the length, £, apart.

Any three data points (with n, and m, consecutive intervening points,
respectively) cannot be contame% within or on a circle of radius r.

Any three data points (with n, and m, consecutive intervening points,
respectively) form an angle, a; where & <(7 -€,) or > (w+€,). Being
measured here is the angle a's deviation from 180 degrees. Of “the above
first mentioned three data points. the second 1s always at the vertex of the
angle.

11)

12)

13)

14)

15)

Any three data points (with n, and m, consecutive intervening points,
respectively) form a triangle with area greater than A. The above first
mentioned three data points are at the triangle's vertices.

For any two data points, P, and P., (with n_ consecutive intervening points)
the difference of their abscissas is'negative, i.e., (X2 - Xl)< 0.

Any two data points, with n, consecutive intervening points, are a distance
greater than the length, £, apart. Also, any two data points (which can be
the same or different from the above first mentioned two data points),
with n 11 consecutive intervening points, are a distance less than the length,
L, apar't.

Any three data points, with n, and m, consecutive intervening points,
respectively, cannot be containéd within“or on a circle of radius r. Also,
any three data points (which can be the same or different from the above
first mentioned three data points), with n, and m., consecutive intervening
points, respectively, can be contained in of on a citcle of radius R.

Any three data points, with n, and m, consecutive intervening points,
respectively, form a triangle with area greater than A. The above first
mentioned three data points are at the triangle's vertices. Also, any three
data points (which can be the same or different from the above first
mentioned three data points), with n, and m, consecutive intervening
points, respectively, form a triangle with area’less than E. The above
second mentioned three data points are at the (second) triangle's vertices.

2.0 PROBLEM LOGIC

1)

2)

3)

Information was supplied indicating the logical connectors among all the
LIC, as defined in Section 1.0. The format was a symmetrical square
matrix where zero indicated NOT used, one indicated the OR connector
between two conditions and two indicated the AND connector. The matrix
was identified as the Logical Connector Matrix (LCM).

Part of the output data was a column matrix with resultant information as
to whether or not the LIC were met, i.e., for each condition, zero meant
the condition was not met and one meant it was met. The identification
for this matrix was Conditions Met Matrix (CMM).

Preliminary unlocking information was generated. By definition, these
were criteria which determined whether or not interceptors would be
launched. These data were determined by the interaction of the LCM and
CMM matrices to form the Preliminary Unlocking Matrix (PUM). Defini-
tions of the matrix elements indicate how the two matrices interact to
form PUM. The diagonal elements of PUM were input according to the
desired or required unlocking sequence, i.e., a one indicated that the
corresponding LIC was to be considered as a factor in signaling interceptor
launch and a zero meant that it was not a factor. Non-diagonal elements
were determined by the LCM operating as a Boolean operator, as defined in
Section 2.0.1, on the operand CMM.

4)

5)

The Final Unlocking Matrix (FUM) was generated by having the PUM

diag?n)al operate on non-diagonal elements. An element in the FUM was
one (1) ifs

The corresponding PUM diagonal element was zero (0), indicating no
interest in the associated LIC; or

The corresponding PUM diagonal element was one (1) and all other
elements in that diagonal element's row were one (1).

An element in the FUM represented the final conclusion with respect to its
corresponding LIC.

In order to launch an interceptor, all elements in FUM had to be equal to
one. In this case, the message "NOW" was generated and output to the
printer, together with a Isting of all input data values. The information
from all matrices was printed. The output was in matrix format for ease
of interpretation.

3.0 DATA INFORMATION

D

2)
3)
4)

5)

6)
7)

Pairs of values for the rectangular coordinates (x, y) represented data
points.

An 1nput data set contained a maximum of 100 ordered data points.
P = number of data points in a data set.

The input data constants, as defined in Section 1.0 were specified for each
input data set.

Restrictions on the input parameters were as follows:

P>2, £20,r20,0<€,<m, A20,M<P, 1<Q<3,
€,20,L20,R20,E20.

The Logical Connector Matrix (LCM) element values were given as input.

The Preliminary Unlocking Matrix (PUM) diagonal element values were
given.

For the actual data values, see the example matrices in the following
secticn.

B-3

4.0 EXAMPLE MATRICES

The following matrices are a model of the problem logic, as defined in Section 2.0.

Logical Connnector Matrix (LCM)

*

1 2 3 4 5...15

1

15

Definition - LIJ 1s the ijth element in the LCM.

Conditions Met Matrix (CMM)

2 21 20...0

2 21 10...0

0 0 0 0 0...0

Condition Value
1 0
2 1
3 1
4 0
5 0
I5 0

(Input)

*, Launch Interceptor Conditions
(LIC)

Since we have zeros beyond the
fourth LIC, the 5th through the
I15th LIC are not to be consid-
ered 1n this example.

(Output)

Definition: C1 1s the 1th element in the CMM.

The C are computed output, but in order to illustrate this example, we are

arbitrarily setting these elements in the CMM.

B-4

1

Preliminary Unlocking Matrix (PUM) (Output, non-diagonal elements)
(Input, diagonal elements)

LIC| 1 2 3 &4 5,,.15

15 1. 0

Furthermore, defining the uth element in the PUM as P1 , we have the following:
Py = P33 =1 and all other P (i.e., the diagonal elements) Lre zero. This means that
onlly the %ust and third LIC are required in the unlocking sequence. Note that these
are input values.

P, = 0 since, L, = 2, signifying the AND condition for C, and C, which are

zero and one, respectively, i.e., 01 = 0.

P13 = 1 since, L13 = 1, signifyng the OR condition for Cl and C3 which are zero

and one, respectively, i.e,, 0 + 1 = 1.

Pw = 0 since, L, = 2, signifying the AND condition for C1 and C4 which are

both zero, i.e., 00 = 0.

P,. = 1since L, = 0, signifying the Not Used condition for C 1 and C 5 The above
examples show how to generate the Pll values.

5.0

3.

l#.

B-6

Final Unlocking Matrix (FUM) (Output)

LIC | VALUE

A T R U N N N
— e e = O

15 1

Definition: F, is the i'" element in the FUM.

F,=0sinceP,, =1landP,, =P 4= 0, i.e., the diagonal value 1s one and there
1s'at least onelzlero elemer#tzin thle first row of PUM.

F2 = 1, since P22 = 0.
F3 = 1, since P33 =1 and P31 = P32 = P34 = P35 Zeeex P3,15 = l.
Fl& = 1, since le =0,

F5=F6=...=F15=l,Since,P55=p66=...=p15’15=0,
respectively.

Since there 1s a zero element in FUM, (F 1= 0), the launch interceptor condition
1s not met.

SUPPLEMENTARY INFORMATION

The program will be written in FORTRAN on the BITS system.

No double preciston or complex variables are required.

Your program will be a subroutine.

Assume the inputs are in labeled common, i.e.,, COMMON/INPUTS/ X(100),
Y(100), EL, ... using the order in Section 6.0. You are free to use your own

variable names, however.

Outputs will be in labeled common, i.e., COMMON/OUTPTS/CMM(15), ... using
the order in Section 7.0. Again you are free to use your own variable names.

Use the IFOUT flag to control printing. Code the output statements, but
branch around them if IFOUT = 1.

7. When the first and last points of N consecutive data points are identical, then
the calculated distance to compare with € (LIC #7), will be that distance from

the coincident point to all others of the N consecutive points.

6.0 INPUTS

1. Data Points

accurate to one decimal place

(xi’ yl)

2. Nineteen Parameters

4

S.

6.

11.
12,
13.
14,

15.

1e6.
17.
18.
19.

Z W 8

real

integer
"

real
integer
"

real
real
real

integer

i:l,o.c,P ZSPSIOO

B-7

4.

5.
6.

LCM Array LCMi . i=l,. . .15
) j=lye o ol5

PUM array

Diagonal Terms PUM. i=lye s 15

i,i

P - number of data points

IFOUT - Controlling output, i.e.,

integer

7.0 OUTPUTS

10

Conditions Met Matrix CMM,

i?

Final Unlocking Matrix FUM,,

1

"LAUNCH" or "NO LAUNCH"

integer

integer
Integer

0 Program prints output
1 Program prints no output

1=1,-,15 integer

i=ly=15 integer

(Use a logical variable which is true for launch and false for no launch).

APPENDIX C: PROBLEM #1 TEST CASES

From Brown and Buchanan [10]

1.0 TEST CASE 1
e Input
- 100 (X,Y) points defined by (Xl’Yi) =(2i-2,1-1)for1=1,..,100

- LIC parameters =£ = 2-3, r= 203’ €2 = 0.2, A = 0.3, M = 4’
Q=1, €= 0.1, all n and m; equalto0, L =2, R = 2.2,

E=0,N=5.
- LCM:

LIC}]1 2 3 4 5 ..l15

112 21 2 0 ...0

212 2 1 1 0 ..0
3111 210 ..0

412 1 1 2 0 ...0

510 0 0 0 0 ...0

e O

1510 0 0 0 0 ..0O

- PUM diagnoal: P 11 = P:,.3 = 1; all other Pii equal to zero.

e Output
- PUM:
LIC|1 2 3 &4 5 ..l5
1 1 0 0 0 1 ..l1
210 0 0 0 1 ..l
310 0 !t 0 1 ..l
410 0 0 0 1 ..l
541 1 1 1 0 ..l

1511 1 1 1 1 .0

- CMM: all0's
- FUM: 0l1O011l1111111111
- Final Conclusion: No Launch

2.0 TEST CASE 2

e Input

- 9,54 (X,Y) points defined by (Xl’Yi) =(2i-2,i-1)fori=ly..,96 except
1£5

- LIC parameters: same as Test Case I.

- LCM:

LICI1 2 3 4 5 ..15
1121 2 2 0 ..0
2|1 211 0 ..0
3121 2 10 ..0
#1211 2 0 .0
510 0 0 0 0 ...0

150 0 0 0 0 ..0

- PUM diagonal: Pll = P22 =1 and all other Pii =0

e Output
- PUM:
LIC|1 2 3 4 5 ..15
1 1 1 0 0 1 ..1
2 (1 1 1 1 1 ..1
3101 0 0 1 ..1
410 1 0 0 1 ..1
511 1 1 1 0 .1

1511 1 1 1 1 .0

- CMM: 110000011000000
- FUM:Olll11111111111
- Final Conclusion: No Launch
3.0 TEST CASE 3
o Input
- (X,Y) points same as Test Case 2

- LIC parameters: same as Test Case 1

- LCM:
LICI{1 2 3 &4 5 ..15
112 211 0 ..0
212 2 11 0 ..0
311 1 21 0 ..0
411 1 1 2 0 ..0
510 0 0 0 0 ..0

150 0 0 0 0 ..0

- PUM diagonal: same as Test Case 1

e Output
- PUM:
LICj]1 2 3 4 5 .15
1 1 1 1 1 1 ...1
211 1 1 11 ..1
311 1 001 ..1
411 1 0 0 1 ..1
511 1 1 1 o .1

1511 1 1 1 1 .0

C-3

C-4

CMM: 110000011000000
FUM: all I's

Final Conclusion: Launch

APPENDIX D: PROBLEM #2 SPECIFICATIONS

1.0 GENERAL
Consider the following diagram:
_ 2 3
* v f)=a +aX+a, X" +azX” for

XiS XSXi+l

A set of piecewise cubic polynomials passing through predefined (x, y) coordinates, or
knots, 1s a cubic spline if the functional value and the first and second derivatives of
two adjoining cubtc polynomials are continuous at the knot where they join.

For n knots, there are n-1 cubics. Since each cubic has 4 unknowns, there are 4n-4
unknowns in this cubic spline. The 3 continuity conditions at the n-2 inner points give
3n-6 conditions. There are n other conditions because the spline must pass through
the knots. In addition, we need two more conditions to have 4n-4 conditions and 4n-4
unknowns. These additional conditions will be to specify the second derivative at
each endpoint.

Note: An alternate form of the cubic over an interval [X Xi+1] is
£(X) = y; + a(X-X,) + bX-X)? + C(x-X,)°.

2.0 DESCRIPTION OF SUBROUTINES

Four subroutines are required for Problem #2:

1. SPLINE to calculate coefficients of a cubic spline passing through given
knots. Use the first cubic representation.

2. ADJUST to calculate coefficients of the alternate form of the cubic (see
above).

3. SINTRP to interpolate the functional value and the first two derivatives at
an mnput x using the coefficients from ADJUST.

4. SINTEG to integrate from X | to X, the spline generated using coefficients
from ADJUST.

Numerical results must be within 1.0% (relative error) of comparable results from
library routines.

2.1 SUBROUTINE SPLINE (X, Y, N, SDL, SDR, COEFF, IERR)

INPUT N, # of knots, 2<N <6
X(D), Y(I), knots (coordinates), in any order
SDL, second derivative at left-most knot
SDR, second derivative at right-most knot

OUTPUT {X(1), YM}, in ascending X order.
((COEFF(1,J), 1=1, #), 3=1, N-1)
For a given interval J, [XJ,
COEFF(1,J) = a
COEFF(2,3) = a,
COEFF(3,7) = a,
COEFF(4,J) = ay

X411

where f(X) = a + alX + azx2 + a3X3

1s the cubic in that interval.

IERR = 0 for normal return
= 2 for two or more X coordinates identical
= 8 for a singular matrix
2.2 SUBROUTINE ADJUST (X, Y, N, COEFF, COEFAD) *

INPUT N, # of knots, 2 < N<é6
X, X-coordinates of knots in ascending order
Y, Y-coordinates of knots corresponding to the x-coordinates
COEFF, spline coefficients resulting from SUBROUTINE SPLINE

OUTPUT ((COEFAD(I, J), I=1, 3), J=1, N-1)

For a given interval J, [XJ, XJ+1]
COEFAD (1, J) =a
COEFAD (2,7)=b
COEFAD(3,J) =c
)3

where fJ(X) = YJ +a (X-XJ) + b(X-XJ)z + c(X-X is the cubic in that

interval.

J

2.3 SUBROUTINE SINTRP (N, X, Y, COEFAD, XO, YO, YOP, YOPP, IERR)

INPUT

OQUTPUT

N, # of knots, 2< N< 6

X, X-coordinates of knots in ascending order

Y, Y-coordinates of knots corresponding to the X-coordinates
COEFAD, spline coefficients resulting from SUBROUTINE ADJUST
XO, arbitrary X coordinate

YO, interpolated value.

YOP, first derivative at XO.
YOPP, second derivative at XO.
IERR 0 for normal return
1 if XO < X(1)

3 if XO > X(N)

2.4 SUBROUTINE SINTEG (N, X, Y, COEFAD, X1, X2, S, IERR)

INPUT

OUTPUT

N, # of knots, 2< N <6

X, X-coordinates of knots in ascending order

Y, Y-coordinates of knots corresponding to X-coordinates
COEFAD, spline coefficients resulting from SUBROUTINE ADJUST
X1, X2, endpoints for integration

S, integral of the spline function from X1 to X2. Return 0. if the endpoints
of the spline don't span [X1, X2) or [X2, X1].

IERR = 0 for normal return
= 1 if endpoints of spline don't span [X1, X2] or [X2, X1l.

Note: If IERR £0 after calling SPLINE, then ADJUST, SINTRP and SINTEG will not

be called.

3.0 SUPPLEMENTARY INFORMATION

AY
£ XpY) £
\ ¥
X,,Y,)
1’1
-
X
foza +aX+aXlraX] X, €X<X
1 =3+ X+ay 3 1S XX,
2 3
£,=by+b X +b,X2+bX> X, € XX,

Solve for a in the matrix equation Ca = d

C a
@ o 0o 2 e, 0 0o o o a,
@0 o 0o o o o 2 6X, a,
@1 x X2 X2 0 0 0 0 a,
@t x, X5 x2 0 0o o o a, |-
@lo o 0o o 1 x, X2 x3 b,
©lo o o o 1 x x2 x2 b,
@ o 1 2,330 -1 -2, -3%3 b,
0 0 2 6X,0 0 -2 -6X, by

Explanation of equations:

©

2nd derivative at left-most endpoint given, SO

£ =a) +2a,X + 3a3X2
£) = 2a, + 6a,X

@ 2nd derivative at right-most endpoint is given, S 1

f;(X):Zb + 6b,X

2 3

fz' (X3) = Sl——-~b2b2 + 6b3X3 = Sl

@ f, passes through (Xl’ Yl)

2 3
f1 (Xl) =ag+ aIX1 +a2Xl +a3X1 = Y1

®

f, passes through (Xl, Yl)

f2 passes through (X2, Y5)

s ©

Q ©

f, passes through (X3, Y3)
', X,) = £, (Xz) (first derivative continuous at (XZ’ Yz))

2 2
ap+ 2a2X2 + 3a3X2 = bl + 2b2X2 + 3b3 X2

2 -2
a + 2a2X2 + 3a3X2 - bl - 2b2 X2 - 3b3 X2 =0
f"l(Xz) = f“z(Xz) (second derivative continuous at (Xz, Yz))

2a +6a3X2=2b + 6b, X

2 2 372

2a2 + 6a3X2 - 2b2 - 6b3X2 =0

APPENDIX E: PROBLEM #2 TEST CASE
(2,4)
44 ey
3 1T 'l"' “‘\‘
i { %(3,2) »(14,2)
(ll 2) ----- peen"’
l ——
0 | |
1 1]
X X X
0 1 1 2 3 o 4
INPUT N=4 I X(1) Y(I)
| 1. 2.
2 2. 4,
3 3. 2.
4 4, 2.

E-1

SDL=0.
SDR=0.
X0 =3.5
Xl =1.5
X2=2.5

OUTPUT

SPLINE OUTPUT --

XM, Y(D 1.0000 2.0000 2.0000 4.0000 3.0000

4.0000 2.0000
COEFF, SPLINE 1 .000000 -.400000

3.600000 -1.200000

COEFF, SPLINE 2 -25.600000 38.000000 -15.600000 2.000000

COEFF, SPLINE 3 50.000000 -37.600000
IERR (SPLINE) = 0

ADJUST OUTPUT --
COEFF, SPLINE 1 3.200000 .000000
COEFF, SPLINE 2 -.400000 -3.600000

COEFF, SPLINE 3 -1.600000 2.400000

SINTRP+SINTEG -- YO0 = 1.700000 YOP =

S = 3.750000

E-2

9.600000 -.300000

-1.200000
2.000000

-.800000

.200000 YOPP = 2.400000

2.0000

IERR(SINTRP) = 0

IERR(SINTEG) = 0

APPENDIX F: PROBLEM #3 SPECIFICATIONS

1.0 GENERAL

Given a spherical earth, any point on its surface can be described by two angles
(spherical polar coordinates). These angles are specified by defining a pair of
reference planes. The first plane is called the "equator" plane, and this plane divides
the earth into two hemispheres: the northern hemisphere and the southern hem-
isphere. The second plane, the "Greenwich" plane, is normal to the equator plane (it
contains the polar axis) and also divides the earth into two hemispheres, east and
west. One of the angles mentioned above is the "longitude" which is the dihedral
angle between (a) the Greenwich plane and (b) a plane perpendicular to the equator
(containing the polar axis) and passing through the point described. Longitude is
measured positive east of Greenwich. The other angle, the "latitude", 1s the angle
formed by (a) a ray from the center of the earth through the point and (b) the
projection of the ray on the equator plane. Latitude 1s measured positive north of the
equator. There 1s, thus, a one-to-one correspondence between every point on the
sphere and every ordered pair (6,%), where 0<#<2r and 121 <P< -% (6 is
called longitude and 9 1s called latitude).

If two points not collinear with the center of the earth are given, 1t is possible to
define the "azimuth" of the path from the first to the second as follows: the azimuth
is the dihedral angle between (a) the plane surface bounded by the ray from the
center of the earth to the first point and the ray from the center of the earth to the
north pole and (b) the plane surface bounded by the ray from the center of the earth
to the first point and the ray from the center of the earth to the second point. The
azimuth 1s positive if the second point is further east than the first and negative if
the second is west of the first. If the first and second point have the same longitude
or either (but not both) is at a pole, then the azimuth is zero if the second point is
north of the first, and is # (not - #) if the second points is south of the first. Note
that 1f the two points are collinear with the center of the earth, then the azimuth of
the path from the first to the second is undefined.

A great circle is the intersection between the earth sphere and a plane through the
center of the earth. The great circle distance between two points is the product of
the radius of the earth (3440 n. mi.) and the angle (in radians) between rays joining
the center of the earth and the two points. (NOTE: the angle is always less than or
equal to 7).

2.0 MATHEMATICS

If the longitude and latitude (& and ¢) of any point P are given, then a unit vector
directed toward P can be expressed in "Cartesian" coordinates by the transformation
equations:

X = cos P cos 6
P: Y-=cos® sin @
Z=smn P

A unit vector is one for which X2 + Y2 + Z2 = 1. If two non-collinear unit vectors U1

and U, are given, a vector P, normal to the plane containing them, is given by:

P: Y:ZlXZ-ZZX1
Z:XIYZ-XZYl

This vector can be normalized (i.e., converted to a unit vector) by dividing each
component by the vector length (the square root of the sum of the squares of its
components). The unit vector, P', along P is given by:

X' = X/ VX2 4 Y24 22
Py Y =Y/VXZ 4 Y2, 722

2 -2/VXx% s Y2+ 72

Now, P'1s a unit vector normal to the plane containing U and Ug. The direction of

P' relative to the directions of U, and U, is the dxrectlon a right hand screw would
advance if turned from U | toward'U,.

The angle between two vectors can be found by the following equation:

) o7 o3
X1X2+Y1Y2+lez=(‘/xl +Y, 24z)(\/xz +Y,24 2z,) cos ¢

where ¢ 1s the required angle.

Note that if the vectors are perpendicular (i.e., { = 7 /2) then cos { = 0 and

X1X2+Y1Y2+ZIZZ=O

The dihedral angle between two planes is equal to the angle between two vectors
normal to the planes, provided care is taken to be sure the directions of the normals
are properly defined.

3.0 DESCRIPTION OF SUBROUTINE

Given the longitude and latitude of two points, write a subroutine named CALC to
find:

I. The great circle distance between the two points (in nautical miles)

I1. The azimuth of the path from the first to the second (in radians)

F-2

Further, given the longitude and latitude of a third point and an angle a, a small
circle on the surface of the earth whose "radius" is @ may be defined. Here a is not
really the radius of the circle but 1s the angle between (a) the ray from the center of
the earth to the center of the small circle and (b) the ray from the center of the
earth to any point on the circle. Note that the great circle distance from the center
of the small circle to any point on the circumference is the radius of the earth (3440
n. m1.) times the specified angle, @ (in radians).

I, Find all the intersections (if any) of the great circle path connec-
ting points 1 and 2 and the small circle defined by point 3 and list
them in the order encountered as the path is traversed from point 1
toward point 2. Note that only points between 1 and 2 are desired.
The calling sequence for the subroutine should be:
CALL CALC (LOCI, LOC2, LOC3, ALFA, DIST, AZMUTH, NINT, INT1, INT2)
with
LOCI, LOC2, LOC3, INTI, and INT2 dimensioned 2,
where:
LOCI, LOCZ, LOC3 are (LAT, LON) (in radians) of points 1, 2, and 3 respectively.
ALFA 1s the angle (in radians) defining the small circle.
DIST 1s the great circle distance (in nautical miles) from point | to point 2.

AZMUTH is the azimuth (in radians) of the path from point 1 to point 2.

NINT 1s the number of intersections of the great circle path and the small circle (o, 1
or 2).

INT1, INT2 are (LAT, LON) (in radians) of the intersections. If NINT = 0, then INT!
and INT2 should be set to (0,0). 1f NINT =1 then INT2 should be (0,0).

4.0 SUPPLEMENTARY INFORMATION

The definition of the azimuth needs more expansion when the two points, P, and P.,,
and the center of the earth all lie in one plane. In this case, the path from p to F?
will pass over a pole. (Remember that if P 1 and P2 are collinear with the center o%
the earth, then the azimuth 1s undefined.)

In this case, first determine the shortest path from P, to P.,. Then determine the
direction of this path when leaving P,. If the direction is ndrth, then azimuth = 0.
Otherwise, the direction is south and azimuth = 7r .

APPENDIX G:

INPUT

LOCI: 0.692315
3.395404
LOC2: -0.831659
5.836354
LOC3: 0.493327
2.400971

ALPHA: 1.561159

PROBLEM #3 TEST CASE

OUTPUT
DIST: 9020.571289
AZIMUTH: 2.075972

NINT: 1

INTI: 0.197828
4.068534

INT2: 0.0

0.0

Explanation:
1. 1(1)
14.8
2. 1(1)
14.8
3. 1(1)
14.8
4, 1(1)
14.7
5. 1 (1)
14.7
6. 1(1)
14.7
7. 1 (1)
14.8
8. 1 (1)
14,7
9. 1(1,2)
14.8
10. 1(1)
14.8
11. 1(1)
14.7
12. 1(1)
14.9
13. 1(1)
14.9
14, 1(1)
14.9
15. 1(2)
14.6

APPENDIX H:

EXPERIMENT DATA FOR SUBJECT PROGRAM Al

Repetition no.

1(2)
14.8

37 (2)
289.7

36 (2)
283.2

19 (2)
152.3

5(2)
45,1

3(3)
30.2

9(2)
75.9

2(2)
22.3

491 (3)
5565.7

17 (2)
137.2

18 (2)
144.5

19 (2)
152.3

13 (2)
106.7

3(2)
30.2

1(1)
14.8

263 (3,5)
3035.9

116 (3)
1314.8

164 (5,6)
1857.2

249 (6)
2824.6

604 (4)
6851.0

1(2)
11.3

499 (4)
5664.8

436 (4)
49434

219 (5)
2472.9

278 (3)
3152.3

282 (3,5)
3197.0

361 (3,7)
4092.5

291 (3)
3295.9

28 (3)
316.5

36 (5,6)
406.8

Failure case no. (Error no.)
Time to failure in elapsed seconds

56 (5,6)
631.4

217 (8)
2452.3

952 (4)
10,750.6

244 (6)
2763.6

68 (6)
769.0

476 (4)
5381.4

78 (4)
882.0

423 (4)
4775.4

4092 (5,6)
46,164.0

342 (6)
3859.7

378 (10)
4269.0

2152 (8)
24,294.9

APPENDIX H: EXPERIMENT DATA FOR SUBJECT PROGRAM Al (Continued)

Explanation:
16. 1(1)
14.9
7. 1)
14.8
18. 1)
14.7
19. 1Q1)
14.7
20. 1(Q1)
14.9
2. 1()
14.8
22, 1)
14.7
23. 1)
14.8
24, 1(1,2)
14.7
25. 1)
15.0
26. 1 (1)
14.7
27. 1Q)
14.7
28. 1(1)
14.9
29. 1(1)
14.6
30. 1(1)
14.9

Repetition no.

8(2)
63.2

13 (2)
106.3

1 (1)
14.9

13 (2)
106.7

14 (2)
114.5

1(2)
14.5

15(2)
122.0

1 (1)
14.8

492 (8)
5580.9

2(1)
22.3

5(2)
45.6

3 (2)
68.2

11(2)
91.6

79 (3)
896.5

492 (3)
5574.4

113 (4)
1280.8

1185 (5,8)
13,436.0

390 (4)
4418.5

121 (3)
1372.4

365 (4)
4136.5

933 (3)
10,574.3

446 (4)
5062.2

338 (4)
3835.2

346 (4)
3920.7

1098 (4)
12,454.3

95 (8)
1077.6

922 (6)
10,459.8

Failure case no.
Time to failure in elapsed seconds

155 (4)
1752.2

26 (6)
292.3

248 (5)
2812.6

970 (3)
10,997.0

60 (6)
677.5

1525 (3)
17,274.2

331 (5)
3737.0

318 (8)
3598.4

2126 (8)
24,091.9

615 (8)
6974.6

133 (5)
1503.7

533 (8)
6006.8

838 (6)
10,018.9

447 (5)
5039.5

(Error no.)

1002 (9)
11,318.0

Explanation:
31, 1(1)
14.9
32, 1(1)
14.9
33, 1(l)
14.7
34, 1(1)
14.7
35. 1(2)
14.7
36, 1(1)
15.0
37. 1(Q1)
14.6
38, 1(1)
14.9
39. 1(1)
14.9
40. 2(1)
22.3
41. 1(1)
14.8
42, 1(1)
14.8
43, 1(2)
14.5
44, 1(1)
14.8
45. 1(1)
14.9

APPENDIX H: EXPERIMENT DATA FOR SUBJECT PROGRAM Al (Continued)

Repetition no.

7(2)
61.0

3(2)
29.9

6 (2)
53.6

19 (2)
152.2

1(1)
14.8

19 (2)
152.4

21(2)
167.9

11 (2)
91.4

384 (4)
4353.3

184 (5,6)
2085.7

195 (4)
2210.8

38 (3)
429.4

70 (8)
792.1

1010 (6)
11,455.0

7 (4)
78.4

1311 (%)
14,362.0

31 (3)
351.2

251 (5,6)
2847.1

158 (4)
1790.3

205 (3)
2325.8

841 (4)
9543.3

80 (3)
907.2

375 (4)
4256.7

Fatilure case no.

(Error no.)

Time to failure in elapsed seconds

116 (5,6)
1313.9

633 (8)
7180.8

397 (4)
4484.5

532 (3)
6031.0

337 (3)
3821.3

717 (4)
8100.0

1326 (3)
15,024.1

709 (4)
8011.6

9(3)
101.8

203 (4)
2291.1

1154 (3,5)
13,065.0

2689 (5,6)
30,366.7

1205 (8)
13,619.9

367 (10)
4148.5

1515 (10)
17,132.9

258 (5)
2915.2

278 (8)
3138.1

1307 (5,6)
14,753.5

539 (10)
6082.6

868 (5,6)
9797.8

1200 (10)
13,550.5

H-3

APPENDIX H: EXPERIMENT DATA FOR SUBJECT PROGRAM Al (Continued)

Explanation:
46. 1(1)
14.7
47. 1 (1)
14.9
48. 1(2)
14.8
49. 1(1)
14.9
50. 1 (2)
14.6

Repetition no.

21 (2)
167.8

18 (2)
144.5

1(1)
14.6

24 (2)
190.6

2 (1)
22.2

521 (8)
5908.2

1155 (4)
13,088.0

13 (3)
147.3

45 (4)
508.6

442 (4)
5013.7

Failure case no. (Error no.)
Time to failure 1n elapsed seconds

385 (5,6)
4359.1

513 (4) 7 (5)
5793.2 78.6

1796 (3,5,6)
20,369.4

249 (6)
2821.0

Explanation:

10.

11.

12.

13.

14,

15.

* For explanation regarding errors #2 and 3, see comments on pages 39 and 53.

APPENDIX I:

4 (1)
43.8

3(1)
32.7

7 (1)
76.9
2(1)
21.5

4 (1)
43.7

6 (1)
65.9

12 (1)
132.6

9 ()
99.3

3(D)
32.5

36 (1)
399.4

6 (1)
66.0

2(1)
21.5

4 (1)
43.83

8 (1)
88.2

22 (1)
243.8

Repetition no.

1(2,3)*
10.5

1(2,3)
10.6

5(2)
55.2

1 (2,3)
10.5

3 (3)
32.8

1(2,3)
10.4

1(2)
10.4

3(2,3)
32.9

4(3)
44.3

3(2)
32.8

2(2)
21.6

10 (4)
111.6

46 (4)
514.8

3(3)
32.9

12 (5)
133.5

1(2)
10.5

1(3)
10.5

2(3)
21.9

10 (&)
112.0

1(2)
10.5

65 (4)
729.6

1(3)
10.6

52 (4)
584.1

3(2)
32.8

1(3)
10.5

2(3)
21.7

Failure case no.
Time to fatlure in elapsed seconds

167 (8)
1872.9

142 (5)
1593.2

27 (5)
302.1

166 (4)
1851.9

7 (4)
77.9

14 (4)
156.2

114 (4)
1279.8

454 (5,6)
5093.0

108 (4)
1210.8

646 (5)
7240.0

127 (5)
1425.9

119 (7)
1334.6

193 (4)
2167.4

74 (5)
830.0

97 (4)
1089.0

298 (6)
3325.9

310 (4)
3459.7

3961 (6)
44,254.6

337 (5)
3784.8

776 (5)
8707.3

793 (5)
3896.8

185 (5)
2076.1

2607 (8)
29,143.9

52 (4)
579.3

34 (5)
380.7

7 (4)
77.3

1152 (5)
12,919.2

EXPERIMENT DATA FOR SUBJECT PROGRAM Bl

(Error no.)

3287 (7)
36,732.8

581 (6)
6489.3

5956 (8)
66,536.0

150 (8)
1673.0

660 (7)
7366.8

967 (6)
10,805.1

57 (6)
635.7

1001 (6)
11,190.1

4911 (8)
54,877.0

APPENDIX I: EXPERIMENT DATA FOR SUBJECT PROGRAM Bl (Continued)

Explanation: Repetition no. Failure case no. (Error no.)
Time to failure in elapsed seconds

1. 2() 5(3) 5(2) 39 (5) 13 (4) 814 (7)
21.6 55.5 55.3 437.6 144,2 9101.1
7. 1Q) 6 (2) 10 (3) 66 (4) 381 (5) 369 (6)
10.5 66.5 111.3 740.8 4272.3 4125.7
18. 3(1) 4 (3) 5(2) 87 (4) 31 (5) 1963 (6)
32.5 44,0 55.2 976.3 346.8 21,943.1
19. 5(1) 5(2,3) 166 (7) 193 (4)
54.8 55.2 1861.9 2161.1
20, 1Q1) 1(2) 9 (3) 47 (4) 205 (5) 215 (6)
10.3 10.4 100.1 527.2 2297.4 2401.3
21, 12Q1) 2(2,3) 67 (4) 492 (5) 1461 (6)
132.6 21.7 752.1 5515.1 16,343.9
22, 11 (1) 2(2,3) 321 (5) 104 (4) 3239 (7)
121.4 21.7 3605.2 1160.7 36,223.7
23. 1(1) 3(2,3) 84 (4) 401 (5) 3368 (8)
10.4 32.8 9444 4497.4 37,647.8
24, 5(1) 1(2,3) 116 (4) 677 (5) 528 (8)
54.8 10.4 1301.9 7591.7 5903.9
25. 5(1) 1 (2,3) 2 (4) 25 (5) 2124 (6)
54.9 10.5 21.8 279.6 23,742.8
26. 19(1) 1 (2,3) 21 (4) 49 (5,6)
210.5 10.6 235.1 549,2
27. 3(Q1) 1(2,3) 19 (4) 5.2 (5) 1442 (6)
32.6 10.5 212.8 5744.3 16,123.9
28. 5(1) 1(3) 3(2) 244 (4) 323 (5) 1683 (7)
55.2 10.7 32.8 2739.3 3624.0 18,809.7
29, 1(1) 1(3) 1(2) 207 (4) 108 (5) 1919 (6,8)
10.4 10.5 10.5 2324.8 1212.0 21,448.0

30. 11 (1) 1(2,3) 112 (4) 48 (5) 449 (6)
121.5 10.5 1257.6 537.9 5018.4

I-2

APPENDIX I: EXPERIMENT DATA FOR SUBJECT PROGRAM B! (Continued)

Explanation: Repetition no. Failure case no. (Error no.)
Time to failure in elapsed seconds

3. 2(1) 2(2) 1(3) 24 (4) 50 (8)
21.4 21.6 10.7 269.0 559.8
32, 6(1) 1(2,3) 11 (5) 62 (4) 755 (6)
65.9 10.6 123.0 691.4 8438.7
33, 9(1) 3(3) 3(2) 199 (4) 77 (5) 294 (8)
99.4 33.0 32.6 2234.1 863.8 3283.0
34, 10(1) 1(2,3) 8 (4) 40 (5) 564 (8)
110.6 10.5 89.0 448,1 6302.9
35. 11 (1) 1(3) 4 (2) 165 (4) 77 (5) 3270 (6)
121.6 10.5 44.3 1852.9 860.8 36,540.6
36, 2(1) 3(3) 2(2) 156 (4) 768 (5) 1854 (7)
21.5 32,9 21.6 1752.9 8613.8 20,728.5
37. 18(1) 1(2) 6 (3) 48 (4) 7 (5) 1313 (6)
199.4 10.4 66.9 539.0 77.7 14,677.5
38. 2(1) 1 (2,3) 8 (5) 117 (4) 373 (9)
21.4 10.4 89.3 1306.1 4168.9
39. 2(1) 1(2,3) 93 (4) 518 (5) 1668 (6)
21.6 10.4 10442 5815.6 18,651.1
40. 7(l) 3 (3) 2(2) 491 (4) 576 (5) 6030 (9)
77.1 32.8 21.7 5519.2 6462.0 67,377.9
41. 8(1) 2(2) 3(3) 154 (4) 104 (5) 415 (6)
88.3 21.6 33.3 1730.0 1165.4 4632.5
42, 4(1) 2(2,3) 77 (5) 213 (4) 3387 (7)
43,7 21.7 866.0 2377.4 37,832.4
43, 3(1) 4 (2) 1 (3) 176 (4) 980 (5) 1560 (6)
32.6 44,1 10.6 1976.9 10,990.4 17,406.5
4y, 5(1) 1(3) 2(2) 95 (4) 162 (5) 282 (8)
54,8 10.7 21.7 1067.8 1816.5 3149.3
45, 1(1) 2(2) 1(3) 50 (4) 267 (5) 1258 (6)

10.4 21.6 10.4 562.1 2992.6 14,066.7

Explanation:
4e. 1 (1)
10.4
47. 3(1)
32.6
48. 6(1)
66.1
49. 2(1)
21.5
50, 13(1)
143.8

APPENDIX I: EXPERIMENT DATA FOR SUBJECT PROGRAM Bl (Continued)

Repetition no.

1(2,3)
10.5

1(2)
10.5

1(2)
10.4

5(3)
55.1

1(2)
10.5

487 (4)
5476.5

11 (3)
122.3

2(3)
21.8

2(2)
21.7

13)
10.5

Failure case no. (Error no.)
Time to failure in elapsed seconds

44 (5) 6372 (7)
493.8 71,233.C

49 (4) 139 (5) 1642 (7)
549.9 1557.9 18,357.2

67 (&) 345(5) 1582 (9)
752.9 3868.5 17,689.7

201 (4) 890 (5) 3702 (6)
2260.3 9984.2 41,360.2

371 (5) 17 (4) 1264 (6)
4167.7 188.5 14,126.6

Explanation:
1. 2(1)
.020
2. 1(1,2)
.012
3. 1(1)
.008
4, 1(1)
.008
5. 1(1,2)
.008
6. 1(1)
012
7. 1 (1)
.012
3. 1(1)
.012
9. 2(1)
.031
10. 1(1)
.012
11, 1(Q1)
.023
12, 1(Q)
.012
13, 1(1)
.008
4. 1(1,2)
.008
15, 1(1)
.020

APPENDIX J:

EXPERIMENT DATA FOR SUBJECT PROGRAM A2

Repetition no.

10 (2)
148

44 (4)
2.121

5(2)
.080

5(2)
.080

20 (3)
402

3(3)
.049

5(2)
.070

1(2)
021

14 (4)
.209

7 (2,4)
.100

2(2)
031

4 (2)
.100

2(2)
.039

14 (4)
.301

2(2)
051

5(3)
191

118 (3)
14.750

1 (4)
.070

17 (4)
1.230

103 (4)
1.711

4 (2)
.070

32 (4)
.832

25 (4)
.820

10 (3)
453

12 (3)
1.328

10 (4)
.180

41 (4)
2.051

105 (4)
2.621

23 (3)
3.539

26 (4)
1.422

Failure case no.

(Error no.)

Time to failure in elapsed seconds

114 (4)
2.172

12,008 (5)
267.359

180 (3)
24,973

41 (3)
3.230

5034 (5)
90.039

5(4)
.090

13 (3)
1.629

21 (3)
2.641

6 (2)
.160

11,839 (5)
203.274

101 (3)
8.863

21 (3)
2.840

93 (3)

"11.359

6645 (5)
145.703

92 (3)
5.449

32,808 (5)
2952.103

7917 (5)
157.219

216 (5)
3.629

413 (5)
13.320

10,779 (5)
338.655

3986 (5)
64.770

7218 (5)
267.996

18,813 (5)
406.640

8655 (5)
143.086

5,576 (5)
132,016

2731 (5)
41.523

J-1

APPENDIX J3: EXPERIMENT DATA FOR SUBJECT PROGRAM A2 (Continued)

Explanation: Repetition no. Failure case no. (Error no.)
Time to failure 1n elapsed seconds

l6. 1(1) 4 (2) 47 (3) 49 (4) 3375 (5)
012 121 .980 .879 50.844
17. 1Q) 11 (2) 27 (4) 27 (3) 2504 (5)
.008 .250 .590 .887 38.367
18. 2(1) 6 (2) 7 (3) 50(4) 3789 (5)
.031 .150 129 .898 56.688
19. 1(Q) 6 (2) 47 (3) 132 (4) 245 (5)
.012 .150 2.410 2.293 3.680
20. 2(1,2) 20 (3) 44 (4) 4121 (5)
047 449 .988 62.219
21, 1 (L,m) 10 (2) 127 (3) 10,894 (5)
012 .320 6.770 249,656
22. 1(Q) 1(2) 19 (4) 6 (3) 2575 (5)
.008 .020 .328 .090 39.992
23, 1Q) 12 (2) 7 (4) 25 (3)
.008 .270 .281 1.660
24, 1(1) 3(2) 22 (4) 38 (3)
.008 .070 461 3.910
25. 1(1) 2(2) 50 (4) 16 (3)
.012 .039 1.031 1.520
26. 2(1) 5(2) 14 (4) 2(3)
.031 A4l .223 .262
27. 1) 2(2) 10 (3) 26 (4)
.012 .061 .332 1.137
28. 1(1) 1(2) 64 (4) 30 (3)
.020 .051 961 1.301
29. 1(2) 1(1) 20 (4) 52 (3)
.020 .010 .289 1.113
30, 1(Q1) 7 (2) 66 (3) 1(4)
.020 .180 1.000 .027

J-2

APPENDIX 3J:

Explanation:
3. 1 (1)
.012
32- 1(1,2)
.020
33, 1(1)
.020
3. 1(1)
.012
35. 1(1,2)
.008
36. 1(1)
012
37. 3(2)
.039
38. 2(1)
.039
39. 1(1,2)
.008
40, 1(1,2)
.012
41, 3(1)
.039
42, 1(Q1)
.020
43. 1(1,2)
.008
44. 1(1,2)
.012
45, 2(1)
.031

EXPERIMENT DATA FOR SUBJECT PROGRAM A2 (Continued)

Repetition no.

6 (2)
.160

31 (4)
531

1(2)
.039

3(2)
.080

1 (%)
.020

7(2)
.158

1 (1)
.010

3(2)
.080

10 (4)
172

63 (3)
2.723

8(2)
.170

2(2)
029

19 (4)
.281

38 (4)
.566

4 (2)
.090

2 (4)
.051

117 (3)
9.379

9 (3)
438

3(4)
.070

1(3)
.023

2(3)
.031

60 (4)
2.738

26 (3)
1.520

54 (3)
11.020

28 (4)
.520

44 (3)
1.859

42 (4)
637

71 (3)
4.539

12 (3)
1.398

72 (5)
1.102

Failure case no.
Time to failure in elapsed seconds

16 (3)
973

106 (4)
1.891

37 (3)
5.008

5(5)
.090

77 (3)
7.930

1 (%)
.023

65 (4)
1.172

39 (3)
9.219

(Error no.)

J-3

Explanation:
46. 1(1)
012
47. 2(1)
.039
48, 1(1)
012
49. 1(1)
.020
50, 1(1)
.020

J-4

APPENDIX J: EXPERIMENT DATA FOR SUBJECT PROGRAM A2 (Continued)

Repetition no.

1(2)
.020

10 (2)
.250

3(2)
.080

6 (2)
191

2(2)
.070

20 (3)
410

62 (3)
1.102

1(3)
.031

26 (4)
551

3 (3)
.129

Failure case no. (Error no.)
Time to failure in elapsed seconds

15 (4)
277

137 (4)
2.621

29 (4)
.527

44 (3)
1.918

145 (4)
2.500

Explanation:

10.

11,

12.

13.

14,

15.

APPENDIX K:

2(1,2)
148

7 (1)
.270

4 (1)
.078

5()
109

11 (1)
.250

8 (1)
152

13 (1)
.230

2(1)
.031

2(1)
.039

2(1)
.039

2(1)
.051

1(1)
.020

6 (1)
.098

1(1)
.008

4 (1)
.063

Repetition no.

1880 (3)
85.055

14 (2)
.230

330 (2)
6.090

23 (2)
.387

68 (2)
1.230

48 (2)
.980

105 (2)
1.871

9 (2)
148

10 (2)
.188

54 (2)
1.027

41 (2)
910

116 (2)
2.141

15(2)
.223

12 (2)
199

23 (2)
422

6739 (3)
247.984

2262 (3)
98.914

10,993 (3)
288.757

11,924 (3)
205.164

5802 (3)
104.773

761 (3)
12.570

19,628 (3)
348.61

5873 (3)
99.078

11,202 (3)
187.11

537 (3)
8.938

1880 (3)
31.383

4771 (3)
82.906

8638 (3)
184.907

116 (3)
3.340

Falilure case no.

EXPERIMENT DATA FOR SUBJECT PROGRAM B2

(Error no.)

Time to failure in elapsed seconds

APPENDIX K: EXPERIMENT DATA FOR SUBJECT PROGRAM B2 (Continued)

Explanation: Repetition no. Failure case no. (Error no.)
Time to failure in elapsed seconds

16. 16(1) 12 (2) 4067 (3)

.320 227 93,25
17. 14 (2) 4 (1) 23,398 (3)
.270 .100 905.889
18. 17 (1) 34 (2) 11,416 (3)
.363 621 238.797
19. 12(1) 42 (2) 13,551 (3)
.262 .789 388.720
20. 19(1) 33(2) 14,895 (3)
.363 621 835.157
21, 4(1) 18 (2) 3074 (3)
.066 .309 86.406
22. 8(1) 9(2) 3853 (3)
137 .160 164.168
23. 6(2) 2(1) 33,447 (3)
113 041 1418.960
24, 1(2) 5(1) 1532 (3)
.020 121 25.430
25. 2(Q1) 43 (2) 16,366 (3)
.039 762 266.973
26. 10(1) 2(2) 1526 (3)
.188 .031 24,949
27. 2 10 (2) 37,447 (3)
.031 .180 621.170
28. 6(1) 49 (2) 1532 (3)
.109 961 25.69
29. 11(1) 56 (2) 12,000 Truncated
.188 1.027 234.92
30. 3(1) 16 (2)
.059 281

Explanation:
31. 8(1)
211
32, 2(D)
.063
33, 18 (1)
.391
34, 11 (2)
316
35. 3(1)
051
36. 12 (1)
.293
37. 17 (1)
480
38. 8 (1)
184
39. 4(1)
141
40. 14(1)
449
41. 3(1)
.090
42, 2(1)
.063
43. 7 (1)
148
44, 3(1)
.098
45. 13(1)
352

APPENDIX K: EXPERIMENT DATA FOR SUBJECT PROGRAM B2 (Continued)

Repetition no.

28 (2)
.551

29 (2)
492

14 (2)
219

27 (1)
670

37 (2)
.699

65 (2)
1.137

40 (2)
730

3(2)
051

38 (2)
648

39(2)
770

56 (2)
1.039

7(2)
.168

2(2)
.039

53 (2)
1.270

119 (2)
2.090

Failure case no. (Error no.)
Time to failure in elapsed seconds

K-3

Explanation:
b6. 6(1)
.160
47. 3(1)
.090
48. 5(1)
.109
49. 3(1)
A17
50, 2(1)
.031

APPENDIX K: EXPERIMENT DATA FOR SUBJECT PROGRAM B2 (Continued)

Repetition no.

6(2)
.098

66 (2)
1.281

56 (2)
.988

3(2)
.051

12 (2)
211

Failure case no. (Error no.)
Time to failure 1n elapsed seconds

APPENDIX L:

Explanation:
1. 1(1)
|
2. 5(1)
3
3, 2 (1,4)
|
4. 21(1,2)
12
5. 7 (1)
2
6. 2(1)
2
7. 6(1)
3
8. 19 (1)
11
9. 1(1)
0
10. 3(1)
1
1. 3Q)
3
12. 2(2)
2
13. 2(1,5)
1
4. 3(1)
4
15, 4(1)
3

EXPERIMENT DATA FOR SUBJECT PROGRAM A3

Repetition no.

7(2)
3

10 (2)

4 (6,10)
2

68 (6)
32

46 (5)
24

10 (3,4)
8

10 (5)
6

19 (5)
9

50 (6)
34

102 (7)
49

66 (6)
32

11 (5)
6

24 (6,10)
14

47 (8)
26

5(5)
3

33 (6)
21

Failure case no.

(Error no.)

Time to failure in elapsed CRU's

112 (5)
63

13 (3)

71 (6)
34

35(7,10)
22

16 (8)
8

76 (5)
54

18 (7)
8

25 (4)
15

24 (6)
11

9 (10)
5

117 (3,4)
61

10 (7)

52 (6)
34

73 (10)

3(%)

APPENDIX L: EXPERIMENT DATA FOR SUBJECT PROGRAM A3 (Continued)

Explanation:
le. 2(2)
2
7. 2(1)
2
18, 4(1)
1
19. 12 (1)
7
20, 5(1)
2
2L, 1(1)
1
22, 3(1)
0
23, 2(1)
1
24, 5(1)
3
25, 2(1)
1
26. 1(1)
1
27. 3(1)
2
28. 1 (1)
0
29. 1(1)
0
30, 2(1)

L-2

1

Repetition no.

3(D
2

4(2)
2

5(2)
3

12(7)
8

8 (6)
>

13 (2)
7

8 (2)
3

7 (6)
3

8 (5)
4

19 (6)
10

1%
0

2 (6)
1

12 (5)
6

4 (7)
1

60 (2)
28

12 (5,7)
8

38 (4)
25

44 (6)
21

18 (2)
12

1(2)
0

20 (6,10)
8

9 (5)

5

25(2)
13

42 (2)
28

63 (5)
33
2(2)
45 (7)
34 (4)

22
34 (5)

Failure case no.

(Error no.)

Time to failure in elapsed CRU's

40 (6)
16

59 (5)
33

26 (6)
16

50 (5)
27

52 (6)
29

35 (4)
16

48 (6,10)
30

23 (2)
17

12 (5)
45 (2)

21

153 (6)
84

4 (10)

2

13 (10)
9

109 (3)
48

42 (4)
19

16 (3)

53 (7)
32

3(4)

38 (7,10)
24

Explanation:
3. 6(1,2)
1
32. 2 (1)
0
33, 13(1)
12
34, 1(1)
2
35. 2(1)
2
36. 1(1)
0
37, 1Q)
|
38. 2(1)
2
39. 5(1)
3
40. 5(1)
y
41, 3(1)
1
42. 1)
0
43. 4(1)
2
44, 10(2)
8
45, 1(1)

APPENDIX L: EXPERIMENT DATA FOR SUBJECT PROGRAM A3 (Continued)

1

Repetition no.

30 (7)
17

60 (2)
32

46 (7)
22

21 (6)
10

5(3)
3

25(2)
14

17 (5)
8

2(8)
1

1 (6)
1

12 (5)
6

40 (8)
21

8 (5)
6

18 (6)
10

3(1)
1

11 (8)
5

18 (5)
10

15 (5)
7

21 (2)
12

10 (7)
7

2(7)
0

3 (6)
2
9(2)

7

51 (2)
26

50 (6)
38
1(2)
27 (5)

7 (3,9)

Failure case no.

2 (6)
0

45 (6)
15

100 (3)
58

13 (5)
6

15(2)
7

77 (7,10)
41

9 (6)
5

58 (5)
26

5(2)

23 (6)
13

63 (2)
42

21 (3)
14

37 (6)
18

24 (2)
11

13 (6)

9 (10)

209 (3)
102

73 (10)
45

17 (10)

12 (8)

(Error no.)
Time to failure in elapsed CRU's

L-3

APPENDIX L: EXPERIMENT DATA FOR SUBJECT PROGRAM A3 (Continued)

Explanation:

46. 3(1)
2

47. 5(1)
2

48. 6 (1)
3

49. 2(1)
1

50. 1(2)
2

Repetition no.

70 (2)
40

12 (5)
5

20 (3)
11

19 (6)
11

3(1
2

151 (5)
91

57 (4)
45

7 (5)
4

9(2)
5

16 (7)
6

Fallure case no. (Error no.)
Time to failure in elapsed CRU's

34 (6) 125 (10)
19 78

23 (6) 85 (2)
12 44

4(7,10)

15 (3) 13 (5)
12 8

Explanation:

. 3(1)
2

2. 2 (1)
1

3. 4(2)
3

4, 4 (1)
3

5. 1 (1)
1

6. 1 (1)
1

7. 3(1)
2

8. 2(1)
1

9. 3(1)
2

10. 1(1)
0

11. 2(1)
0

12, 4(1)
2

13. 1(1)
1

14, 1(1)
0

15. 6 (1)
2

APPENDIX M:

EXPERIMENT DATA FOR SUBJECT PROGRAM B3

Repetition no.

21 (2)
14

23 (2)
10

2(1)
2

4 (2)
2

23 (2)
15

23 (2)
10

5(2)
0

16 (2)
9

2(2)
1

23 (2)
14

23 (2)
15

10 (2)
5

19 (2)
10

5(2)
1

5(2)
2

145 (6)
62

157 (5)
66

54 (7)
21

9 (5)
5

111 (4)
52

162 (4)
74

51 (5)
30

31(5)
13

7 (5)
2

190 (5)
97

60 (5)
26

60 (5)
34

158 (5)
77

12 (5)
7

246 (5)
117

Failure case no.
Time to failure in elapsed CRU's

388 (4)
221

77 (7)
43

28 (7)
12

34 (5)
18

259 (7)
139

312 (7)
166

80 (7)
53

83 (7)
uy

166 (7)
9

554 (4)
312

141 (4)
81

155 (4)
83

380 (4)
194

75 (3)
32

755 (7)
354

318 (3)
154

833 (7)
390

174 (7)
67

624 (7)
308

(Error no.)

206 (7)
91

1128 (6)
520

APPENDIX M: EXPERIMENT DATA FOR SUBJECT PROGRAM B3 (Continued)

Explanation:
l6. 7(1)
4
7. 1(1)
1
18. 1(1)
1
19. 2(2)
1
20. 2(2)
0
2. 1(2)
0
22, 1(1)
0
23, 3(1)
2
24, 3(2)
1
25. 1(1)
0
26. 1(1)
1
27. 3(1)
1
28. 2(1)
0
29. 2(1)
0
30. 4(1)
2

Repetition no.

1 (2)
0

9 (2,4)
6

26 (2)
13

1(1)
1

8 (1)
2

2(1)
0

6(2)
1

6 (2)
0

1 (1)
1

14 (2)
6

8(2)
5

2(2)
1

10 (2)
7

9(2)
4

1(2)
0

8(7)
5

72 (7)
32

68 (4)
32

82(7)
35

134 (7)
62

247 (5)
116

211 (5)
88

328 (7)
141

70 (6)
27

51 (5)
28

61 (4)
26

165 (7)

Falilure case no.
Time to failure in elapsed CRU's

105 (5)
48

467 (7)
250

54 (4)
29

571 (7)
338

593 (5)
238

26 (4)
20

186 (4)
103

75(7)

30

351 (7)
152

539 (3)
225

107 (7)
51

546 (7)
257

(Error no.)

785 (7)

364

APPENDIX M: EXPERIMENT DATA FOR SUBJECT PROGRAM B3 (Continued)

Explanation:
3. 2(1)
1
32, 2(1)
1
33, 1(1)
0
34, 1(1)
0
35. 2(1)
1
36. 7(2)
2
37. 2 (1)
1
38. 2(1)
2
39, 4(1)
2
40. 2(1)
1
41. 1(1)
1
42. 1(1)
|
43, 2(2)
|
44, 5(1)
2
45. 6(1)

1

Repetition no.

705
5

7 (2)
3

4 (2)
4
3(2)
1

6 (2)
1

1 (1)
|
5(2,3)
2
1(2)
1

6 (2,4)
3

25(2)
12

21 (2)
13

5(2)
4

2(1)
2

4(2)
1

7 (2)
y

14 (2)
7

76 (5)
28

72 (5)
32

96 (7)
43

122 (4)
55

69 (5)
32

114 (5)
52

459 (3)
197

134 (5)
63

89 (6)
42

46 (7)
23

64 (5)
28

2 (4)
1

65 (7)
30

31 (5)
13

Failure case no.
Time to failure in elapsed CRU's

338 (7)
179

681 (7)
391

109 (7)
55

21 (5)
10

231 (6)
117

236 (6)
90

14 (5)
7

1022 (7)
469

144 (7)
82

226 (6)
105

27 (6)
12

216 (3)
102

405 (7)
135

(Error no.)

1101 (7)
528

APPENDIX M: EXPERIMENT DATA FOR SUBJECT PROGRAM B3 (Continued)

Explanation:

46. 1(1)
0

47. 16(1)
6

48. 6(1)
3

49. 1(1)
0

50. 1(1)
0

Repetition no.

1 (2,4,5)
0

21 (2)
14

17 (2)
8

6 (2)
4

25(2)
14

669 (7)
279

395 (5)
181

2(5)
1

56 (7)
25

165 (4)
76

Failure case no. (Error no.)
Time to failure in elapsed CRU's

46 (7)
24

657 (4) '-'105 (6)
360 50

217 (7)
99

Report No
NASA CR-165836

2 Government Accession No

3 Recipient’s Catalog No

5 Report Date
|
4 Title and Subtitle February 9, 1982
Software Reliability: Repetitive Run o Cod
Experimentation and Modelling 6 Performing Organization e
N
7 Author(s) 8 Performing Organization Report No
Phyllis M. Nagel BCS-40366
mes A. Skrivan
a a 10 Work Unit No
g Performing Organization Name and Address
Boeing Computer Services Company 11 Contract or Grant No
Space and Military Applications Division
P.O, Box 24346 NAS!1-16481
Seattle, WA 58124 13 Type of Report and Period Covered
12 Sponsoring Agency Name and Address Contractor
4 Agency Code
National Aeronautics and Space Administration 14 Sponsoring Agency
Washington, D.C. 20546
15 Supplementary Notes
Langley Technical Monitor: Gerard E. Migneault
16 Abstract
This paper reports on a software experiment conducted with repetitive run sampling. A run is a sequence
of interfailure times recorded on each of a series of program states. Runs are replicated by reinitializing
the program to the state of its original release and repeating the process of obtaining interfailure times on
independently generated input data. This data has been used to verify that interfailure times are very
nearly exponentially distributed and to obtain good estimates of the failure rates of individual errors and
demonstrate how widely they vary. This fact invalidates many of the popular software reliability models
now in use. It was observed that the log failure rate of interfailure time was nearly linear as a function of
the number of errors corrected. A new model of software reliability 1s proposed that incorporates these
observations.
17 Key Words (Suggested by Author(s)) 18 Distribution Statement

Software reliability, software errors, software
testing, reliability modelling, software
experimentation

Unclassified - Unlimited

19 Security Classif (of this report)

20 Secunty Classif (of this page) 21 No of Pages 22 Price®

Unclassified Unclassified 134

* For sale by the National Technical Information Service, Springfield, Virginia 22161

NASA-C-168 (Rev 10-75)

End of Document

