
1

~

t

HilS 1/ eR.-/6.5; Y3h

NASA CR-165836
NASA-CR-16583'

~]Jf3)OO /30""
/'

Software Reliability: Repetitive Run
Experimentation and Modeling

Phyllis M. Nagel
James A. Sknvan

Boeing Computer Services Company
Space and MIlitary Applications DIvision
Seattle, Washington 98124

Contract No NASI-16481
February 1982

NI\SI\
National Aeronautics and
Space Administration

Langley Research Center
Hampton Virginia 23665

l.ANGLEY Rt:S£M"(r;, GENTE.R
Ll5'~';RY, N,",SA

Pot' J '?TJ~I, 'J'i\Glr l'A

I 11111/111111111111111111111111111111111111111
, NF01429
'-

https://ntrs.nasa.gov/search.jsp?R=19820013026 2020-03-21T08:48:32+00:00Z

All Blank Pages
{

Int~ntionally Left Blank

To Keep Document Continuity

SOFTWARE RELIABILITY: REPETITIVE RUN
EXPERIMENT A TION AND MODELLING

Prepared Under Contract NAS1-16481

By

PhyllIs M. Nagel
James A. Sknvan

Boemg Computer ServIces Company
Space and MIlItary ApplIcatIons DIVIsIOn

Seattle, Washmgton 98124

For

BCS-40366

NatIOnal AeronautICS and Space Admmistration

February 1982

PREFACE

The authors are much mdebted to many of thelr colleagues m the Consultmg DlVlSlOn
and the Space and Mlhtary ApplIcatlOns DIVlSlon of BCS for thelr asslstance and
counsel. In partIcular, special gra ti tude should be extended to:

• Mr. John R. Brown for hIS management of the project and hIS long-standmg
support and understandmg of the problem.

• The two programmers for denymg many of thelr professlonal mstmcts for
tlmely debuggmg m order to support the goals of thls expenment.

• Mr. Kerry Whltaker for hls contnbutlOns m slzmg and deslgnmg the ongmal
expenment, and

• Dr. Roberto Altschul for encouraging mterest m log lInear models and for
the methodology for estlrnatmg the nonhnear parameter set.

Fmally the authors would lIke to thank Dr. D. R. MIller of the Department of
Operations Research, George Washmgton UnIVerslty, for hls many stlmulatmg and
exceedmgly helpful dlscusslOns.

11l

CONTENTS

• Page

1.0 SUMMARY AND INTRODUCTION 1

1.1 SUMMARY 1
1.2 INTRODUCTION 1

2.0 EXPERIMENT 5

2.1 BASIC HYPOTHESIS ON ERROR DETECTION 5

2. t.l RelatIonshIp Between the Error Set and 5
the Input Set

2.1.2 Usage DlstrIbutlOn 5
2.1.3 Error DetectIon 6
2.1.4 Samplmg Method 6

2.2 EXPERIMENT AL FEATURES 6

2.2.1 Overall Controls 6
2.2.2 Run RepetltlOns 6
2.2.3 DetectlOn-Order Effects 7
2.2.4 ImtIallzatlOn and StatIC Detectors 7
2.2.5 DynamIc Detectors 7
2.2.6 Debuggmg and StatIC Debug Tests 8
2.2.7 RIpple Effect 8
2.2.8 Flow of Experiment 8
2.2.9 Run Slzmg 10
2.2.10 Problem and Programmer as DeSIgn Factors 11
2.2.11 Data Base 11

3.0 OPERA TIONAL DESCRIPTION 13

3.1 GENERAL 13
3.2 OVERHEAD PROGRAMS 13

3.2.1 Test Driver 13
3.2.2 Experiment Driver 13

3.2.2.1 Input-Data Generator 13
3.2.2.2 Comparator 17
3.2.2.3 Results Writer 17

3.2.3 Error IdentIfIer 17

3.3 COMPUTER/LANGUAGE ENVIRONMENT 19

3.3.1 BITS System 19
3.3.2 V AX!VMS System 19

v

CONTENTS (Contmued)

Page

4.0 EXPERIMENT DA T A COLLECTION 21

4.1 INTRODUCTION 21 4.2 PROGRAMMER DESCRIPTIONS 21 4.3 PROBLEM III 21

4.3.1 Background 21 4.3.2 SpecIfIcatIOns 22 4.3.3 Test Cases 22 4.3.4 Usage DIstributIOn 22

4.3.4.1 Coordmates 22
4.3.4.2 LCM and PUM Elements 22
4.3.4.3 Parameters 24

4.3.5 Correct VersIOn 24 4.3.6 Error DeSCriptIOns 24

4.3.6.1 Subject Program Al 25
4.3.6.2 Subject Program Bl 26

4.3.7 Run Results 27

4.3.7.1 Subject Program Al 27
4.3.7.2 Subject Program B1 27

4.4 PROBLEM 112 27

4.4.1 Background 27 4.4.2 Speclfica tIOns 30 4.4.3 Test Case 30 4.4.4 Usage DIstributIOn 30 4.4.5 Correct VersIOn 30 4.4.6 Error DeSCriptIOns 30

4.4.6.1 Subject Program A2 31
4.4.6.2 Subject Program B2 31

4.4.7 Run Results 32

4.4.7.1 Subject Program A2 32
4.4.7.2 Subject Program B2 32

4.5 PROBLEM 113 32

4.5.1 Background 32 4.5.2 Speclfica tIOns 32 4.5.3 Test Case 32

VI

4.5.4
4.5.5
4.5.6

4.5.7

CONTENTS (Contmued)

Usage DIstrIbutIOn
Correct VersIOn
Error DeSCrIptIOns

4.5.6.1 Subject Program A3
4.5.6.2 Subject Program B3

Run Results

4.5.7.1 Subject Program A3
4.5.7.2 Subject Program B3

5.0 DA T A ANALYSIS

32
32
32

35
35

36

36
36

39

5.1 TESTING THE HYPOTHESIS OF EXPONENTIAL 39
INTERF AlLURE TIME

5.2 UNEQUAL ERROR PROBABILITY HYPOTHESIS 43
5.3 STATE PROBABILITY ESTIMATES 43
5.4 RANDOM INFLUENCES ON THE STAGE PROBABILITIES 48
5.5 PROPOSED MODEL FOR SOFTW ARE RELIABILITY BASED 50

ON COX'S PROPORTIONAL HAZARDS FAILURE MODEL
5.6 PROGRAM FEATURES AS PREDICTORS 56
5.7 RIPPLE EFFECT 62

6.0 CONCkUSIONS

REFERENCES

APPENDIX A:
APPENDIX B:
APPENDIX C:
APPENDIX D:
APPENDIX E:
APPENDIX F:
APPENDIX G:
APPENDIX H:
APPENDIX I:
APPENDIX J:
APPENDIX K:
APPENDIX L:
APPENDIX M:

SOFTW ARE ERROR CATEGORIES
PROBLEM III SPECIFICATIONS
PROBLEM III TEST CASES
PROBLEM 112 SPECIFICATIONS
PROBLEM 112 TEST CASE
PROBLEM 113 SPECIFICATIONS
PROBLEM 113 TEST CASE
EXPERIMENT DATA FOR SUBJECT PROGRAM Al
EXPERIMENT DATA FOR SUBJECT PROGRAM Bl
EXPERIMENT DATA FOR SUBJECT PROGRAM A2
EXPERIMENT DATA FOR SUBJECT PROGRAM B2
EXPERIMENT DATA FOR SUBJECT PROGRAM A3
EXPERIMENT DATA FOR SUBJECT PROGRAM B3

63

65

A-I
B-1
C-l
D-l
E-l
F-l
G-l
H-l
1-1
J-l
K-l
L-l
M-l

Vll

LIST OF FIGURES

Page

2.2.8-1 Expenment Flow DIagram 9

3.1-1 ExperIment Software Structure 14

3.2.1-1 Test DrIver Macro Flowchart 15

3.2.2-1 ExperIment DrIver Macro Flowchart 16

3.2.3-1 Error IdentifIer Macro Flowchart 18

4.3.4.1-1 Usage DIstrIbutIOn for Coordinates 23

4.3.7.1-1 Trace of Runs for Subject Program Al 28

4.3.7.2-1 Trace of Runs for Subject Program Bl 29

4.4.7.1-1 Trace of Runs for Subject Program A2 33

4.4.7 .2-1 Trace of Runs for Subject Program B2 34

4.5.7.1-1 Trace of Runs for Subject Program A3 37

4.5.7.2-1 Trace of Runs for Subject Program B3 38

5.1-1 SurvIvor FunctIon vs. t for Subject Programs Al and B3 44

5.3-1 EstImated Error Rate as a FunctIon of Errors 47
Corrected USing OrIginal Data

5.3-2 EstImated Error Rate as a FunctIon of Errors 49
Corrected USing Modified-orIgm Data

5.4-1 HIstograms of Stage ProbabIlIty EstImates for 51
Subject Program Al as a FunctIon of the Number
of Errors Corrected

5.4-2 HIstograms of Stage ProbabIlIty EstImates for 52
Subject Program Bl as a FunctIOn of the Number
of Errors Corrected

5.5-1 PredIcted Error Rate from the ProportIonal Hazards 58
Model, Usmg Ongmal Data

5.5-2 PredIcted Error Rate from the ProportIOnal Hazards 59
Model, USing Modifled-Ongm Data

5.6-1 Inverse of Halstead's Volume vs. PredIcted Slope 61
(ModifIed Data), ProportIOnal Hazards Model

IX

LIST OF TABLES

Page

5.1-1 Companson of ExponentIal-MIxture DensIty WIth 41
ExponentIal DensIty

5.1-2 LIllIefors K-S Test StatIstIcs for the Exponential 42
DIstnbutIOn

5.2-1 SpecIfIc Error ProbabIlItIes - Ranked EstImates 45

5.3-1 EstImated Stage ProbabIlItIes 46

5.5-1 ProportIOnal Hazards Model Parameters Based on 54
Ongmal Error Rate Data

5.5-2 ProportIonal Hazards Model Parameters Based on 55
ModIfIed Ongm Data

5.5-3 EstImates for Error ProbabIlIty Per Program ExecutIon 57
Based on the ProportIOnal Hazards Model

5.6-1 Subject Program Measures 60

Xl

1.0 SUMMARY AND INTRODUCTION

1.1 SUMMARY

Boemg Computer ServIces has conducted carefully desIgned and controlled soft
ware-development experiments wIth analYSIs m support of software-relIabIlIty estI
matlOn and modelling. Two programmers mdividually desIgned and coded three
FORTRAN programs each from three problem specIfIcations. These programs were
then executed in repetItIve run samplIng, where a run IS a sequence of mterfaIlure
tImes recorded on each of a series of program states.

The run data has been used to verIfy that mterfaIlure tImes are exponentIally
dIstributed, to obtam good estImates of the faIlure rates of mdividual errors and to
demonstrate how WIdely the rates vary. ThIS latter fact invalIdates many of the
popular software relIabIhty models now In use. In addItIon, It was observed that the
log failure rate of mterfaIlure tIme was nearly lInear as a functIon of the number of
errors corrected.

Cox's proportlOnal hazards model has all of the observed characteristIcs of the
experiment data and IS proposed as a new model of rehabilIty. MaxImum lIkelihood
estimates for the unknown parameters were obtained for all SIX programs usmg
nonhnear optImIzatIon techmques. StatIstIcal tests on these estImates mdicate there
are strong programmer and problem effects on the background fallure rate. Results
also show that over 80% of the observed VarIatlOn m the logarithm of the faIlure-rate
data can be explamed by the proportIonal hazards model. A tentatIve physIcal
predIctor was proposed based on Halstead's InformatlOn criteria N WhICh mIght be
used In forecasting model parameters.

1.2 INTRODUCTION

Smce the Importance of good models for predIcting software relIabIlity IS undemable,
It IS an anomaly that so little model development has been based on inSIghts gamed
from specIfiC experimental results. PredIcated on the belief that there is much to be
learned regardmg the man-In-the-Ioop process of software development before
modelIng can be effectIve, an experiment has been conducted that both attempts to
extend the mformatIon base and prOVIde experimental VerifIcatIon of some of the
popular assumptions regardmg the fallure structure of software. ThIS experiment
dIffers from other software experiments In several regards. The emphasis is on the
predictlOn of software relIabihty from the traditional point of View of risk assess
ment rather than as a management tool In software development. The experiment
utihzes the concepts of formal statistical design and experimental control and by
replIcating the deSign makes it pOSSible to examine the detection process when errors
are not Identically distributed.

The deSign of this experiment has been chosen to explore only a few of the issues of
software relIabIhty and does not try to Include the entIre set of factors thought to
Influence the software error structure. Two primary self -imposed constramts were
adopted. First of all, by concentrating on relIabilIty assessment, the experiment
consclOusly aVOids all of the issues behind tnne and accuracy growth of software
undergOing redefimtion, and explores only those related to problems WIth fIxed
specificatlOns. Secondly, the experiment assumes that the detection of errors In a

I

2

program depends only on the mterdction of the error set, the CrIterIa or detector
establishing correctness and the probability of detection of each error given the
detection mechamsm. Thus, except for the process of error removal, the probabihty
of detection for a specific error remams fixed throughout the experIment.

Data from software rehabihty tests has traditlOnally consisted of a record of the
succeSSive mterfallure times followmg the detectIOn and correctIOn of sequentIal
errors. In the present context such a set of data Will be called a program run. Smce
fixmg a program by correctmg an error is equivalent to a program design change, a
run of data conSists of a smgle observation on hfe length for each of a sequence of
design configuratIOns that are different but possibly connected. It IS thiS fact that
has mhibited the statistical mvestigation of the properties of software rehabihty.

The experIment reported here enrIches the data base by mcreasmg the sample Size of
each of the design stages. ThiS has been accomphshed by rephcatmg runs. Each run
conSists of a reimtiahzatIOn of the program to itS orIgmal design configuratIon and a
repetitlOn of the process of obtammg mterfatlure times With different mdependent
sequences of randomly generated mput data.

With thiS data several modelmg properties of the software fallure phenomenon have
been mvestigated. In particular these mclude mvestigations of:

a. The exponential assumptIOn as the distrIbution of mterfallure time.

b. The assumptIOn of equal error probabihty lmphcltly assumed m the Jelmski
Moranda [11, Shooman [2], and Schick-Wolverton [3] models versus the
unequal error detectIon probabil1ty proposed by Littlewood and Verrall [4]
and further mvestigated by Littlewood [5].

c. The consequences of the results of a. and b. (above) on rehabihty considera
tIOns.

d. The effect of programmer on the error characterIstics for a fixed problem
specIfica tIOn.

e. The effect of problem on a gIven programmer's error performance.

f. The number of program executIOns to fallure versus mterfailure time
measured m computer resource umts (CRU's) as a base m WhiCh to measure
rehabihty, where here, a program execution means a complete processmg of
the mput case from the begmning of the program to the fmal output,
correct or mcorrect.

g. PotentIal phYSical features of the program to use as predictors of the error
structure.

ThIS report is presented m SiX sectIOns. SectIOn 2 contams a detaIled descnptIOn of
the experIment With reference to itS deSign and the controls imposed to Insure data
integnty. Sections 3 and 4 provide detalls of the actual expenment. Section 3
descrIbes the computer programs WrItten to maintain the flow of the expenment and
conduct error detectIOn. SectIOn 4 outlmes the problems and specificatIOns selected
for thiS experIment together With the experience histOrIes of the programmers

Involved and their programs WrItten from the specIfIcations. This sectIOn also
Includes some dlscusslon on the nature of the errors manifested during the experI
ment. In Section 5, descrIptive statistIcs of the observed data are provIded and the
inVestIgatIOns referenced above are descrIbed. Details are then given of a proposed
new model of software relIabilIty. SectIon 6.0 provIdes conclusIons of the study.

3

2.0 EXPERIMENT

2.1 BASIC HYPOTHESIS ON ERROR DETECTION

By assummg that faIlure rates are SImple functIOns of the total number of errors m a
program, currently popular software-error models imply impliCItly that errors are
equally probable. The belief m this property has not only mfluenced the modehng of
software rehablhty, It has also mfluenced the desIgn of software-error experiments
and the types of data that have been collected to date. Based on the comphcated
structural relationshIp that eXIsts between an error and the forces causmg Its
manifestatIon, it seems quite pOSSIble, however, that errors are not equally probable.
ThIS experiment therefore has been designed specifically to explore the exact nature
of these probablhtles.

2.1.1 Rela tlOnshlp Between the Error Set and the Input Set

There IS a correspondence between an error in the program and a subset of the set of
all pOSSIble inputs to the program whose elements can detect the error where the
word input stands for the complete vector of quantItIes required for a smgle program
executIon. Some subsets no doubt are larger than others and some may only consist
of a smgle input. Sets can overlap If some mputs can detect more than one error and
therefore the correspondence between the subsets and the errors is not necessarily
one to one. One subset contamed m another may mean that the contamed error IS
nested and cannot be detected untIl the other error is first corrected.

Dependmg on the experiment, it mayor may not be the case that the mCldence of an
mput m the mtersectlOn set of two or more errors causes the correctIOn of all of the
errors mvolved. In this experiment, however, all errors detectable by a gIven mput
are corrected before testmg is resumed.

If an error eXists that can only be detected by a regIOn of the set of mputs to the
program that is rarely used in practice, the probability of detection IS necessarily
small. It is also true (for experiments designed as this one is) that the unrehablhty of
a program contammg a fIxed error set is the probabih ty of the union of these error
detecting subsets of the input set.

2.1.2 Usage Distribution

Once a program has been declared operational the dynamiC mfluences on the
development of the program are stabilized. A t thIS tIme the program is mtended to
be used m an operating enVironment defmed m terms of the values and frequencies of
the mputs selected for executIon. It is relative to this operating environment, then,
that the question of reliabihty is posed, and if the environment changes so Will the
statements regarding reliability.

The set of all potential uses of a program imposes a probability distributIOn on the set
of all pOSSIble program inputs. This reflects that some regIons of the set of mputs
are more mterestmg or more popular than others. ThIS distribution, sometImes called
the "usage" distributIon, IS deSCribed m Brown and LlpOW [6]. Since there is a
correspondence between an error m the program and a subset m the mput set whose
elements can detect the error, the probabihty of detectIon of an error IS the

5

probablh ty of samphng at random, according to the usage dlstnbutIOn, m ItS
associated subset.

The usage dlstnbutIOn, therefore, plays a cntlcal role m determmmg error probabllI
tles and It lS qUlte posslble that some errors are more probable than others either
because theIr assocIated mput subsets are larger or because theIr subsets are more
lIkely to be selected In executlon. Furthermore, all statements regardmg the
rehablhty of a program are really referenCing the Interplay between the probabIhstlc
forces of the usage dIstnbutIOn and the error structure of the program.

2.1.3 Error DetectIOn

Smce It IS true that the detectiOn of an error unpiles the eXIstence of a detector,
then It also follows that the type of detector In use Influences the probablhty of
detectIOn and therefore has an lmpact on the reilabIl1ty of the program. That IS, In
the sense of the user's knowledge of an error as opposed to Its fundamental eXistence,
the detector defmes the error.

2.1.4 Samphng Method

Three major mfluences on the reilabIhty of a program have been dlscussed: the
eXIstmg error set, the usage dlstnbutIOn and the error-defining detector that Judges
output correctness. There is, however, one other factor that can be extremely
lmportant m some contexts that has to do wlth the nature of the sampling from the
usage dlstnbutIOn. In most expenments described In the hterature, sampling
proceeds by mdependent sampling wlth replacement and rehablhty lS unaffected. In
some fIelds of applIcation, however, such as aViOniCS, there IS tIme dependence In the
mput stream. The eXistence of this autocorrelatIOn In the samplIng can exerclse
conslderable mfluence over a program's relIabllIty performance. A manifestatIon of
thls potentlal Influence is the concept of software-error "bursts" [7].

6

2.2 EXPERIMENTAL FEATURES

2.2.1 Overall Controls

The specifIcatiOns for each of the problems conSIdered In the expenment Included
complete deflnItIOns of the usage dlstnbutIOns to be employed and all detectors.
Controls on the error set Included controlhng for problem, controlhng for program
mer and controlhng the deflnItlon of a program's lnItIaI state In terms of the test
cases It must successfully pass. Data was sampled independently and wlth replace
ment at all tImes.

2.2.2 Run RepetItIons

TradltIOnal software experiments remove errors wlthout allOWing for the probablhstlc
lmpact of the detected error on subsequent error detectIon. In order to be able to
measure this lmpact the present experiment was deslgned to provlde some informa
tIOn about "what was there" from a probabIhstlc pOint of VIew. ThIS was achIeved by
repetltlvely sampling a program from ltS lnItlal error state (state 0) through n errors,
obtaining a senes of runs. A run then conslsts of n observed tlmes to faIlure on each
of n sequentlal program stages.

2.2.3 DetectIOn Order Effects

ThIS method of sampling Introduces two other concepts WhICh must be defined,
namely those of program stage and program state. A program stage refers to the
number of errors that have been corrected Since sampling began wIth the program In
ItS InitIal state. A program state IS a listing of errors by number that have been
detected and corrected Since the inItIalizatIOn. In tradItIOnal experiments the
concept of state was not recognized. In thIS experiment obserVing runs makes It
pOSSIble to not only study how errors are dIstributed but also to study the
consequences of removing errors In a random order.

TIme to next failure of a program IS conditlOnal on the error state of the program at
the tIme of the last failure. Since the order of error removal IS random, It IS of
Interest not only to study the magnitude of the error probabIlitIes but also the effect
of order on these estImates. For thIS experiment not only IS the Interfailure tIme
recorded at the tIme of program failure, but also each observed error IS dIagnosed
and recorded by number so that the exact condItIOning IS known at all tImes.

2.2.4 InitIalizatIOn and StatIC Detectors

Once the program IS released from the programmer, the code must satIsfy all
compiler checks and correctly execute a set of predetermined "reasonable" test
cases, numbering at most three. These tests form a set of statIC detectors that are
Intended to stabIlize the inItIal error set of each program In order to form a common
InitIal base from WhICh to compare dIfferent programs as a functIOn of the number of
errors corrected. In tradItIOnal experiments there has been little attempt to control
for a common 'InitIal denominator', and comparing error structures across different
programs was further thwarted In thIS regard.

Later In the paper a second InitIalizatIOn criterion IS proposed that seems even more
useful at prOVIding a stronger, more conSIstent baSIS for comparing dISSImilar
programs.

Other statIC detectors such as the program DAVE [8] were conSIdered as JOint
detectors WIth the above set to Insure greater commonality In the InitIal state.
However, the potentIal return compared to the cost of theIr use dId not seem
JustifIed until the problem IS better understood.

2.2.5 DynamIC Detectors

For each of the problems selected for thIS experiment, an eXIsting program satIsfYing
the specifIcatIOns for the problem has been In use for some tIme. The output of thIS
pre-eXIsting program, executed WIth IdentIcal Inputs to the program on test, IS used
as a comparator to determine the correctness of the new program. Although absolute
correctness In any sense cannot be assured by thIS method, a program that has
receIved extenSIve prior use has already been through many and varied tests In Its
lifetIme and is felt to be a reasonable norm. The use of other norms, however, can
change the Judgment of a program's reliabIlity.

In addItIOn to thIS comparator, the operating system Itself has some detecting abIlity
that causes the program to stop, or "bomb off", during executIon. The famIliar
system-Interrupt message, "dIVISIOn by zero," IS an example of a failure detected by

7

8

an operatmg system. This detectmg abilIty must be considered as part of the
dynamIc detectmg envIronment that defmes errors.

Other dynamIc detectors were considered, partIcularly those employmg the techmque
of dynamIc assertIon to test selected program variable states [91. Agam the use of
these detectors seemed unjUstIfIed at thIS tIme on the grounds of cost, although the
techruque seems useful and may be consIdered at some future date.

2.2.6 DebuggIng and StatIc Debug Tests

When an mcorrect executIon of the program IS detected, the mputs to the program
are saved while the bug IS corrected. The corrected program IS then subjected to the
same statIc tests as m the OrigInal set. That IS, it must satIsfy all compIler checks
and correctly execute the orIgmal test cases. In addItIOn, It must also correctly
execute the saved last mput case. An Incorrect execution at thIS tane IndIcates one
of two pOSSIbilitIes: the bug causmg failure has not yet been corrected; or the saved
Input IS caUSing an addItIOnal SImultaneous error from one or more errors In the
Original error set.

By saving the last Input case and forCing the correctIOn of all errors detected by thIS
Input, the experiment can both prOVIde a measure of the probabIlity of the
intersectIOn and gIve a slIghtly better estImate of the marginal error probabIlIties.

To clarIfy thIS last observatIOn It should be noted that In many SituatIOns one error
can dominate another due to the ordered nature of a program's executIon. That IS,
one error IS always detected before another when an Input IS selected In the
mtersectIOn. By referencing a Venn dIagram mvolving the Intersectmg sets A and B,
If A dommates B and the Inputs are not fully explored to determine when they fall In
the intersectIOn, the program measures the probabIhty of B as p(AnB) before A IS
observed and p(AnB) + p(AnB) after A IS removed. On the other hand, by explormg If
a gIven mput IS In the mtersectIOn, the probabIlIty of B IS measured the same before
or after the dommatIng error IS removed.

2.2.7 Ripple Effect

When an executIOn of the program IS declared In error, the nature of the error IS
mvestlgated to determme If the error was mtroduced at an earher stage as part of
the debuggmg process. If so, separate books are kept of the error m order to track
the growth of unrelIabilIty as well as the growth of relIabIlity if this seems mdlcated.

2.2.8 Flow of Experiment

FIgure 2.2.8-1 Illustrates the flow of the experiment for a Single problem and a smgle
programmer's code. The process IS In fact based on a SImulatIOn untIl faIlure of
variOUS program states. It begms WIth an inItIal verSIon of the program that has
successfully passed all of the statIC tests. Random Input IS then generated according
to the usage dIstributIOn defmed In the problem specIfIcatIOns and the program IS
executed WIth these Inputs. SImultaneously, the comparator IS executed WIth these
same Inputs and correctness of the program on test IS determmed. If correct the
process IS repeated WIth new mputs generated mdependently untIl an error IS
detected. Once detected the error IS analyzed, recorded In the proper account WIth
an error number and corrected. At the pomt where all statIC tests including the

PROBLEM r-+-SPECI FICATION PROGRAMMER ~

\.D

r-- r--

C T
0 E
M S
P T

CODE -. I C L A E
R S

E r~

S

- ----

REPEAT K TIMES

,-----------------------------: t
I
I
I STATE I

t 1

DYNAMIC
DETECTORS

I
I
I
I
I
I
I
I
I
I
I

---------t-------------------------.

STATE
2

DYNAMIC
DETECTORS

STATE
n

~···"I DYNAMIC
DETECTORS

~--------------,------------------------
I
I
I
I
I
I

~------------- ________________________ J

Figure 2.2.8-1. Experiment Flow Diagram.

re-executIOn of the last mput case have correctly executed, sImulatIOn can begm on
another cycle wIth the program m this new state.

It was the mtent origmally to contmue cychng untIl 5 or 6 bugs had been dIscovered
or truncate the process at the predetermmed number of executlOns. In practIce
neIther of these rules was followed too closely, and termmatlOn usually occurred
when a bug was dIscovered that was extremely tIme consummg to correct. Most
programs manifested 5 or 6 errors before thIS occurred.

Repeated runs on the same program are conducted startmg from the same inItIal
state, I.e., state o. The experimental flow for each run IS exactly the same but the
SImulated mput stream IS generated Independently and hence dIfferent for each run.
Thus each run has the opportunity of generatmg dIfferent random errors m dIfferent
orders. As a consequence each run represents a random walk through the set of
possIble errors, and therefore experiences random conditlOnmg at each stage.

2.2.9 Run SIzmg

In order to determme how many runs were suffICIent to obtam stable estImates of the
error probabIlitIes, It was deCIded to base the SIze on the probabIltty structure that
eXIsts InitIally smce all runs are m a common state dUring thIS stage. Assummg that
each executIon of the program has a fIxed probablhty p of faIlure, then the
probabllity that the fIrst fallure WIll occur on the 11th executIon IS expressable m
terms of the geometric dIstrIbutlOn:

P(I) = O_p)I-l p

For k mdependent runs, let 11' 12, ••• , Ik be the k values each expressmg the number of
tImes the program was executea m ItS InitIal state before faIlure occurred. Then the
maXImum hkehhood estImate for p IS

1\ k
p=LI

J
1\

It can be shown that the asymptotIc variance of p IS
2

Var (~) = p (~-p)

Therefore an asymptotIc 95% confIdence Interval on the maXImum hkehhood estI-
mator IS

If k IS chosen on the baSIS of the half length L of the resultmg confIdence mterval,
then smce . u;:-::-

L = 1.96 y_PfPl
k can be calculated from

10

k = 3.84p
2
0-p)

L2

If P < .05 and k = 50, then L < .014. SImIlarly If p < .01 and k = 50, then L < .0028.
Thus k = 50 was selected as suffIcIently dISCernIng.

2.2.10 Problem and Programmer as DesIgn Factors

To control for the effect that programmer and problem may have on the corre
sponding error structure of a program, a factorIal desIgn consistIng of two program
mers A and B, each programmIng the same three problems, labelled 1, 2 and 3, from
theIr specifIcations, formed the basIc experIment. Each of the SIX programs Al
through B3 thus formed were executed through 50 runs each of whIch conSIsted of at
least four stages. WIthIn tIme constraInts, the programmers desIgned, coded and
tested theIr programs USIng FORTRAN IV.

2.2.11 Data Base

The data base developed from thIS experIment conSIsted of a record, for each of the
SIX programmer-problem cOmbInatIOns, of the number of executIons untIl faIlure for
each stage, the Interfatlure tIme (In terms of both the number of Input cases to
faIlure and computer-resource umts (CRU's», and the number of the error causIng
faIlure. A number was assigned each new error as It was encountered. ThIS data base
then prOVIded complete knowledge of the error state of the program at each stage
and detaIled knowledge of the tIme to faIlure of the program condItIOned on each of
these states.

11

3.0 OPERATIONAL DESCRIPTION

3.1 GENERAL

In order to gather statIstIcs on software faIlure detectIOn/error correctIon, the
subject programs must be embedded m a software-test enVIronment (FIgure 3.1-1).
There IS a unique, but qUite sImilar enVIronment for each of the three problem
specifIcatIOns. In realIty, the subject programs are subprograms WhICh are called m
three separate programs: 1} test driver; 2) experiment driver; and 3) error IdentifIer.
The latter two programs are mdirectly lmked VIa the faIled-cases fIle -- the
experiment driver Writes all faIled cases to the file and the error IdentifIer reads
those faIled cases. These three overhead programs and the faIled-cases fIle are
dIscussed m the followmg sectIOns.

The experiment was run on two computer systems: 1} the Boemg IntellIgent Termmal
System (BITS); and 2) the DEC VAX/VMS System. BITS, a mIcrocomputer-based
system, was chosen for the fIrst problem because of fIxed rental and sole use by the
study. VAX/VMS, a VIrtual-memory mmicomputer-based system, was used because of
the need for more storage and faster executIon tIme. These systems and the support
software are desCribed m SectIon 3.3.

3.2 OVERHEAD PROGRAMS

3.2.1 Test Driver

The test driver IS the program WhICh determmes If the subject programs pass the
predefmed test cases to bring the subject program to state o. The prmcipal
components of the test driver are: 1) test-case data; 2) correct verSIOn; 3) subject
program; and 4) comparator to determme correctness. The macro flowchart IS shown
m FIgure 3.2.1-1.

3.2.2 Experiment Driver

The experiment driver IS the program WhICh executes the subject program usmg
randomly-generated data, and determmes correctness by executmg the correct
verSIon and comparmg the results. The prmcipal components of the experiment
driver are: 1} parameter mput; 2) mput-data generator; 3) correct verSlOn; 4) subject
program; 5) comparator and 6) results Writer. The macro flowchart of the
experiment driver IS gIven m Figure 3.2.2-1.

3.2.2.1 Input-Data Generator

Each of the three problem specifIcations contams descriptions of the Jomt distrIbu
tlOn of the mput-data Items. Random data from these distrIbutlOns are obtamed
usmg a standard lIbrary random number generator.

13

TEST

DRIVER

SUBJECT

PROGRAMS

14-

EXPERIMENT

DRIVER

SUB,JECT

PROGRAMS

'" r
'-...

.........

/
/

FAILED
CASES
FILE

Figure 3.1-1. Experiment Software Structure.

ERROR

IDENTIFIER

SUBJECT

PROGRAMS

-V1

INPUT
PARAMETERS

INPUT
TEST
CASE

TEST
DRIVER

EXECUTE
CORRECT
VERSION

EXECUTE
SUBJECT
PROGRAM

Figure 3.2.1-1. Test Driver Macro Flowchart.

COMPARE
AND WRITE
RESULTS

-(j\

INPUT
PARAMETERS

GENERATE
INPUT
DATA

GENERATE
RANDOM
NUMBERS

EXPERIMENT
DRIVER

EXECUTE
CORRECT
VERSION

EXECUTE
SUBJECT
PROGRAM

WRITE
INCORRECT

RESULTS
ELAPSED
TIME

Figure 3.2.2-1. Experiment Driver Macro Flowchart.

COMPARE
AND WRITE
RESULTS

3.2.2.2 Comparator

The comparator In the experiment dnver IS used to determine correctness of the
subject program. Sunply stated, the comparator IS program code to compare every
output-data Item of the subject program wIth the corresponding Item of the correct
verSIon. An error flag IS set when a dIfference In output IS noted.

3.2.2.3 Results Writer

The results Writer IS code In the experiment driver to record the following informa
tiOn: 1) Incorrect output as the result of a software fallure; 2) number of Input-data
cases run to software faIlure; 3) CRU's to the software fallure; and 4) falled Input
data case.

The Incorrect output helps to Identify the potentIal software error(s) causing the
fallure. The IdentifIcatiOn of errors and theIr assocIated error numbers In each run
requIred the careful matching of variOUS program states wIth the faded Input-data
cases. By runmng selected program states WItt- the falled cases and recording
successes, the error numbers can be accurately assIgned. MultIple errors can also be
IdentIfIed wIth thIS procedure, or equIvalently, computer program. The program,
called the error IdentifIer, IS desCribed In 3.2.3.

The recorded faded case IS actually the Imtlal seed of the random number generator
assocIated wIth the falled case. The volume of Written datd IS thus greatly reduced.
However, the price paId IS the executIon tIme requIred In the error IdentifIer to
regenerate the full Input data of the faded case.

These data are Written on the faded-cases fIle whIch IS permanent dIsk storage. ThIS
file IS then eaSIly referenced by the error IdentifIer program at a later time.

The faIled-case flle IS orgamzed by the subject program states that produced the
fallures. In other words, all the faded cases from a partIcular program state are
grouped together on the flle, wIth some header infOrmatIon IdentIfYing that group of
cases.

3.2.3 Error IdentifIer

The error IdentIfIer IS the program whIch executes any state of the subject program
USing the faded-cases fde. The structure of the error IdentifIer IS much hke the
experiment driver, In that they both use the correct verSiOn and a comparator to
determine success. The macro flowchart IS gIven In FIgure 3.2.3-1.

The IdentifIcatiOn of the software errors corresponding to all fallures of a partIcular
subject program state Involves multIple executiOns of the error IdentifIer USing the
program In other states. The follOWing steps constitute the runs of the experiment to
Identify errors.

1. Run the experiment driver with a subject program In a gIven state,
producmg a faded-cases fIle F.

2. Correct one software error E In the program In :.tate S, whIch YIelds the
program In state S.E.

17

....
00

INPUT
PARAMETERS

ERROR
IDENTIFIER

EXECUTE
CORRECT
VERSION

EXECUTE
SUBJECT
PROGRAM

Figure 3.2.3-1. Error Identifier Macro Flowchart.

COMPARE
AND WRITE
RESULTS

3. Run the error IdentifIer wIth S.E. and F.

4. Identlfy all successful cases wlth error E.

5. Repeat steps 2-4.

ThIS procedure WIll IdentIfy all known smgle errors whIch caused the fallures.
MultIple errors are Identtfled by correctmg two or more errors at a tlme m the
program m state S.

Imphclt m the above dlscusslOn IS what appears to be prevlous knowledge of all
errors. In practIce, the programmers were glven software fallures from Inltlal
executlOns of the expenment dnver. They then ldenttfled the assocIated errors and
made theIr correctlOns. In some cases no correctlons were made. These errors are
dIscussed m SectlOns 4.3.6, 4.4.6, and 4.5.6.

3.3 COMPUTER/LANGUAGE ENVIRONMENT

3.3.1 BITS System

BITS lS an mtegrated system of mtelhgent termmal hardware and software developed
by BCS. The hardware conSIsts of a Terak 8510A mIcrocomputer usmg the l6-bl t
LSI-II mIcroprocessor. Pnmary memory IS 56K bytes, and secondary memory
conSIsts of two elght-mch floppy dIsk dnves With a combmed capaCity of about 512K
bytes.

The software avatlable on BITS mcludes a ftle manager, text edItor, commUniCatlOns
capabIlity, together With Pascal, BASIC and FORTRAN compLIers. The FORTRAN
compller, utihzed m thIS study, closely conforms to Standard ANSI FORTRAN 77.

3.3.2 VAX/VMS System

V AX (VIrtual Address ExtenslOn) system together With VMS (Virtual Memory Opera
tion System), IS a hIgh-performance multi-programming system based on 32-blt
archItecture. Vlrutal memory features, plus dISk storage of over one glgabyte,
remove the storage restnctlOns for most appltcatlOns programs.

There IS a full SUIte of software avatlable on the V AX, mcludmg an operatmg system,
text editors and compLIers. The FORTRAN comptier contams all the features of
Standard ANSI FORTRAN 77.

19

4.0 EXPERIMENT DATA COLLECTION

1l.1 INTRODUCTION

ThIS chapter and the referenced appendIces present the data-collectIon results of the
experiment. Also mcluded IS a brief deSCriptIOn of the programmers' backgrounds.

There are three parallel sectIOns (4.3, 4.1l, and 4.5) corresponding to the three
problems of the experiment. Each of these sectIons together with corresponding
appendIces gives, In detaIl, background infOrmatIon on the problem specIfIcatIOns and
correct versIon, deSCriptIOns of test cases and the usage dIstributIOn for the
experiment runs.

A tabulatIOn of software errors is gIven for each subject program. The IdentIfIed
errors are categorized USing the categories In (10). These categories are gIven In

AppendIx A.

4.2 PROGRAMMER DESCRIPTIONS

Two sCIentIfIc programmers were used for all three problems. Programmer A
receIved a B.S. degree In Computer SCIence In 1979 and jomed BCS In June 1979 as a
programmer. HIS princIpal job has been to support and enhance a geometry package
used to desIgn Wing and body confIguratIOns. HIS emphaSIS m the fIeld of computer
SCIence IS structured software desIgn, development and languages, including
FORTRAN, Pascal, ALGOL, SNOBOL and COBOL.

Programmer B receIved a B.S. degree In Computer SCIence In 1975 and JOined BCS In
January 1976 as a programmer. He has worked on nuclear-waste engIneermg and
radIatIOn-mOnitoring problems, USing FORTRAN on a variety of machmes. Later
assIgnments have mvolved mtegration testmg on the AWACS program using JOVIAL
language, and converSIOn of a mIssIle-sImulatIOn program and graphIcs package from
an IBM machme to the V AX/VMS system.

4.3 PROBLEM 111

4.3.1 Background

TR W [10) conducted an extensIve study of software relIabIlIty m 1973 WhICh mcluded
an experiment sImIlar to that of the present study. Two experienced programmers
were gIven specIfIcatIOns for a mIssl1e-trackmg SImulatIOn problem. Then each
programrner desIgned, coded and tested hIS own verSIon usmg FORTRAN IV.

The experiment consIsted of many executIons of the resultmg programs, using a
predefined usage dIstributIOn. RelIabIlIty estImates were made from the percentage
of successful cases to the total number of cases run. However, there was no error
correctIOn process as that In this study.

The same problem specifIcatIOns, test cases and usage dIstributIon In the TRW study
were used m the present study. However, addItIOnal specIfIcatIOns, mcludmg mput
and output deSCriptIOns, were necessary to resolve certain ambIgUIties.

21

4.3.2 Specifications

In general, the specifications require geometric calculations mvolvmg an mput set of two-dimensional coordinates representing radar tracks. Fifteen such calculatlOns then became conditions to be logicaJJy combined to determme if a make-believe missile should be launched.

The complete specifications for problem 111 are presented m Appendix B. Sections 1.0 - 4.0 of Appendix B are from [10]. Sections 5.0 - 7.0 of Appendix B were added as part of the present study.

4.3.3 Test Cases

Three test cases were used to bring both subject programs Al and B1 to state O. AU three cases were chosen from (1 OJ. The test cases and the correspondmg correct output are presented m Appendix C.

4.3.4 Usage DistrIbutlOn

The foUowmg usage distributlOn (see 2.1.2) describes the mput data used for problem Ill.

4.3.4.1 Coordma tes

Figure 4.3.4.1-1 illustrates the distribution from which the two-dimensional coordInates simulatmg a radar track are drawn. Each mput case requires 5 such coordmates.

ApprOXimately 9596 of the time the two-dImensIOnal coordinates are drawn uniformly from area A, and 596 of the time from the combmed 4 subareas labeled B. Each coordmate is rounded to the nearest 0.1.

4.3.4.2 LCM and PUM Elements

120 elements of the Logical Connector Matrix (LCM) satisfying L such that i S j (where 1 is the row mdex and j the column mdex) were generated fl6m the following dlstr IbutIOns:

for 1 and J equal to 1,2,3,4,5,6,7,8,9,10,11 and is J, L . = 2
IJ

for aJJ other i and j where 1 S j, Pr t L. = 0 ~ = .78 IJ

Pr { L . = 1 ~ = .20 IJ

Pr { L Ij = 2 } = .02

the L for WhICh i ~ J were computed mternaJJy from the equation L = L .• IJ IJ Jl
FIfteen diagonal elements, P , of the Prelimmary Unlockmg Matnx (PUM) were generated by selecting 0 or 1, eifch with probability 0.5.

22

B

I I
I I

B

40 -,-

30 -i-

20 -i -

10 - -

I I A I I
I I I I

10 20

- ~

- -

--

- '-

P(A) = 95%, uniformly distributed within A
P(B) = 5%, uniformly distributed within B

Figure 4.3.4.1-1. Usage Distribution for Coordinates.

B

I J
I I

30 4 o

B

23

4.3.4.3 Parameters

The 15 Launch Interceptor Conditions (L1C) required the followmg parameters (lIsted
by the appropriate L1C):

1) 1 = 14.5

2) r = 7.1

3) €2 = 0

4) A = 50

5) M = 1; Q = 3
6) None

7) N = 4; € 1 = 15.0
(8-11) n l = n2 = n3 = n4 = 1; m 1 = m2 = m3 = m4 = 1

12) n6 = 5

13) L = 0

14) R = 0

15) E = 0

4.3.5 Correct VersIOn

Correctness of output was determmed by compan'lg the subject programs' output
with that from one program Written m the TRW study.

Program "MYRON" was written by a senior-level applIcatIOns programmer, as part of
the TRW proJect. The program consIsted of approxImately 298 lmes of non-comment
source code of FORTRAN IV.

After program MYRON passed the three test cases in Appendix C, 1000 randomly
generated mput cases from the usage distributIOn of SectIon 4.3.4 were executed wIth
program MYRON. Based on three software faIlures among these cases, the rehabIhty
of program MYRON was estImated to be 0.997.

As part of the present study, the software error causmg the three faIlures above was
corrected. The resultmg program was then assumed to be correct. However, m the
course of the experiment two addItIonal software errors m MYRON were corrected.
After the correctIOns were made, the experiment was rerun wIth what IS now
assumed the correct verSIOn.

4.3.6 Error DeSCriptions

In the course of the experiment for problem Ill, subject program Al had 9 dIfferent
software fallures detected and the correspondmg errors corrected. An addItIOnal
software error, 'mamfested m small maccuraCles between Al and the correct verSIon,
was left uncorrected. Subject program B1 had 9 different software errors corrected.
All errors are discussed m the followmg sectIOns.

24

4.3.6.1 Subject Program Al

ERROR
NUMBER

1

2

3

5

6

7

8

9

10

CLASSIFICA TION
CODE

A600

A600

A600

B600

A600

B400

B400

A600

A600

A600

DESCRIPTION

An Incorrect algon thm was used for
coverage of three coordInates by a
Circle of given radius.

An Incorrect equatiOn was used to
calculate the area of the tnangle.

The use of arccos to determIne lInear
ity of three POInts was Inaccurate.

An Incorrect companson was used
when determInIng if the difference
between abscissa of adjacent POInts
were negative.

There was a divisiOn by zero when
coordInates were identical In the cal
cula tiOn of the area of the tnangle
defIned by three coordInates.

There was an accuracy faIlure In an
algonthm for coverage of three co
ordInates by a Circle of a given radius
when two coordInates were identical.

This error is identical to 116 except it
is located In a separate, but Indepen
dent section of the program.

The tolerance Introduced for error 113
had to be made larger. This is an
example of the npple effect, SectiOn
5.7.

The tolerance Introduced for error 116
had to be made larger. (Ripple effect.)

The tolerance Introduced for error 118
was too large. No correction was
made, because a new algonthm was
probably reqUired, not Just a simple
tolerance change. (Ripple effect.)

25

4.3.6.2 Subject Program B1

ERROR
NUMBER

1

2

3

4

5

6

7

8

9

CLASSIFICA TION
CODE

A400
0100*

F300*

A600*

A600

A900

B400

A600

A600
0100

A900

DESCRIPTION

ConverSIOn to radIans of an argument
for arccos was redundant. In addItIon,
pI was not inItIalIzed everywhere.

The squaring of a negatIve quantIty
was done USing a power-serIes expan
SIOn, not Just squaring the quantIty,
I.e., W**2.0 was used Instead of W**2
or w*w.

In the algorIthm for coverage of three
coordinates by a CIrcle of a gIven
radIUS, a term was left out of an
equatIOn.

There was a dIvISIon by zero, when
adjacent coordinates were the same.

The argument for arccos was greater
than 1.0 when three coordinates
formed a line.

An exact comparIson of floating-point
varIables was used, Instead of allOWing
a tolerance.

An Incorrect algOrIthm was used for
LIC(7) when the fIrst and last coordI
nates were IdentIcal.

The area of the trIangle defined by
three coordinates was not set to zero
when the coordinates formed a line.

When the area of the trIangle defined
by three coordinates was exactly equal
to the test CrIterIa (parameter A), a
value slIghtly greater than A was cal
culated.

* HIdden errors, Incorrectly IdentIfIed as detectable.

26

4.3.7 Run Results

4.3.7.1 Subject Program Al

Flgure 4.3.7.1-1 presents the results of the expenment for subject program At. Thls
flgure, as well as those for the remammg programs (4.3.7.2-1, 4.4.7.1-1, 4.4.7.2-1,
4.5.7.1-1 and 4.5.7.2-1), traces the 50 runs for the [-"artlcular program. The figure IS
composed of levels, or stages, of program states, where each stage lS defmed by the
number of errors detected. Begmnmg wlth state 0, the occurnng program states and
theIr frequencIes are shown for the 50 runs. The enclrcled number(s) represent a
program state, m partlcular, the error numbers of the corrected errors. For example,
12 lS a glven subject program wlth errors 111 and 112 corrected. A subject program at
state 0 lS ldentIfled wlth 0 followmg the program name alld dash, e.g., A1-0. The
dIrected lme segments represent the random walk of the subject program gomg from
one state to another, l.e., havmg one or more errors corrected. The number to the
left of thIS lme segment lS the number of runs expenencmg that partlcular change m
state.

For example, using FIgure 4.3.7.1-1 and begmnIng wIth state 0 (AI-0), 40 of the runs
had error 111, 8 had error 112 and 2 had multlple errors, 111 and 112, occurrmg wlth the
same mput cases. As shown In the table to the nght of the fIgure, these 50 runs
requlred a total of 51 mput cases for the fIrst error(s) to occur.

From these states (48 at stage 1, 2 at stage 2), the runs continue to another stage.
Note that not all 50 runs contmue through all stages, because some errors detected
are not corrected. In general, the number of Input cases per run requlred to detect
errors mcreases as the stage mcreases.

4.3.7.2 Subject Program Bl

Flgure 4.3.7.2-1 lllustrates the results of the software failure detectIon/error
correctlOn process.

4.4 PROBLEM 112

4.4.1 Background

The Boemg Intelligent Terminal System (BITS) mcludes a lIbrary of general-purpose
sCIentIflc subroutmes. Included m the lIbrary are routmes for spline-functlOn
mterpolatlOn. These routines have recelved extenslve testlng and subsequent use at
Boemg for over ten years. Functlons of several of these routmes were used for
specIflcatlOns of problem 112 and the lIbrary routmes themselves became the basIs of
the correct verSIon (see 4.4.5).

27

IV
00

Figure 4.3.7.1-1. Trace of Runs for Subject Program AI.

ERRORS
DETECTED
(STAGE)

1

2

3

) 4

5

6

TOTAL
RUNS CASES

50 51

50 466

50 18~835

43 18~316

19 17~586

8 2.,480

N
\D

16

ERRORS
DETECTED
(STAGE)

1

2

3

4

5

6

7

Figure 4.3.7.2-1. Trace of Rms for Subject Program Bl.

TOTAL
RUNS CASES

50 328

50 107

50 89

50 5)484

50 14)355
-

46 81)595

1 0

-

4.4.2 SpecificatlOns

Specifications for problem 112 were developed as part of the present study. In
general, four subroutmes were requIred: (1) routme to calculate coefficIents of the
spline passmg through the input coordmates; (2) rout me to calculate coeffIcIents
when the splme polynomIals are expressed m an alternate form; (3) routme to
Interpolate at an arbItrary pOint USing the splme coefficIents, and (4) a routine to
Integrate along the splme between arbItrary endpOints.

The complete specIficatIons for problem 112 are gIven In AppendIX D.

4.4.3 Test Case

One test case was used to bring both subject programs A2 and B2 to state O. The test
case and the correspondmg correct output are presented In AppendIX E.

4.4.4 Usage DIstnbutlOn

Three coordinates are drawn randomly from the dlstnbutlOn shown m FIgure
4.3.4.1-1. Each coordinate IS rounded to the nearest 0.1.

Each Input data case also requires three X-coordinates - one for the pOint of
interpolatIon and two to define the lImIts of integratIon. These pOints are drawn
from the followmg dIstnbutlOn:

B A B

[] [] []
-40 -30 -20 -10 0 10 20 30 40

P(A) = 95%, Uniformly distnbuted WIthin A
P(B) = 5%, uniformly distributed within B

Each of these X-coordinates IS rounded to the nearest 0.1.

4.4.5 Correct VerslOn

The correct results for three of the four requIred routines were those from the
library routmes based on WhICh problem 112 was selected (see 4.4.1). The so-called
correct results for the routine performmg mtegratlOn were computed m a routme
wntten specifically for the proJect. ThIS latter routine receIved extenSIve peer
reVIew and testmg.

4.4.6 Error Descnptions

For problem 112, subject program A2 had fIve different software faIlures detected
WIth four errors corrected. The fifth software faIlure was when a subject program
output Item was not WIthin 1 % relatIve error of the correspondmg correct-verSlOn
output Item. In this case, there was no correctlOn made to the software.

30

Subject program B2 had three different software faIlures, with two fallures resultmg
m correspondmg software-error corrections. One software fallure was sImilar to the
relative-error fallure mentIOned above. As with subject program A2, there was also
no correctIOn made for thiS fallure In subject program B2.

4.4.6.1 Subject Program A2

ERROR
NUMBER

1

2

3

5

CLASSIFICA TION
CODE

B400
B600
D800

A600

A600

A600

A600

4.4.6.2 Subject Program B2

ERROR
NUMBER

1

2

CLASSIFICA TION
CODE

A800

A600

A600

DESCRIPTION

An infinite loop occurred because a
sWitch of variables was not made m a
sort algorithm.

The upper 11m!t of the range of inte
gratIOn was mcorrectly calculated
when both 11mlts were wIthIn the
range of one splIne.

The mtegral was Incorrect when the
upper hmit equaled the largest X
coordmate defInmg the sphnes.

The mterpolated value was Incorrect
when the pomt for mterpolatlOn
equaled the largest X-coordinate de
fIning the splInes.

There was an accuracy fallure In some
output Item (relatIve error> 1 %).

DESCRIPTION

The mtegral was not calculated when
the lower 11mlt was greater than the
upper 1Im!t.

The mtegral was Incorrect when the
upper 11mlt equaled the largest X
coordinate defInIng the sp11nes.

There was an accuracy fallure in some
output Item (relatIve error> 1 %).

31

32

4.4.7 Run Results

4.4.7.1 Subject Program A2

FIgure 4.4.7.1-1 presents the results of the software faIlure detectIon/error correc
tIOn process.

4.4.7.2 Subject Program B2

FIgure 4.4.7.2-1 Illustrates the results of the software faIlure detectIon/error
correctIon process.

4.5 PROBLEM 113

4.5.1 Background

The use of problem 113 m the expenment was motIvated by eXIstmg routmes used for
earth-satellIte calculatIOns. Such calculatIOns, mvolvmg analytIC geometry and
vector analYSIS, determme dIstances, aZImuths and mtersections on the earth.

4.5.2 SpecifIcatIons

SpecifIcatIOns for problem 113 were developed for the project by a senior-level
computer SCIentIst who has had expenence WIth the partIcular applIcatIOn stated
above. The complete specifIcatIons are presented m AppendIX F.

4.5.3 Test Case

One test case was used to brmg both subject programs A3 and B3 to state O. The test
case and the correspondmg correct output are presented in AppendIX G.

4.5.4 Usage DIstnbutIOn

As stated m the specifIcatIOns for problem 113 (AppendIX F), three latItude-longItude
coordmates on the earth are reqUIred inputs, as well as an angle between 00 and 1800.
The dIstnbutIOn for the latitude-longItude coordmates was Uniform over the sphere,
but rounded to the nearest 50 m both latItude and longItude. The dIstnbution for the
angle was Uniform between 00 and 1800 WIth no roundmg.

4.5.5 Correct VerSIOn

The eXIsting routines mentioned in Section 4.5.1 became the nucleus of the "correct
verSIOn" program WhICh was deSIgned, coded and tested for the study by the
senior-level computer SCIentIst who developed the specifIcatIOns. HIS verSIOn
receIved extenSIve peer reVIew plus many tests deSIgned to SImulate the usage
dIstnbutIOn to be used m the experiment.

4.5.6 Error Descnptions

For problem 113, subject program A3 had seven dIfferent software faIlures, for whIch
fIve dIstmct software errors were corrected. One faIlure for WhICh no error was
corrected mvolved the wrong number of mtersectIOns found (see Sectlon 1.0,

\.oJ
\.oJ

,.-, ' ...

~

ERRORS
D

1

2

3

4

5
.-

Figure 4.4.7.1-1. Trace of Runs for Subject Program A2.

TOTAL
RUNS CASES

50 62

50 178

50 1.,323

49 2 .. 567

22 162 .. 142
- --

\.0.)

-+:-

ERRORS
DETECTED
(STAGE) RUNS

1 50

2 50

3 28

Figure 4.4.7.2-1. Trace of Runs for Subject Program B2.

TOTAL
CASES

345

1)903

259)110

Appendix F). The second such failure occurred when the relative error of an output
Item from A3 compared to the correct verSIOn was greater than 1%. Time and
budget constraints precluded software error correctIOns for these two failures.

Similarly, subject program B3 had ten different software failures for which SIX
software errors were corrected. Two of the remaining software failures which did
not lead to correctIOns correspond to sunilar failures for program A3 above, With an
addl tIOnal two failures involVing a divIsion by zero and an incorrect aZImuth.

4.5.6.1 Subject Program A3

ERROR
NUMBER

1

2

3

4

5

6

7

CLASSIFICA TION
CODE

A600

A800

A900

A600

A600

A600

A600

4.5.6.2 Subject Program B3

ERROR
NUMBER

1

2

CLASSIFICA TION
CODE

A800

A600

DESCRIPTION

The determinatIOn of the sign of the
aZimuth was Incorrect.

There were Unlnl tlahzed variables
when cross-product calculatIOns were
bypassed under certain conditIOns.

The argument for arccos was greater
than 1.0 or less than -1.0.

The algorithm to determine intersec
tIOns calculated the wrong pomt of
mtersectIOn.

The aZimuth was mcorrectly calcula
ted when the path went through either
the north or south pole.

The algOrithm for calculating inter
sectIOns failed to determme the cor
rect number of intersections.

There was an accuracy failure in some
output Item (relative error> 1 %).

DESCRIPTION

The determination of the sign of the
aZimuth was not done.

The algOrIthm to determine the order
of the two mtersectlon pomts was
mcorrect.

35

36

ERROR
NUMBER

3

4

5

6

7

8

9

10

4.5.7 Run Results

CLASSIFICA TION
CODE

A900

A600

A900

A600

A600

A600

A600

A600

4.5.7.1 Subject Program A3

DESCRIPTION

The argument for arccos was greater
than 1.0 or less than -1.0.

The algorithm to determme mtersec
tlOns faIled to fmd a correct mtersec
tlOn pomt.

The argument for arcsm and/or arccos
was greater than 1.0 or less than -1.0.

The sign of the calculated aZimuth
was mcorrect, when the magmtude of
the aZimuth is pi.

DetermmatlOr. of cohneanty of two
coordmates and the center of the
earth was mcorrect.

There was an accuracy faIlure In some
output item (relative error> 1 %).

There was divisIOn by zero when de
termmmg intersections.

The azimuth was mcorrectly calcula
ted as 0, when the correct value was
pi.

The results of the software fal1ure detection/error correctlOn process are shown m Figure 4.5.7.1-1.

4.5.7.2 Subject Program B3

The results of the faIlure detectlOn/error correction process are Illustrated m Figure 4.5.7.2-1.

\,oJ
""-l

8

Figure 4.5.7.1-1. Trace of Runs for Subject Program A3.

ERRORS
DETECTED
(STAGE)

1

2

3

4

5

6

TOTAL
RUNS CASES

50 137

50 482

49 4,,875

35 7,,690

17 7,,050

4 3}220

\.J.)

00

1

Figure 4.5.7.2-1. Trace of Runs for Subject Program B3.

ERRORS
DETECTED

1

2

3

"

5

6

-

TOTAL
RUNS CASES

50 201

50 899

50 1,277

q2 l,Q8Q

32 1,226

2 0

~-~

5.0 DA TA ANALYSIS

The results con tamed m the followmg sectIons depend on the structure of the
experIment performed. In particular, they reflect the specific features of the usage
distrIbutiOns employed, the detectors imposed to defme the errors, and the samphng
techniques utIlized durmg experImentatiOn.

The data base obtamed from thIS experIment and on which the followmg analyses are
conducted is presented In Appendices H-M. For each program the listmg conSists of
run number and for each stage the number of executIons to fallure, the number of the
error causmg failure and the mterfatlure tIme.

One dIfficulty With thIS data should be noted. At the begmnIng of the experIment,
the concept of how an error should be strIctly defmed was not completely understood.
After some experIence it was finally established that only those program errors
causmg the speCIfIC program fallure would be corrected between states. In addItion,
It was also established that errors would be separately defmed, i.e., labeled
separately, only If for some mput cases one would occur without the other. In other
words two errors would be separately labeled If the mtersectiOn of the two error sets
was strIctly con tamed In, and not equal to, theIr Union. Thus, errors that alway,>
occur together are defmed as a smgle error and are removed together.

Unfortunately, the reahzation of thiS dIfficulty dId not occur early enough to prevent
a slight degradation of the data base. SpecifIcally the dIstortIon occurred for errors
112 and 113 of subject program B 1, the fIrst program to be studied. At the tlme of the
debuggmg of error Ill, programmer B was allowed to fix another lme of code. ThIS
lme of code had two intrigumg propertles. FIrst of all, because of the way the
computer was InitIalized and the speciflcations of the problem, thls lme of code,
though mcorrect, would not have resulted m a computatiOnal error, and thus falls In
the class of hldden errors WIth respect to the set of error detectors utihzed m thIS
problem. Secondly, correctmg thIS lme of code permitted entry mto a sectIon of the
subroutme contaInmg errors 112 and 113. The code in thIS part of the subroutme,
however, was not essentIal to the solutIon of the problem as specifIed, and as long as
It was bypassed made no dIfference. Thus, errors 112 and 113 were hIdden by the
eXIstence of the initIal hidden error.

5.1 TESTING THE HYPOTHESIS OF EXPONENTIAL INTERFAILURE TIME

One of the major assumptiOns of most rehabihty models IS that the conditiOnal
distrIbutlOn of mterfallure tIme gIven the number of errors corrected IS exponentIally
distrIbuted. When all errors are identically distrIbuted or if the condItiOning IS on
state rather than stage, thIS assumptIon appears conSIstent WIth the error detectIon
process as commonly understood. If measured executIon tIme, however, is hIghly
truncated or wldely varIes wlth Input, time may have to be measured In numbers of
executIons to fallure to observe exponential behaVIor.

When errors are not Identically dIstrIbuted, Interfallure tIme, condItiOned on the
number of errors corrected, IS not necessarIly exponentially distributed. In fact, If
state condItIOning produces exponentially distnbuted interarrIval tImes, then stage
conditIonmg results m tImes WhICh are dIstrIbuted accordmg to a mIxture of
exponentIals haVing one component for each state contrIbutmg to the stage. Thus,

39

for example, If there are three fallure modes for a gIven program and If t IS the
mterfallure tune to the second failure gIVen that one error has been detected and
corrected, then t has densIty:

f(t) = {AI (A2 +A3) exp [-(A2 +A3) tJ +A2 (AI + A3)·

exp [-(AI +A 3)tJ +A3 (A 1 +A 2)·

exp [-(AI + A2) tJ }/(A1 + A2 + A3)

where A IS the faIlure rate of the 1 th error source.
1

In general, a mIxture of exponentIals IS a monotone decreaSing functIon and IS
dIffIcult to dlstmgulsh from the exponentIal Itself. Its hazard functIOn IS a
decreasmg functIon. Table 5.1-1 compares values of the functIOn f(t), above, when
Al = 5, A2 = 10,.\~ = 15 wIth values of a comparable exponentIal functIon having the
same fIrSt momenf.

Some statIstIcal goodness-of-flt tests have been performed on the data to establish If
the exponentIal assumptIon IS preferable against varIOUS alternatIve classes. Unfor
tunately none of these tests are sensItIve enough to dlstmgUIsh between an exponen
tIal and an exponentIal mIxture. The tests performed were variations of the
Kolmogoroff-Smlrnov goodness-of-fit test developed specifIcally for the exponentIal
WIth unknown parameter by FmkelsteIn and Schafer [11] and by Lllhefors [12]. Both
tests dre deSCribed m Mann, Schafer and SIngpurwalla [131.

Table 5.1-2 gIves the results of the test. In all cases, regardless of the data type, the
exponentIal assumptIOn IS preferable to the alternatives to WhICh these tests are
sensitIve. It does appear, however, that when few errors have been corrected In the
early program stages thIS may not be the case due to the truncatIon effects of
executIon tIme.

Proschan's test for DFR dIstributIOns, Barlow and Proschan [14], could also be used In
thIS context. ThIS test appears to be partIcularly powerful in sensmg differences
coming from mIxtures of exponentIal dIstributions. To date the computatIons m thIS
test have not been completed.

For the problems conSIdered m thIS experiment, constant executIOn tIme IS a
reasonable assumptIon. For problems demonstratmg WIdely varying executIon tImes
or when there are SIzable truncatIon effects, the eqUivalency of tune and number of
program executIons may not hold.

Kalbfleish and PrentIce [15] pomt out that If a data set IS exponentIal, the log of the
surVIvor functIon estImate plotted agamst t should apprOXImate a st! alght lIne
through the Origin. The surVIvor functIOn in the case of noncensored data IS defined
by

40

TABLE 5.1-1
COMPARISON OF EXPONENTIAL-MIXTURE DENSITY WITH EXPONENTIAL DENSITY

N=3

Al = 5, A2 = 10, A3 = 15

Exponential Exponentlal
t Mixture (Same Mean)

0 18.33 17.65

.01 15.16 14.79

.02 12.55 12.40

.03 10.41 10.39

.04 8.64 8.71

.05 7.19 7.30

.07 4.99 5.13

.10 2.92 3.02

.15 1.22 1.25

.2 .52 .52

.3 .10 .09

41

42

Subject
Program

Al

Al

Al

Bl

B3

Subject
Program

Al

TABLE 5.1-2
LlLLlEFORS K-S TEST STATISTIC

FOR THE EXPONENTIAL DISTRIBUTION

Stage

2

3

4

4

4

3

II-Of-Input-Cases Based

StatIstIc
(Max 6)

.139

.089

• 101

• 0602

. 0641

ExecutlOn-TIme Based

StatIstIc
(Max 6)

.0892

d.f.

50

50

42

50

36

d.f.

50

SIgnifICanCe
(a = .05)

Not Sig.

Not Sig •

Not Sig •

Not Sig •

Not Sig.

SIgnifICanCe
(a = .05)

Not Sig.

Figure 5.1-1 plots these quantities for two different stages and problems. There
appears to be some deviatiOns from the exponential m the tall. Whether this is due to
real effects commg from a non-constant hazard function or random effects due to
the variation In the tatlis not known.

5.2 UNEQUAL ERROR PROBABILITY HYPOTHESIS

One of the primary concerns of this research is to determine if errors occur with
unequal probabiltties within a program. Estimates of these errors by number are
given m Table 5.2-1 for all six subject programs. The estimates are based on lookmg
at each run not as a series of stages but as a contmuous unmterrupted run until the
error of mterest occurs. The number of executions unttl the error is mamfested is
distnbuted as the geometric distnbution. The same is true for all other errors in the
program. Thus the mdividual error estimates are based on the same estimator as that
discussed m SectiOn 2.2.9.

To compare two error estimates from the same run and statistically test for equahty
the followmg procedure was adopted. The numbers of correct cases to occurrence of
each of the errors were subtracted run by run obtaining a set of k differences. It was
then assumed that the mean of these differences was approximately normally
distnbuted With mean zero if the errors are identically distributed. A t statistic was
then used to evaluate If the observed mean difference was sigmficantly different
from zero, based on the observed standard deViatiOn. For every program there were
at least two errors which mamfested a sigmficant difference. Indeed by looking at
the magmtude of the range of the error estimates, this hypotheSiS appears to be
extremely well substantiated. In fact, it seems very unlikely that errors are ever
identically distn~uted across an entire program error set.

5.3 STATE PROBABILITY ESTIMATES

Given that the above hypotheSiS is true, it is of great interest to measure itS impact
on the observed error structure of a program in a vanety of Situations. Table 5.3-1
gIves estimates of the stage probablltties fo1heach of the SIX programs of thiS
expenment. The probabiltty gIven for the i stage can be mterpreted as the
condItional probablhty that the program will fall m a smgle-execution gIven that 1-1
errors have been corrected. ThiS statement presumes then that the fIrst stage is
based on a program m its initial state as defmed by the static detectors and that thiS
IS the state of the program with all of ItS errors intact.

FIgure 5.3-1 IS a plot of the absolute value of the logarithm of the error probabihtles
versus an approximate measure of the number of errors corrected at that stage. ThiS
graph presents the fIrst expenmental measure of a program's behaViOr through tIme,
under repeated conditions, takmg into account both the probabIlities of the errors m
the error set and their random order of observation. Several features of thiS graph
are notable.

43

PROGRAM AI - 3 z 3rd Error
0
I-
U
Z
:J
IJ..
((2 0
>
>
((
:J
en -Z
...J

o 2000 4000 6000 8000 10,000 12,000 14,000 16,000
TIME (CRU's) TO FAILURE

4--------------P-----~----~~----~----~~----~----~

PROGRAM B3 - 3
Z 4th Error 0
I-
U
Z
:J
IJ..
((2
0
~
>
((
:J
en -Z
...J

o 100 300 500 600 700 800

PROGRAM EXECUTIONS TO FAILURE

Figure 5.1-1. Survivor Function vs. t for Subject Programs A1 and B3.
44

TABLE 5.2-1
SPECIFIC ERROR PROBABILITIES - RANKED ESTIMATES

Probe of Probe of
Error Occurrence Per Error Occurrence Per

Program No. Program Execution Program No. Program Execution

Al 1 8.20xl0- 1 Bl 1 1.52xl0- 1

2 9.63xl0-2 2 1.07xl0- 1

4 1.22xl0-3 3 1.02x10- 1

3 8.17xl0-4 4 6.89xl0-3

5 4.43x10-4 5 2.41x10- 3

6 4.12xl0-4 6 2.46x10-4

8 2.49x10-4 7 1.18xl0-4

10 1.15xl0-4 8 1.18xl0-4

7 1.92x10-5

9 1.92xl0-5

A2 1 7.83x10- 1 B2 1 1.31xl0- 1

2 1.87x10- 1 2 2.26x10- 2

3 1.72x10-2 3 1.03xl0-4

4 1.66x10-2

5 1.44x10-4

A3 1 2.37xl0- 1 B3 1 3.29xl0- 1

2 1.78xl0-2 2 8.13xlO-2

6 1.16xl0-2 5 4.55x10-3

5 1.03xl0-2 7 1.75xl0-3

7 4.08x10-3 4 1.53x10-3

10 3.15x10-3 6 3.84x10-4

3 2.51x10-3 3 3.08x10-4

4 2.37x10- 3

8 1.38xl0-3

9 1.97xl0-4

45

TABLE 5.3-1
ESTIMA TED STAGE PROBABILITIES

PROB.OF
ERROR PER

PROGRAM STAGE EXECUTION

Al 1 .9803
2 .1068
3 .002602
4 .002104
5 .001176
6 .0007659

Bl 1 .1524
2 .4673
3 .4098
4 .009117
5 .003483
6 .0005359

A2 1 .8065
2 .2632
3 .03759
4 .01909
5 .0001374

B2 1 .1449
2 .02625
3 .0001033

A3 1 .2488
2 .05376
3 .03524
4 .02691
5 .02302

B3 1 .3650
2 .1037
3 .01021
4 .004681
5 .002411

46

10

9

7

6 --->-
!::
;::::!
al
«I:
al
0 ex

5 c..

UJ c.o
«I:
l-
V!

z:
...J

4

3

z

1

Figure 5.3-1.

o

x Al
Ci) Bl
6 A2
• B2
.. A3
• B3

1 2 3 4 5
NUMBER OF ERRORS CORRECTED

Estlmated Error Rate as a FLD1ction of Errors Corrected,
Using Original Data.

47

First of all, although controls were imposed on the expenment to msure as much
commonality as poss1ble m the definition of the imtial program stage, th1S was an a
pnor! def1mtlOn. In fact what seems more des1rable 1S a defmit10n of the first stage
that may be data dependent but that causes error probab1ht1es across all programs to
cluster. This 1S eqUivalent to defmmg the initial stage by a program feature that
imphes a certain state of probabilistic commonality. High error probab1ht1es 1mply
that a program 1S not well checked out. Check out is also very difficult to control in
as much as programmmg t1me and programmer attent10n interact at th1S end of the
scale with error discovery. Therefore, since highly probable errors are not mteres
ting m forecasting software reliab1lity, a redefinition of the imt1al program state in
terms of a minimum p level m1ght be potent1ally useful. This level was chosen to be
In p= -1.0 or p=.37. F1gure 5.3-2 is a replot of the P5l.ta in 5.3-1 w1th this defm1t1on
of zero on the horizontal scale. The data is nicely compressed at zero w1th small
range md1catmg some commonality. The usefulness of this defimtion is further
explored m the next sectlOn.

One of the most striking characteristics of the data in F1gures 5.3-1 and 5.3-2
regardless of the question of origin is the degree of hnearity in each of the graphs.
Th1s suggests the model for the basic reliability structure behmd these programs that
is developed m the following section. In these graphs there is also a hint of a
connectlOn between the probability structure and the programmer as well as between
the structure and the problem. The modeling effort referred to above enables these
1deas to be subjected to statistical evaluatlOn to some degree, and it also prov1des a
framework m Wh1Ch to test program attributes that may be ind1cators of unrel1a
b1hty.

Another pomt about these graphs worth noting but of seeming little value to the
current data analys1s 1S the very low probabihties observed in what appears to be the
early stages of programs A2 and B2. These two errors are both of the same type and
both reflect a fallure of the program to compute with the accuracy requ1red by the
problem specificatlOns. It 1S not surprising then that such errors have Slm1lar
probabllitles m both programs.

5.4 RANDOM INFLUENCES ON THE STAGE PROBABILITIES

The randomness in the estimates of the stage probabllities has two sources. One
source is due to the natural sampl1ng variation in any exponentially sampled variable
(or nearly exponential as in this case). This can be extensive for the exponentlal
because the standard deviation equals the mean, and as the rate decreases it behaves
more and more as a uniformly-dlstributed variable over an increasing range. The
second source depends on the fact that the order of error detectlon can be random.

Figures 4.3.7.1-1 and 2, 4.4.7.1-1 and 2, and 4.5.7.1-1 and 2 have already demonstra
ted that program fallures follow a random walk through the error space. The walk
forms a pure death Markov process smce the next error state of a program depends
only on the transitlon probabihtles and on those errors that have been corrected pnor
to execution and not on the time or order of correctlOn. The frequencles of
part1cular paths can be used to determine the1r transition probabllit1es. Most of the
programs wntten for th1S experiment demonstrated a wlde variety of walk behavlor.
Only for program B2 has the walk been concentrated primarily along a smgle path.

48

10

9

8

7

6
>-
I-...
...J ...
a:l
cC
a:l
0
a::

5 Q..

.....
<!l
cC
l-
V)

:z
...J

4

3

2

1

Figure 5.3-2.

o I 2 3 4
NUMBER OF ERRORS CORRECTED

)(Al
\!) BI
t:. A2
• B2
.. A3
• B3

5

Estimated Error Rate as a FlUlction of Errors Corrected,
Using Modified-origin Data.

49

To evaluate the impact of these sources of randomness on the p estimates (which m
turn are proportional to the fallure rates when executlOn tllne is constant),
histograms of the mdividual run estimates of p are given m Figures 5.4-1 and 5.4-2
for two of the programs. The sample mean and standard deviations are also given for
each histogram m order to provide measures of the randomness m the fallure rate
estimates based on a smgle observation. Smce smgle-pomt estimators are the
current practice m traditlOnal software rehabih ty estimation, these histograms
illustrate that the error m such observations can be considerable.

5.5 PROPOSED MODEL FOR SOFTWARE RELIABILITY BASED ON COX'S PRO
POR TIONAL HAZARDS FAILURE MODEL

Based on the eVidence of Section 5.1, it can now be assumed that mterfailure time is
nearly exponentially distnbuted With rate proportlOnal to p. In additlOn, the eVidence
m Figures 5.3-1 and 5.3-2 suggests that log p is nearly 1m ear With respect to stage.
A model that mcorporates both of these ideas is explored m Kalbfleisch and
Prentice [15] based on a model ongmally developed by Cox [16]. The model, called
the proportlOnal hazards model, specifies a hazard function of the form

A (t;z) = A(t)ez/1

where A(t) is the base lme hazard function that mayor may not be time dependent
and where z is a vector of covanates or factors. Thus by providmg multiplicative
shocks to the hazard function the vector z can alter the rate at which an mdividual
program proceeds along the time aXiS.

In the context of software rehability it is antiCipated that z as a mmimum should
conSist of a co van ate representmg the stage level, i.e., the number of corrected
errors. In additlOn, the vector could mclude other covanates representmg phYSical
features of the program as well as the experimental test factors such as the problem
and programmer factors. New covanates can be tested for their predictmg ability as
the model also provides a framework m which to statistically evaluate potential new
explanatory covanates.

Smce withm a stage it has been demonstrated that the hazard rate is nearly constant,
thiS implies that the model for software is much simpler than the model explored by
Cox as A(t) must be constant. Under these Circumstances then, the distnbution of
withm- stage hfe length reduces to the exponential

f(t;z) = A ez/1 exp(- Aez /1 t)

A program has been developed that provides maximum hkelihood estimates for A and
/1 based on the Newton-Raphson optimizatlOn techmque apphed to thiS problem
outlined m [15]. Two models have been explored using thiS program. Both are based
0th an expanslOn 0th the exponent m the hazard function m the followmg terms for the
i problem and j programmer

50

() iJ = log A iJ + z/1 iJ

=J1+Ci. +/1 +Y.k
i J iJ

\.II

o

.1

.2

.3

.4

.5

.6

.7

.8

.9

1.0

1 ERROR CORRECTED
10 .

......

·

•

•

•

n = 50

Figure 5.4-1.

PROGRAM Al

NO. OF OCCURRENCES

2 ERRORS CORRECTED
o ; 1p

3 ERRORS CORRECTED
10 o I .

.002

.004

.006

.008

.01

• 02

.03

• 04

.05

.06

• 07

.14

.15

.002

-----~'.004

x = .0109
s = .1023

" P = .0026
n = 49

.006' r--

• 008,. r-

.01 .. '--

.02 .. r--

.03·

.04

..

.11 of-

.12 ~ x = .0083
s = .0179

" P = .0025
n = 42

4 ERRORS CORRECTED
10

o ~ •

.001 • r--

.002 •

.003 •

.004 •

.005 •

.006

.007 +-

.008
---+------

.01 •

• 02 J
.14

. 15 -t-J x = .0099
s = .0316
A
P = .0012
n = 20

Histograms of Stage Probability Estimates for Subject Program Al
as a Function of the Number of Errors Corrected.

o ERRORS CORRECTED
10

PROGRAM Bl
NO. OF OCCURRENCES

1 ERROR CORRECTED
10 20

O~----~~- ~----~----~----

.125

.250

. 375.,-.--....

• 500 't------'I
.625~-.....

• 750

.875..---..

1.0-+----' I
x = .41
5 = .72
1\

.153 p =
n = 50

3 ERRORS CORRECTED
lD o r-----------

.00033

.00066

.001

.005

.0lD

.025

.040

.055

.070

.085

.10
1. 00 +-----'

x = .04
5 = .08
1\
P = .00912
n = 50

x = .68
5 = .33
1\
P = .467
n = 50

4 ERRORS CORRECTED
10

x = .02
5 = .03
1\
P = .00348
n = 50

2 ERRORS CORRECTED
19

l
I

I
x = .56
5 = .35
1\
P ::I .326
n ::I 29

5 ERRORS CORRECTED
10

x = .002
5 = .003
1\
P = .000539
n = 44

Figure 5.4-2. Histograms of Stage Probability Estimates for Subject Program Bl
as a Function of the Number of Errors Corrected.

52

where

a 1 = problem factor, 1=1,2,3

{3 J = programmer factor, J=I,2

y IJ = program/programmer dependent slope

k = number of errors corrected, k=O, 1 ,2, •••

and

Jl. + a + {3 = 10itlal stage-one faIlure rate and background faIlure rate.
1 J

The data for the fIrst model is based on the defInItion of the stage 1Odlcator
Illustrated by Figure 5.3-1 and the second model uses the defInItIOn of the indIcator
Illustrated 10 FIgure 5.3-2. Thus the two models differ only in the def1Oition of k for
programs Al and A2. Model 2 modifIes the defmitIOn and starts counting With k=O
only when In p:S -1 for that stage and omIts all prior error data. Modell on the
other hand 10cludes all of the observed data, and starts count1Og k=O accord1Og to the
orIgmal defInItIOn of a stage.

Because the problem with the data of program Bl was not completely understood at
the tlrne of the development of the proportIonal hazards model, the data from errors
112 and 113 was omItted. It now appears that the best compromise WIth this difficulty
would be to Ignore the existence of these errors, group theIr data With the data of
error 114 as if they had not been recorded, relabel error 114 as 112 and relabel stages 3,
4, •.• as stages 1, 2, .•.• The effect of these changes has not as yet been investigated.

The model for () was chosen specifIcally as a fIrst attempt to explam the nature of
the dependence of the error structure on problem and programmer. The design,
however, IS lImited 10 that only the structure of the non-covariate (i.e., non z) part of
the model IS explored relatIve to these effects. To understand to what extent the
slopes depend on these factors, a model of the form

(J = Jl. + a + {3 + (cp + Y + E + Y .)k
IJ 1 J 1 J iJ

must be analyzed. The first () model therefore explores the dependence of the initial,
stage one, or background faIlure rate on the two factors. The second representatIon
of () permIts the test10g of the dependence of the shocks to thIS faIlure rate as a
functIon of these factors. Unfortunately the hmited amount of data dId not permIt
the exploratIon of thIS second representatIOn.

The results of the nonhnear estImation process are summarized 10 Tables 5.5-1 and
5.5-2. For the model based on the fIrst defInItIon of k the tests conducted on the
coeffICIents indIcate that all ten of the fItted free parameters are SIgnIficantly
dIfferent from zero except a and the conclUSion on a 1 affects only the relative
locatIon of the three a parame\ers as they have sum zero. For the second definItIOn
of k, the tests 10dlcate that all of the coeffICIents are SignIfIcantly non zero. Thus
for both models, the non k dependent part of the expansion of (J depends on both
factors. That IS, there IS a signIfIcant programmer and a SIgnIfIcant problem factor
explaIn10g the background faIlure rate.

53

TABLE 5.5-1
PROPORTIONAL HAZARDS MODEL PARAMETERS

BASED ON ORIGINAL ERROR RATE DATA

Standard Slgmflcance
Coefficients Variance DeviatIOn (a = .05)

Constant

Jl = -1.2602 • 002604 .05103 Sig •

Problem Levels

a 1 = -.02389 • 006144 .07839 Not Sig •

a 2 = .5711 • 004629 .06803 Sig •

a 3 = -.5472

Programmer Levels

fJ 1 = .4158 • 002854 .05342 Sig •

fJ 2 = -.4158

Slopes

CAl YA2 rA3)
(1.1000 -1.8562 -.8002)

=
YBI

YB2
Y

B3
-1.0902 -3.7898 -1.0193

(004406 .001570 .002754)
Var ("I) =

.0009986 .007047 .003288

(06637 .03963 .05248)
s.d. ("I) =

.03160 .08395 .05734

First stage (background) error rate exponent (estimated) ,

(-"8682 .2732 -1.3916)
(log)...) = (Jl + a + fJ) = IJ I J -1.6999 -.1.1049 -2.2232

First stage failure rate (estimated)

(4197 1.3142* .2487)
()... IJ) =

.1829 .3312* .1083

* Unconstramed model
54

TABLE 5.5-2
PROPORTIONAL HAZARDS MODEL PARAMETERS

BASED ON MODIFIED ORIGIN DATA

Standard SIgnifICanCe
CoeffICIents Vanance DeVIatIOn (ct = .05)

Constant

Jl = -1.9394 .003022 .05497 Sig.

Problem Levels

ct 1 = -.8740 .007538 .08682 Sig.

ct 2 = .5102 .005507 .07421 Sig.

ct 3 = .3638

Programmer Levels

fJ A = -.3026 .003010 .05486 Sig.

fJ B = .3026

Slopes

CAl
"A2 YA3) (-1.7196 -2.0717 -.5970)

=
"Bl "S2 "S3 - .9067 -3.7781 -1.4001

(01097 .003503 .002663)
Var (,,) =

.001257 .007115 .003333

(1047 .05918 .05161)
s.d. (,,) =

.0355 .08435 .05773

FIrst stage (background) faIlure rate exponent (model)

(-3.1161 -1.7319 -1.8782)
(log)...) = (Jl + ct. + fJ) = 1) 1) -2.5109 -1.1267 -1.2730

FIrst stage faIlure rate (model)

(04433 .1770 .1529)
()... 1) =

.08120 .3241 .2800

55

A number of tests of equality were also conducted to determine if any of the pairwise
'Y's across problems for a given programmer or across programmers for a given
problem were equal. Only isolated cases failed to reject so that some interaction
between the two factors seems to eXist. To what extent the mam effects explam the
slopes is not known.

Table 5.5-3 and Figures 5.5-1 and 5.5-2 compare the raw estimates of the p values
and the In p values to the predicted values based on the proportiOnal hazards model
with parameter estimates from Tables 5.5-1 and 5.5-2. In general the model does
reasonably well m predictmg log failure rate.

Smce a methodology for evaluatmg the quality of the fit for the two models does not
eXist at thiS time, it is difficult to measure if the new defimtiOn of the imtial state
of the program mcreases the efficiency of the modeling. The variance of the reSidual
not explamed by the model can be compared, however, to the ongmal dat'i vanance,
based on the data m Figures 5.5-1 and 5.5-2, m order to obtam a pseudo R value for
companson purposes. For model 1 the percentage reductiOn m vanance due to the
model is 80.7%. For model 2 the percentage reduction is 83.5%. Thus there is a
slight but not appreCiable advantage for thiS problem set in using the new defimtiOn
of the imtial state.

5.6 PROGRAM FEATURES AS PREDICTORS

Several phYSical features of the subject programs have been measured as possible
predictors of the error failure rate. Table 5.6-1 gives these features for all the
subject programs. In general these are in the form of counts of such features as
program length, total branch modes mcludmg the statements GO TO, DO, IF and
CALL and two of Halstead's [17] program measures; hiS length measure N and hiS
total error predictor E. Both of Halstead's measures depend on countmg the number
of operators and the number of operands m the program, neither of which has been
preCisely defmed for all cases. There is no particular rationale behmd these cholces
of phySIcal features for consideration except that "length" measures and "compleXIty"
measures of a program seem reasonable as "first look" predictors. ThiS set is cursory
and is not mtended to be exhaustive in any way.

In general, these program features are all poor predictors of both slope and first
stage fallure rate. Figure 5.6-1, however, demonstrates that the slopes of program
mer B suggest a linearly mcreasmg trend with the inverse of Halstead's length
measure N. (ThiS is also true of E because Nand E are nearly lmearly dependent m
thiS range.) Thus, for thiS programmer, as Halstead's length mcreases the failure rate
for fixed k mcreases.

The behaViOr of the programs wntten by programmer A are much less conSistent With
regard to thiS measure. A pOSSible reason for thiS discrepancy might be that the
programmmg time for thiS programmer was not as consistently controlled as for
programmer B, particularly for program Al due to outSide factors. Program Al
seems to be an outlier with regard to every single phYSical measure and seems to
have a much smaller fallure rate than itS length and compleXity would mdicate.

56

TABLE 5.5-3
ESTIMA TES FOR ERROR PROBABILITY PER PROGRAM EXECUTION,

BASED ON THE PROPORTIONAL HAZARDS MODEL

MODEL MODEL
EXPERIMENT PREDICTIONS PREDICTIONS

BASED (ORIGINAL (MODIFIED
PROGRAM STAGE ESTIMATES ORIGIN) ORIGIN)

Al 1 .9803 .4197
2 .1068 .05678 .04430
3 .002602 .007689 .007936
4 .002104 .001041 .001422
5 .001176 .0001409 .0002546
6 .0007659 .00001907 .00004561

B1 1 .1524 .1829 .0812

4 .009117 .006947 .005348
5 .003483 .002335 .002160
6 .0005359 .007850 .0008721

A2 1 .8065 1.3142*
2 .2632 .2054 .1770
3 .03759 .03209 .02230
4 .01909 .005015 .002809
5 .0001374 .0007836 .0003538

B2 1 .1449 .3312 .3241
2 .02625 .007486 .007411
3 .0001033 .0001692 .0001694

A3 1 .2488 .2487 .1529
2 .05376 .1117 .08417
3 .03524 .05109 .04633
4 .02691 .02255 .02550
5 .02302 .01012 .01404

B3 1 .3650 .1083 .2800
2 .1037 .04864 .06904
3 .01021 .02185 .01702
4 .004681 .009816 .004198
5 .002411 .004410 .001035

* Unconstramed Model

57

9

8

7

6

>-::
...J

5 -a::l
..:
a::l
0 a::
0..

I.LI
~
..:
I-

4 VI

Z
...J

3

2

1

Figure 5.5-1.

58

o

)(Al
C!) Bl
b. A2

• B2

• A3
• B3

1 2 3 4 5

NUMBER OF ERRORS CORRECTED

Predicted Error Rate from the Proportional Hazards Model,
Using Original Data.

10

9

8

7

6
>-
I--...J -a:I
c:c
a:I
0
0::
Cl- S
UJ
<.::I
c:c
I-
VI

z:
...J

4

3

2

1

Figure 5.5-2.

o

)(Al
® B1
t!. A2

• B2
.. A3
• B3

1 2 3 4 s
NUMBER OF ERRORS CORRECTED

Predicted Error Rate from the Proportional Hazards Model,
Using Modified-origin Data.

59

TABLE 5.6-1 SUBJECT PROGRAM MEASURES

Problem Problem

1 2 3 1 2 3

A 632 320 294 A 179 62 61

Programmer

B 236 186 145 B 87 50 41

Length Branch Count

1 2 3 1 2 3

A 232 150 126 A 266 185 198

Programmer

B 107 109 79 B 144 III 145

Operators Operands

1 2 3 1 2 3

A 2354 1453 1437 A 4.56 2.58 2.63

Programmer

B 1239 902 1156 B 2.49 1.42 2.46

Halstead's Length N Halstead's Error PredIctlOn E

60

.0015

.0010

1 / N

.0005

a

Figure 5.6-1.

B1

A3 Al

A2

1 2 3

y

Inverse of Halstead's Length vs. Predicted Slope
(Modified Data), Proportional Hazards Model.

4

61

5.7 RIPPLE EFFECT

In only one program did the correction of an error Introduce additlonal errors. Since
so httle data was avallable with whlch to model thls effect, no attempt was made to
include it as a special case in the proportlonal hazards model. It sufflces to point out
that the model is sufflclently general to include shocks that Increase as well as
decrease the faIlure rate.

62

6.0 CONCLUSIONS

The results of this expenment have proven useful in exploring the foundatIons of the
probabilistIC process of detectmg software errors. The data has been used to
statIstIcally verify that mterfallure tIme IS exponentially dlstnbuted and to prove
that errors can occur wIth wIdely dIfferent faIlure rates. ThIS fact mvalIdates many
of the more popular software relIabIlity models now m use. It was also observed that
log faIlure rate was nearly lInear as a function of the number of errors corrected.

It was demonstrated that Cox's proportIonal hazards lIfe model has all of the
observed charactenstlcs of the data noted above and IS proposed as a new model for
predlctmg software reliabIlIty. The model specIfIes a log lmear hazard functIon
dependmg on a covariate representmg the number of errors corrected. MaXImum
lIkelIhood estImates for the unknown parameters of thIS model were obtamed for all
six subject programs usmg nonlmear optImization techniques. Tests on these
estImates mdlcate that there are strong programmer and problem effects in the
background faIlure rate. Results also show that over 80% of the observed van at Ion m
the loganthm of the failure rate data can be explamed by the proportIonal hazards
functIOn model. A tentatIve phYSIcal predIctor was proposed based on Halstead's
infOrmatIon cnterIon N that mIght prove useful m forecastmg model parameters.

Forecastmg software relIabilIty based on phYSIcal program features IS a subject m ItS
Infancy. ProbabilIstIC models WIth parameters that reqUIre statIstIcal estimatIOn
from operational experience on a program do, however, offer forecastmg alterna
tIves. If operational usage data can be simulated, then repetitIve run samplmg
deSIgns prOVIde a rich statIstIcal base for estimatmg these parameters. RepetItIve
run samplIng IS no different from the standard method of recordmg software error
data In a Single run, with regard to the number of dIfferent errors detected. Both
methods will uncover the same errors on the average in the same number of program
executions. The dIfferences occur in the amount and kind of mterim mformation, on
the frequency of error occurrence and the effects of conditIoning, recorded dunng
testing. These potentIal uses of the addItIOnal infOrmatIon gamed durmg repetItIve
sampling can only be conjectured, but based on the expenences of thIS study It
appears very promlsmg.

ThiS IS the first software relIabIlIty model to be based on the results of a carefully
deSigned and controlled software expenment. These results mdicate that software
error detection has many of the attnbutes of a predIctable structure. The process of
completely understandmg the nature of the problem, however, has Just started and
much additIonal research is necessary to substantIate these results on more complIca
ted problems written by more experienced personnel under the same controlled
condi tIOns.

63

REFERENCES

1. JelmskI, F. and Moranda, P. B., "Software ReliabilIty Research," StatIstIcal
Computer Performance Evaluation, W. Freiberger, Ed., New York: AcademIc,
1972.

2. Shooman, M. L., "ProbabilIstIc Models for Software RelIabilIty PredictIOn,"
ProbabilIstic Models for Software, W. FreIberger, Ed., New York: AcademIc,
1972.

3. SChICk, G. J. and Wolverton, R. W., "An Analysis of Competmg Software
RelIabIlIty Models," IEEE Transactions on Software Engineermg, Vol. SE-4,
No.2, March 1978.

4. Littlewood, B. and Verrall, J. L., "A Bayesian RelIabIlIty Growth Model for
Computer Software," 1973 IEEE Symposium 0'1 Computer Software Reliability,
New York, 1973.

5. LIttlewood, B., "What Makes A Reliable Program - Few Bugs, or a Small Fallure
Rate?," AFIPS Conference Proceedings, Vol. 49, 1980.

6. Brown, J. R. and LIPOW, M. "Testmg for Software Reliabihty," Proceedmgs,
1975 International Conference on RelIable Software, IEEE Cat. No.
75-CH0940-7CSR, 1975.

7. MIgneault, G. E., " EmulatIOn ApplIed to RelIabIlity Analysis of Reconfigurable,
Highly Reliable, Fault-Tolerant Computmg Systems," AGARD Conference
Proceedmg, No. 261, 1980.

8. FosdIck, Lloyd D. and Osterweil, L. J., "DAVE - A Fortran Program AnalYSiS
System," Computer SCIence and StatistIcs, 8th Annual Symposium on the
Interface, 1975.

9. StUCkI, L. G. and Foshee, G. L., "New AssertIon Concepts for Self MetrIc
Software ValidatIOn," Proceedmgs, 1975 InternatIOnal Conference on Reliable
Software, IEEE Cat. No. 75-CH0940-7CSR, 1975.

10. Brown, J. R. and Buchanan, H. N., "The QuantitatIve Measurement of Software
Safety and RehabilIty," TRW SDP 1776, TRW Systems Group, Redondo Beach,
CalI forma, 1973.

11. Fmkelstem, J. M. and Schafer, R. E., "Improved Goodness-of-Fit Tests,"
BIometrika, 58:3, pp. 641-645, 1971.

12. LillIefors, H. W., "On the Kolmogoroff-Smirnov Test for the ExponentIal
DIstributIon With Mean Unknown," Journal of the AmerIcan StatIstical ASSOCI
atIon, pp. 387 -389, March 1980.

13. Mann, N. R., Schafer, R. E., and Smgpurwalla, Nozer D., Methods for StatIstIcal
AnalYSIS of RelIabIlity and LIfe Data, Wiley: New York, 1974.

65

REFERENCES (Continued)

14. Barlow, RIchard E. and Proschan, Frank, Mathematical Theory of RelIabIlIty, W dey: New York, 1965.

15. KalbfleIsch, J. D. and PrentIce, R. L., The StatIstical AnalYSIS of Failure TIme Data, WIley: New York, 1980.

16. Cox, D. R., "RegressIon Models and Life Tables," Journal of the Royal StatIstIcal Society, Series B, Vol. 34, pp. 187-220, 1972.

17. Halstead, M. A., Elements of Software Engmeering, Elsemer: New York, 1977.

66

APPENDIX A: SOFTWARE ERROR CATEGORIES

From Brown and Buchanan [10]

AOOO COMPUT A TIONAL ERRORS

AIOO Incorrect operand in equatIon
A200 Incorrect use of parenthesIs
A300 SIgn conventIon error
A400 Umts or data converSIon error
A500 Computation produces an over/under flow
A600 Incorrect/Inaccurate equatlon used
A700 PreClSIOn loss due to mixed mode
A800 MlsSIng computatIon
A900 RoundIng or truncation error

BOOO LOGIC ERRORS

BIOO Incorrect operand In logIcal expresslOn
B200 Logic activitles out of sequence
B300 Wrong varIable beIng checked
B400 MisSIng loglc or conditIon tests
B500 Too many/few statements In loop
B600 Loop lterated Incorrect number of tlmes

(mcludmg endless loop)
B700 DuplIcate loglc

COOO DA T A INPUT ERRORS

CIOO InvalId input read from correct data fIle
C200 Input read from incorrect data file
C300 Incorrect Input format
C400 Incorrect format statement referenced
C500 End of fIle encountered prematurely
C600 End of fde mlSSIng

0000 DA T A HANDLING ERRORS

D050 Data fIle not rewound before reading
DIOO Data InitializatlOn not done
D200 Data InitializatlOn done improperly
D300 VarIable used as a flag or Index not set properly
D400 VarIable referred to by the wrong name
D500 BIt mampulatIOn done incorrectly
D600 Incorrect var table type
D700 Data packIng/unpackIng error
D800 Sort error
D900 SubSCrIptIng error

A-I

EOOO

FOOO

GOOO

HOOO

1000

A-2

APPENDIX A: SOFTWARE ERROR CATEGORIES (Contmued

EIOO
E200
E300
E400
E500
E600
E700
E800

FIOO
F200
F300
F400
F500
F600
F700

GIOO
G200
G300
G400

HIOO
H200
H300

1100
1200
1300
1400
1500
1600

DA T A OUTPUT ERRORS

Data wntten on wrong file
Data wntten accordmg to the wrong format statement
Data wntten in wrong format
Data wntten with wrong carnage control
Incomplete or mIssing output
Output field Size too small
Line count or page eject problem
Output garbled or misleadmg

INTERFACE ERRORS

Wrong subroutine called
Call to subroutme not made or made m wrong place
Subroutme arguments not consIstent in type, units, order, etc.
Subroutine called is nonexistent
Software/data base mterface error
Software/user mterface error
Software/software mterface error

DA T A DEFINITION ERRORS

Data not properly defmed/dimensioned
Data referenced out of bounds
Data being referenced at mcorrect location
Data pointers not mcremented properly

DA T A BASE ERRORS

Data not initialized m data base
Data initialized to mcorrect value
Da ta Units are incorrect

OPERA TION ERRORS

Operating system error (vendor supplied)
Hardware error
Operator error
Test execution error
User misunderstandmg/error
Configuration control error

APPENDIX A: SOFTWARE ERROR CATEGORIES (Contmued)

JOOO OTHER

J100 TIme limIt exceeded
J200 Core storage limlt exceeded
J300 Output lme limIt exceeded
J400 CompilatlOn error
J500 Code or deslgn ineffIcient/not necessary
J600 User/programmer requested enhancement
J700 DesIgn nonresponslve to requIrements
J800 Code delivery or redelivery
J900 Software not compatIble wIth project standards

KOOO DOCUMENT A TION ERRORS

KIOO User manual
K200 Interface specifIcation
K300 DesIgn speciflcatlOn
K400 RequIrements speciflcatlOn
K500 Test documentatlOn

XOOOO PROBLEM REPORT REJECTION

XOOOI No problem
XOO02 VOId/wIthdrawn
XOOO3 Out of scope - not part of approved design
XOO04 Duplicates another problem report
XOOO5 Deferred

..

A-3

APPENDIX B: PROBLEM 111 SPECIFICA nONS

From Brown and Buchanan [10]

1.0 LAUNCH INTERCEPTOR CONDITIONS (L1C)

ConditIons were specIfied in such a way that the resulting program would be SImIlar
to a SIte Defense program attempting to correlate radar tracking returns. Nineteen
parameters were required as Input to precIsely specIfy these condItIOns. The Launch
Interceptor Conditions (L1C) were defmed as follows:

2)

3)

5)

6)

7)

8)

9)

10)

Any two consecutive data points are a distance greater than the length, 1. ,
apart.

Any three consecutIve data points cannot all be contained within or on a
CIrcle of radIUS r.

Any three consecutive data POints form an angle, a, where a < (77 - E 2) or a
> (7T + E 2). Bemg measured here IS the angle a's deVIatIOn from 180
degrees. The second of the three consecutive points IS always at the
vertex of the angle.

Any three consecutIve data points form a triangle WIth area greater than
A. The three pomts are at the triangle's vertices.

Any M consecutive data points lIe in more than Q quadrants. Where there
is ambIgUity as to which quadrant contams a given point, priOrity of
deCiSIon wIll be by quadrant number, i.e., I, II, III, IV. For example, the
data pomt (0,0) is in quadrant I. Also, the point (-1,0) is in quadrant II.
The pomt (0,-1) is m quadrant III.

For any two consecutive data pomts, PI and P 2' the difference of theIr
abscissas is negative, i.e., (X2 - XI) < 0.

At least one of any N consecutive data pomts lies a dIstance greater than
E 1 from the lme Joinmg the first and last of these points.

Any two data points (With n l consecutIve mtervening points) are a dIstance
greater than the length,1. , apart.

Any three data points (with n2 and m2 consecutive intervening POints,
respectively) cannot be contameo WIthin or on a CIrcle of radius r.

Any three data points (with n3 and m3 consecutive intervening points,
respectively) form an angle, a, where a. « 77 -E) or a> (77+ E2). Being
measured here is the angle a's deviation from 18if degrees. Of the above
fIrst mentioned three data points. the second IS always at the vertex of the
angle.

B-1

11)

12)

13)

14)

15)

Any three data points (with nc,. and m consecutive intervening points,
respectively) form a triangle wIth area \reater than A. The above first
mentIoned three data points are at the triangle's vertices.

For any two data points, P Land P 2 (with n6 consecutive Intervening POints)
the difference of their abscIssas is negative, i.e., (X2 - X l)< o.

Any two data POints, with n1 consecutive intervening POints, are a distance
greater than the length,1. ,apart. Also, any two data points (which can be
the same or different from the above first mentioned two data points),
with n 1 consecutive intervening points, are a distance less than the length,
L, apart.

Any three data points, with n2 and m2 consecutive intervening points,
respectively, cannot be containeo within or on a circle of radius r. Also,
any three data points (which can be the same or different from the above
fIrst mentioned three data points), with n2 and m2 consecutive intervening
points, respectively, can be contained in or on a circle of radius R.

Any three data points, wIth nc,. and m4 consecutive intervening points,
respectively, form a triangle wIth area greater than A. The above first
mentloned three data points are at the triangle's vertices. Also, any three
data pOints (which can be the same or different from the above first
mentIoned three data points), with n4 and m4 consecutive intervenmg
POints, respectively, form a triangle WIth area less than E. The above
second mentioned three data points are at the (second) triangle's vertices.

2.0 PROBLEM LOGIC

B-2

1) Information was supplied indicating the logical connectors among all the
LIC, as defined in Section 1.0. The format was a symmetrical square
matrix where zero Indicated NOT used, one indicated the OR connector
between two conditions and two indicated the AND connector. The matriX
was identIfied as the Logical Connector Matrix (LCM).

2) Part of the output data was a column matrix with resultant information as
to whether or not the LIC were met, i.e., for each condition, zero meant
the co!'}dition was not met and one meant it was met. The identification
for this matrix was Conditions Met Matrix (CMM).

3) Preliminary unlocking information was generated. By definition, these
were criteria which determined whether or not interceptors would be
launched. These data were determined by the interaction of the LCM and
CMM matrices to form the Preliminary Unlocking Matrix (PUM). Defmi
tions of the matrix elements indicate how the two matrices interact to
form PUM. The diagonal elements of PUM were input according to the
desired or required unlocking sequence, i.e., a one indicated that the
corresponding LIC was to be considered as a factor in signaling interceptor
launch and a zero meant that it was not a factor. Non-diagonal elements
were determined by the LCM operating as a Boolean operator, as defined In
Section 2.0.1, on the operand CMM.

4) The Final Unlocking Matrix (FUM) was generated by having the PUM
diagonal operate on non-diagonal elements. An element in the FUM was
one (1) if:

The corresponding PUM diagonal element was zero (0), indIcating no
mterest in the assocIated L1C; or

The corresponding PUM diagonal element was one (0 and all other
elements in that dIagonal element's row were one (1).

An element in the FUM represented the final conclusion with respect to its
corresponding L1C.

5) In order to launch an interceptor, all elements in FUM had to be equal to
one. In this case, the message "NOW" was generated and output to the
printer, together with a lsting of all input data values. The information
from all matrices was prmted. The output was in matrix format for ease
of interpretation.

3.0 DATA INFORMATION

1) Pairs of values for the rectangular coordinates (x, y) represented data
points.

2) An mput data set contained a maximum of 100 ordered data points.

3) P = number of data points in a data set.

4) The input data constants, as defined in Section 1.0 were specified for each
input data set.

5) RestrictIons on the input parameters were as follows:

P>2, 1~0, r~O, 0~E2<1T,

E 1 ~ 0, L ~ 0, R? 0, E ~ o.

A ~ 0, M ~ P, 1 ~ Q ~ 3,

6) The Logical Connector Matrix (LCM) element values were given as mput.

7) The Preliminary Unlocking Matrix (PUM) diagonal element values were
given.

For the actual data values, see the example matrices in the following
section.

B-3

4.0 EXAMPLE MATRICES

The followmg matrices are a model of the problem logic, as defmed in Section 2.0.

Logical Connnector Matrix (LCM)

* 1 2 3 4 5 ••• 15

1 2 2 1 2 o ••• 0

2 2 2 1 1 o .•• 0

3 1 1 2 1 o ••• 0

4 2 1 1 2 o ... 0

5 0 0 0 0 o ..• 0

.

15 0 0 0 0 0 ••• 0

DefimtIOn - L IS the ij th element m the LCM.
1 J

ConditIons Met MatriX (CMM)

CondItion Value

1 0

2 1

3 1

4 0

5 0

15 0

(Input)

*, Launch Interceptor CondItIons
(LIC)

Since we have zeros beyond the
fourth LIC, the 5th through the
15th LIC are not to be consid-
ered m thIS example.

(Output)

Defimtion: C
1

IS the 1 th element in the CMM.

The C are computed output, but In order to illustrate this example, we are
arbitrahl y settmg these elements in the CMM.

B-4

•

Preliminar:t Unlocking Matrix (PUM) (Output, non-diagonal elements)
(Input, dIagonal elements)

LIC 1 2 3 4 '5 ••• 15

1 1 0 1 0 1 1

2 0 0 1 1 1 1

3 1 1 1 1 1 1

4 0 1 1 0 1 1

5 1 1 1 1 0 1

15 o

Furthermore, defining the IJ th element in the PUM as P , we have the following:
PI = P3 = 1 and all other P (i.e., the dIagonal elementsitre zero. This means that
onfy the 1Irst and thIrd LIC aVe requIred In the unlocking sequence. Note that these
are input values.

P 12 = 0 SInce, L12 = 2, sIgnIfying the AND condItIon for C 1 and C2 which are

zero and one, respectively, i.e., 01 = O.

P 13 = 1 sInce, L 13 = 1, sIgnIfyng the OR conditIon for C 1 and C3 which are zero

and one, respectIvely, i.e., 0 + 1 = 1.

P 14 = 0 sInce, L14 = 2, sIgnifYIng the AND conditIon for C 1 and C4 which are

both zero, i.e., 00 = O.

P
15

= 1 since L15 = 0, sIgnIfying the Not Used condItion for C 1 and Cy The above
examples show how to generate the P

IJ
values.

B-5

Final Unlocking Matrix (FUM) (Output)

LIC VALUE

1 0

2 I

3 1

4 1

5 1

15 1

Definition: F 1 IS the ith element in the FUM.

F 1 = 0 since PI 1 = 1 and PI 2 = P 14 = 0, i.e., the diagonal value IS one and there
IS at least one~ero elemerrrin the first row of PUM.

F2 = 1, since P22 = O.

F3 = 1, since P33 = 1 and P31 = P32 = P34 = P35 = ••• = P3,15 = 1.

F 4 = 1, since P 44 = o.

F5 = F6 = ••• = F l5 = 1, since, P55 = P66 = ••• = P15,15 = 0,

respectIvely.

Smce there IS a zero element in FUM, (F 1 = 0), the launch interceptor condition
IS not met.

5.0 SUPPLEMENTARY INFORMATION

1. The program will be written in FORTRAN on the BITS system.

2. No double precislOn or complex variables are required.

3. Your program wlll be a subroutine.

4. Assume the inputs are in labeled common, i.e., COMMON/INPUTS/ x(100),
Y(100), EL, ••• using the order in Section 6.0. You are free to use your own
variable names, however.

5. Outputs will be in labeled common, i.e., COMMON/OUTPTS/CMM(15), ••• using
the order in SectlOn 7.0. Again you are free to use your own variable names.

6. Use the IFOUT flag to control printing. Code the output statements, but
branch around them If IFOUT = 1.

B-6

7. When the first and last points of N consecutive data polOts are identical, then
the calculated distance to compare with E (LIe 117), will be that distance from
the coincident pomt to all others of the N consecutive polOts.

6.0 INPUTS

1. Data Points (xi' y 1) i=l, ••• , P 2:S P:S 100

accurate to one decimal place real

2. Nineteen Parameters

1. real

2. r II

3. E2 II

4. A II

5. M integer

6. Q II

7. E1 real

8. n1 integer

9. n2
II

10. m2
II

11. n3 II

12. m3
II

13. n4
II

14. m4
II

15. n6 II

16. L real

17. R real

18. E real

19. N integer

B-7

3. LCM Arra~ LCM .. i=l, ••• ,15
1,) j=l, ••• ,15

integer

4. PUM array
DIagonal Terms PUM .. i=1, ••• ,15

1,1
integer

5. P - number of data points Integer

6. IFOUT - Controlling output, i.e., = o Program prints output
= 1 Program prints no output

integer
7.0 OUTPUTS

1. CondItIons Met Matrix CMM.,
1

1= 1,-, 15 integer

2. Final Unlocking Matrix FUMi' i=1,-,15 Integer

3. "LAUNCH" or "NO LAUNCH"

(Use a logical variable which is true for launch and false for no launch).

B-8

APPENDIX C: PROBLEM I. TEST CASES

From Brown and Buchanan [10]

1.0 TEST CASE 1

• Input

•

100 (X,Y) pomts defined by (X ,Y.) = (2i - 2,1 - 1) for 1 = 1, ••• ,100
1 1

- LIC parameters =..D. = 2.3, r = 2.3, E 2 = 0.2, A = 0.3, M = 4,

Q = 1, E 1 = 0.1, all n· and m. equal to 0, L = 2, R = 2.2,
1 1

E = 0, N = 5.

- LCM:

LIC 1 2 3 4 5 ••• 15

1 2 2 1 2 0 .•. 0

2 2 2 1 1 0 ... 0

3 1 1 2 1 0 ••. 0

4 2 1 1 2 0 ... 0

5 0 0 0 0 0 ... 0

... 0

15 0 0 0 0 0 ••. 0

- PUM dlagnoal: P 11 = P 33 = 1; all other P ii equal to zero.

Output

- PUM:

LIC 1 2 3 4 5 ... 15

1 1 0 0 0 1 •.. 1

2 0 0 0 0 1 ••• 1

3 0 0 1 0 1 ••• 1

4 0 0 0 0 1 •.. 1

5 1 1 1 1 0 ••. 1

15 1 1 1 1 1 ... 0

C-l

- CMM: all O's

- FUM: 0 1 0 1 1 1 1 1 1 1 1 1 1 1 1

- Fmal ConclusiOn: No Launch

2.0 TEST CASE 2

• Input

- 95 (X, Y) points defined by (X ,y.) = (2i - 2, i - 1) for i = 1, ••• ,96 except
1/:.5 1 1

same as Test Case 1.
.

- LIC parameters:

- LCM:

LIC 1 2 3 4 5 ••• 15

1 2 1 2 2 0 ... 0

2 1 2 1 1 0 .•. 0

3 2 1 2 1 0 •.. 0

4 2 1 1 2 0 ... 0

5 0 0 0 0 0 .•• 0

15 0 0 0 0 0 ... 0

- PUM dIagonal: P 11 = P22 = 1 and all other PH = 0

• Output

- PUM:

LIC 1 2 3 4 5 ••• 15

1 1 1 0 0 1 ..• 1

2 1 1 1 1 1 ••• 1

3 0 1 0 0 1 .•. 1

4 0 1 0 0 1 ••• 1

5 1 1 1 1 0 ••• 1

15 1 1 1 1 1 ••• 0

C-2

- CMM: 1 1 0 0 0 0 0 1 1 0 0 0 0 0 0

- FUM: 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1

- Fmal Conclusion: No Launch

3.0 TEST CASE 3

• Input

- (X, y) points same as Test Case 2

- LIC parameters: same as Test Case 1

- LCM:

LIC 1 2 3 4- 5 ••• 15

1 2 2 1 1 0 •.• 0

2 2 2 1 1 0 ... 0

3 1 1 2 1 0 ... 0

4- 1 1 1 2 0 ... 0

5 0 0 0 0 0 .•• 0

....

15 0 0 0 0 0 ••. 0

- PUM diagonal: same as Test Case 1

• Output

- PUM:

LIC 1 2 3 4- 5 ••• 15

1 1 1 1 1 1 ••. 1

2 1 1 1 1 1 ••. 1

3 1 1 0 0 1 .•. 1

4- 1 1 0 0 1 ••• 1

5 1 1 1 1 0 •.. 1

15 1 1 1 1 1 ••• 0

C-3

C-4-

CMM: 1 1 0 0 0 0 0 1 1 0 0 0 0 0 0

- FUM: all 1 's

Final ConclusIOn: Launch

..

APPENDIX D: PROBLEM 112 SPECIFICA nONS

1.0 GENERAL

ConsIder the followmg diagram:

y
2 3

fl(x) = ao + alX + a 2 X + a3X for

X. 1 1+

X.~X~X. 1
I 1+

x

A set of pIecewIse cubic polynomials passing through predefined (x, y) coordinates, or
knots, IS a cubic spline if the functional value and the first and second derivatives of
two adjoimng CUbIC polynomIals are continuous at the knot where they join.

For n knots, there are n-l cubics. Since each cubic has 4 unknowns, there are 4n-4
unknowns in thIS cubic spline. The 3 continuity conditions at the n-2 inner points give
3n-6 conditions. There are n other conditions because the spline must pass through
the knots. In addition, we need two more conditions to have 4n-4 conditIons and 4n-4
unknowns. These additional conditIons will be to specify the second derivative at
each endpoint.

Note: An alternate form of the cubic over an interval [X., X. 1] is
1 1+

2 3 f.(X) = y. + a(X-X.) + b(X-X.) + C(X-X.) •
1 1 1 1 1

2.0 DESCRIPTION OF SUBROUTINES

Four subroutmes are requIred for Problem 112:

1. SPLINE to calculate coefficients of a CUbIC spline passmg through given
knots. Use the first cubic representation.

2. ADJUST to calculate coefficients of the alternate form of the CUbIC (see
above).

3. SINTRP to interpolate the functional value and the first two deriVatIves at
an mput Xo using the coefficIents from ADJUST.

D-l

4. SINTEG to integrate from X 1 to X2 the spline generated using coefficIents
from ADJUST.

Numerical results must be within 1.0% (relative error) of comparable results from
library routines.

2.1 SUBROUTINE SPLINE (X, Y, N, SDL, SDR, COEFF, IERR)

INPUT N, /I of knots, 2 ~ N ~ 6
X(I), Y(I), knots (coordinates), in any order
SDL, second derivative at left-most knot
SDR, second derivative at right-most knot

OUTPUT t X(I), Y(I)}, in ascendmg X order.
«COEFF(I,J), 1=1, 4), J=I, N-O

For a given interval J, [XJ , XJ+l]

COEFF(1,J) = ao
COEFF(2,J) = a

1
COEFF(3,J) = a2
COEFF(4,J) = a3

2 3 where f(X) = ao + a 1 X + a 2X + a3X

IS the cubic in that interval.

IERR=
=
=

o for normal return
2 for two or more X coordinates identical
8 for a smgular matrix

2.2 SUBROUTINE ADJUST (X, Y, N, COEFF, COEFAD)

INPUT N, 1/ of knots, 2 ~ N ~ 6
X, X-coordinates of knots in ascending order
Y, Y -coordinates of knots corresponding to the x-coordinates
COEFF, spline coefficients resulting from SUBROUTINE SPLINE

OUTPUT «COEFAD(I, J), 1=1, 3), J=I, N-O

D-2

For a gIven mterval J, [XJ' XJ+IJ

COEFAD (1, J) = a

COEF AD (2, J) = b

COEF AD (3, J) = c

where fiX) = Y J + a (X-XJ) + b(X-XJ)2 + c<x-x
J

)3 is the cubic in that

mterval.

2.3 SUBROUTINE SINTRP (N, X, Y, COEFAD, XO, YO, YOP, YOPP, IERR)

INPUT N, II of knots, 2 ~ N ~ 6
X, X-coordinates of knots in ascending order
Y, Y -coordinates of knots corresponding to the X-coordinates
COEF AD, spline coefficients resulting from SUBROUTINE ADJUST
XO, arbitrary X coordinate

OUTPUT YO, Interpolated value.
YOP, first derivative at XO.
YOPP, second derivative at XO.
IERR = 0 for normal return

= I if XO < XU)
= 3 if XO > X(N)

2.4 SUBROUTINE SINTEG (N, X, Y, COEFAD, Xl, X2, S, IERR)

INPUT N, II of knots, 2 ~ N ~ 6
X, X-coordinates of knots in ascending order
Y, Y -coordinates of knots corresponding to X-coordinates
COEF AD, spline coefficients resulting from SUBROUTINE ADJUST
Xl, X2, endpoints for Integration

OUTPUT S, integral of the spline function from Xl to X2. Return O. if the endpoints
of the spline don't span [X 1, X2] or [X2, Xl].

IERR= o for normal return
= 1 if endpoints of spline don't span [Xl, X2] or [X2, Xl] •

Note: If IERR ~ 0 after calling SPLINE, then ADJUST, SINTRP and SINTEG will not
be called.

3.0 SUPPLEMENTARY INFORMATION

Y

x

D-3

Solve for a in the matrix equation Ca = d

CD 0

G)O

(VI

®
G)

1

o

C

o 2 o

000 0 o

o

o o

o 0 o 1

o o o 1

1 2X 2 3X~ 0 -1

o o

2

o o

o 0

@ 0

(1) 0

® 0 o 2 o -2 -6X2

ExplanatIon of equations:

CD 2nd derivative at left-most endpoint given, So

fll = a l + 2a2X + 3a3X
2

fll 1 = 2a2 + 6a3X

fill (Xl) = 5r2a2 + 6a3X1 = So

@ 2nd denvative at right-most endpomt is given, 51

f2 (X) = 2b2 + 6b3X

1 (X3) = 51~2b2 + 6b3X3 = 51

G) f 1 passes through (X l' Y 1)

2 3
f1 (Xl) = aO + a 1Xl + a 2X1 + a 3X1 = Y 1

@ f 1 passes through (X l' Y 1)

<» f 2 passes through (X 2, Y 2)

D-4

a

=

d

o

o

@ f2 passes through (X3, y 3)

D-5

4-r-

3--

2--

l-r-

o
o

INPUT N=4

APPENDIX E: PROBLEM 112 TEST CASE

, •. , . , . , . , . , • (1,2)

I

1

2

3

4

I
I

1
I
I

2

X(I)

1.

2.

3.

4.

y(I)

2.

4.

2.

2.

I
I

3

I
I

4

E-l

OUTPUT

SDL=O.

SDR=O.

XO = 3.5

Xl = 1.5

X2 = 2.5

SPLINE OUTPUT --

X(I), y(I) 1.0000

4.0000

2.0000

2.0000

2.0000 4.0000 3.0000

COEFF, SPLINE 1 .000000 -.400000 3.600000 -1.200000

COEFF, SPLINE 2 -25.600000 38.000000 -15.600000 2.000000

COEFF, SPLINE 3 50.000000 -37.600000 9.600000 -.800000

IERR (SPLINE) = 0

ADJUST OUTPUT --

COEFF, SPLINE 1 3.200000 .000000 -1.200000

COEFF, SPLINE 2 -.400000 -3.600000 2.000000

COEFF, SPLINE 3 -1.600000 2.400000 -.800000

2.0000

SINTRP+SINTEG -- YO =

S =

1.700000 YOP = .200000 YOPP = 2.400000 IERR(SINTRP) = 0

3.750000 IERR(SINTEG) = 0

E-2

APPENDIX F: PROBLEM /13 SPECIFICATIONS

1.0 GENERAL

Given a spherical earth, any point on its surface can be described by two angles
(spherical polar coordmates). These angles are specified by defming a pair of
reference planes. The first plane is called the "equator" plane, and thIS plane divIdes
the earth into two hemispheres: the northern hemisphere and the southern hem
isphere. The second plane, the "GreenwIch" plane, is normal to the equator plane (it
contains the polar aXIS) and also divides the earth into two hemispheres, east and
west. One of the angles mentioned above is the "longitude" WhICh is the dihedral
angle between (a) the Greenwich plane and (b) a plane perpendicular to the equator
(contaming the polar axis) and passing through the pomt described. Longitude is
measured positive east of Greenwich. The other angle, the "latitude", IS the angle
formed by (a) a ray from the center of the earth through the pomt and (b) the
projectIon of the rayon the equator plane. Latitude IS measured positive north of the
equator. There IS, thus, a one-to-one correspondence between every pomt on the
sphere and every ordered paIr «(), rp), where 0 < () ~ 217 and -217 < ¢ ~ ~. «() is
called longItude and rp IS called latitude).

If two pomts not collmear WIth the center of the earth are given, It is possible to
define the "aZImuth" of the path from the first to the second as follows: the azimuth
is the dIhedral angle between (ii'f'the plane surface bounded by the ray from the
center of the earth to the first point and the ray from the center of the earth to the
north pole and (b) the plane surface bounded by the ray from the center of the earth
to the first pomt and the ray from the center of the earth to the second point. The
azimuth IS positIve if the second point is further east than the first and negative if
the second is west of the first. If the first and second point have the same longItude
or either (but not both) is at a pole, then the azimuth is zero if the second point is
north of the fIrst, and is 17 (not - 17) if the second points is south of the first. Note
that If the two points are collinear with the center of the earth, then the azimuth of
the path from the fIrst to the second is undefined.

A great CIrcle is the intersection between the earth sphere and a plane through the
center of the earth. The great circle distance between two points is the product of
the radius of the earth (3440 n. mi.) and the angle (m radians) between rays joining
the center of the earth and the two points. (NOTE: the angle is always less than or
equal to 17).

2.0 MATHEMATICS

If the longitude and latitude «() and rp) of any point P are given, then a unit vector
directed toward P can be expressed in "CarteSIan" coordinates by the transformation
equatIons:

x = cos rp cos ()

P: Y = cos rp sin ()

Z = sm rp

F-l

A unit vector is one for which X2 + V2
+ Z2 = 1. If two non-collinear unit vectors U 1

and U2 are given, a vector P, normal to the plane containmg them, is given by:

x = V 1 Z2 - V 2 Z 1

P: V = Z 1 X2 - Z2 XI

Z = X 1 V 2 - X 2 V 1

This vector can be normalized (t.e., converted to a umt vector) by dividing each
component by the vector length (the square root of the sum of the squares of its
components). The unit vector, pI, along P is given by:

XI = X/ JX2 + V2 + Z2

pI: VI = V/JX2 + V2 + Z2

ZI = Z/ JX2 + V2 + Z2

Now, pI IS a umt vector normal to the plane containing Uland U2• The direction of
pI relatIve to the directions of Uland U2 is the direction a righf hand screw would
advance If turned from U 1 toward U 2.

The angle between two vectors can be found by the following equation:

where (IS the required angle.

Note that if the vectors are perpendicular (i.e., (= 11 /2) then cos (= 0 and

The dIhedral angle between two planes is equal to the angle between two vectors
normal to the planes, provided care is taken to be sure the directions of the normals
are properly defined.

3.0 DESCRIPTION OF SUBROUTINE

Given the longitude and latitude of two points, write a subroutine named CALC to
fmd:

I. The great circle distance between the two points (in nautical miles)

II. The azimuth of the path from the first to the second (in radians)

F-2

Further, given the longitude and latitude of a third point and an angle a, a small
circle on the surface of the earth whose "radius" is a may be defined. Here a is not
really the radius of the circle but is the angle between (a) the ray from the center of
the earth to the center of the small Circle and (b) the ray from the center of the
earth to any pOint on the circle. Note that the great circle distance from the center
of the small Circle to any point on the circumference is the radius of the earth (3440
n. mi.) times the specified angle, a (In radians).

III. Find all the intersections (if any) of the great circle path connec
ting pOints I and 2 and the small Circle defined by pOint 3 and list
them in the order encountered as the path is traversed from point 1
toward point 2. Note that only POints between I and 2 are desired.

The calling sequence for the subroutine should be:

CALL CALC (LOCI, LOC2, LOC3, ALFA, DIST, AZMUTH, NINT, INTI, INT2)

With

LOCI, LOC2, LOC3, INT 1, and INT2 dimensioned 2,

where:

LOCI, LOC2, LOC3 are (LAT, LON) (in radians) of pOints 1, 2, and 3 respectively.

ALF A is the angle (in radians) defining the small circle.

DIST is the great Circle distance (in nautical miles) from pOint I to point 2.

AZMUTH is the azimuth (in radians) of the path from point I to point 2.

NINT is the number of intersections of the great circle path and the small circle (0, 1
or 2).

INT 1, INT2 are (LAT, LON) (in radians) of the intersections. If NINT = 0, then INT 1
and INT2 should be set to (0,0). If NINT =1 then INT2 should be (0,0).

4.0 SUPPLEMENTARY INFORMATION

The definition of the aZimuth needs more expansion when the two points, P Land P...2'
and the center of the earth all lie in one plane. In this case, the path from"P 1 to P:
will pass over a pole. (Remember that if PI and P 2 are collinear With the center of
the earth, then the azimuth is undefined.)

In thiS case, first determine the shortest path from PIta P 2. Then determine the
direction of this path when leaving PI. If the direction is north, then azimuth = 0.
Otherwise, the dIrectIon is south and azimuth = 1T •

F-3

APPENDIX G: PROBLEM 113 TEST CASE

270 90

INPUT OUTPUT

CD LOCI: 0.692315 DIST: 9020.571289

3.395404 AZIMUTH: 2.075972

G) LOC2: -0.831659 NINT: 1

5.836354 INTI: 0.197828

G) LOC3: 0.493327 4.068534

2.400971 INT2: 0.0

ALPHA: 1.561159 0.0

G-l

APPENDIX H: EXPERIMENT DATA FOR SUBJECT PROGRAM A1

ExplanatIOn: Repetitlon no. Failure case no. (Error no.)
TIme to failure in elapsed seconds

1. 1 (1) 1 (2) 268 (3,5)
14.8 14.8 3035.9

2. 1 (1) 37 (2) 116 (3) 56 (5,6)
14.8 289.7 1314.8 631.4

3. 1 (1) 36 (2) 164 (5,6)
14.8 283.2 1857.2

4. 1 (1) 19 (2) 249 (6)
14.7 152.3 2824.6

5. 1 (1) 5 (2) 604 (4) 217 (8)
14.7 45.1 6851.0 2452.3

6. 1 (1) 3 (3) 1 (2) 952 (4) 4092 (5,6)
14.7 30.2 11.3 10,750.6 46,164.0

7. 1 (1) 9 (2) 499 (4) 244 (6)
14.8 75.9 5664.8 2763.6

8. 1 (1) 2 (2) 436 (4) 68 (6)
14.7 22.3 4943.4 769.0

9. 1 (1,2) 491 (3) 219 (5)
14.8 5565.7 2472.9

10. 1 (1) 17 (2) 278 (3) 476 (4) 342 (6)
14.8 137.2 3152.3 5381.4 3859.7

11. 1 (1) 18 (2) 282 (3,5)
14.7 144.5 3197.0

12. 1 (1) 19 (2) 361 (3,7)
14.9 152.3 4092.5

13. 1 (1) 13 (2) 291 (3) 78 (4) 378 (10)
14.9 106.7 3295.9 882.0 4269.0

14. 1 (1) 3 (2) 28 (3) 423 (4) 2152 (8)
14.9 30.2 316.5 4775.4 24,294.9

15. 1 (2) 1 (1) 36 (5,6)
14.6 14.8 406.8

H-l

APPENDIX H: EXPERIMENT DATA FOR SUBJECT PROGRAM Al {Contmued}

ExplanatIon: RepetItion no. Fatlure case no. {Error no.}
TIme to failure in elapsed seconds

16. 1 (1) 8 {2} 79 (3) 155 {4} 533 (8)
14.9 68.2 896.5 1752.2 6006.8

17. 1 (1) 13 (2) 492 (3) 26 (6)
14.8 106.3 5574.4 292.3

18. 1 {2} 1 (1) 113 {4} 248 {5}
14.7 14.9 1280.8 2812.6

19. 1 (1) 13 {2} 1185 {5,8}
14.7 106.7 13,436.0

20. 1 (1) 14 {2} 390 (4) 970 (3) 888 (6)
14.9 114.5 4418.5 10,997.0 10,018.9

21. 1 (1) 1 (2) 121 (3) 60 (6)
14.8 14.5 1372.4 677.5

22. 1 (1) 15 (2) 365 (4) 1525 (3) 447 (5) 1002 (9)
14.7 122.0 4136.5 17,274.2 5039.5 11,318.0

23. 1 (2) 1 (1) 933 (3) 331 (5)
14.8 14.8 10,574.3 3737.0

24. 1 (1,2) 492 (8)
14.7 5580.9

25. 1 (2) 2 (1) 446 (4) 318 (8)
15.0 22.3 5062.2 3598.4

26. 1 (1) 5 (2) 338 (4) 2126 (8)
14.7 45.6 3835.2 24,091.9

27. 1 (1) 8 (2) 346 (4) 615 (8)
14.7 68.2 3920.7 6974.6

28. 1 (1) 11 (2) 1098 (4) 133 (5)
14.9 91.6 12,454.3 1503.7

29. 1 (1) 5 (2) 95 (8)
14.6 45.0 1077.6

30. 1 (1) 8 (2) 922 (6)
14.9 68.3 10,459.8

H-2

APPENDIX H: EXPERIMENT DATA FOR SUBJECT PROGRAM Al (Continued)

Explanation: Repetltion no. FaIlure case no. (Error no.)
Time to failure In elapsed seconds

31. 1 (1) 7 (2) 384 (4) 116 (5,6)
14.9 61.0 4353.3 1313.9

32. 1 (1) 3 (2) 184 (5,6)
14.9 29.9 2085.7

33. 1 (1) 6 (2) 195 (4) 633 (8)
14.7 53.6 2210.8 7180.8

34. 1 (1) 19 (2) 38 (3) 397 (4) 2689 (5,6)
14.7 152.2 429.4 4484.5 30,366.7

35. 1 (2) 1 (1) 70 (8)
14.7 14.8 792.1

36. 1 (1) 19 (2) 1010 (6)
15.0 152.4 11,455.0

37. 1 (1) 21 (2) 7 (4) 532 (3) 1205 (8)
14.6 167.9 78.4 6031.0 13,619.9

38. 1 (1) 11 (2) 1311 (4) 337 (3) 367 (10)
14.9 91.4 14,862.0 3821.3 4148.5

39. 1 (1) 1 (2) 31 (3) 717(4) 1515 (10)
14.9 14.8 351.2 8100.0 17,132.9

40. 2 (1) 6 (2) 251 (5,6)
22.3 52.9 2847.1

41. 1 (1) 2 (2) 158 (4) 1326 (3) 258 (5) 278 (8)
14.8 22.3 1790.3 15,024.1 2915.2 3138.1

42. 1 (1) 5 (2) 205 (3) 709 (4) 1307 (5,6)
14.8 45.0 2325.8 8011.6 14,753.5

43. 1 (2) 1 (1) 841 (4) 9 (3) 539 (10)
14.5 14.8 9543.3 101.8 6082.6

44. 1 (1) 4 (2) 80 (3) 203 (4) 868 (5,6)
14.8 37.7 907.2 2291.1 9797.8

45. 1 (1) 6 (2) 375 (4) 1154 (3,5) 1200 (10)
14.9 53.1 4256.7 13,065.0 13,550.5

H-3

APPENDIX H: EXPERIMENT DATA FOR SUBJECT PROGRAM Al (Contmued)

ExplanatIon: Repetition no. FaIlure case no. (Error no.)
TIme to failure m elapsed seconds

46. 1 (1) 21 (2) 521 (8)
14.7 167.8 5908.2

47. 1 (1) 18 (2) 1155 (4) 385 (5,6)
14.9 144.5 13,088.0 4359.1

48. 1 (2) 1 (1) 13 (3) 513 (4) 7 (5)
14.8 14.6 147.3 5793.2 78.6

49. 1 (1) 24 (2) 45 (4) 1796 (3,5,6)
14.9 190.6 508.6 20,369.4

50. 1 (2) 2 (1) 442 (4) 249 (6)
14.6 22.2 5013.7 2821.0

H-4

APPENDIX I: EXPERIMENT DATA FOR SUBJECT PROGRAM Bl

Explanation: RepetItIon no. FaIlure case no. (Error no.)
Tlme to fatlure In elapsed seconds

1. 4(1) 1 (2,3)* 10 (4) 167 (8)
43.8 10.5 111.6 1872.9

2. 3 (1) 1 (2,3) 46 (4) 142 (5) 298 (6)
32.7 10.6 514.8 1593.2 3325.9

3. 7 (1) 1 (2) 3 (3) 27 (5) 310 (4) 3287 (7)
76.9 10.5 32.9 302.1 3459.7 36,732.8

4. 2 (1) 2 (2,3) 12 (5) 166 (4) 3961 (6)
21.5 21.7 133.5 1851.9 44,254.6

5. 4 (1) 2 (3) 1 (2) 7 (4) 337 (5) 581 (6)
43.7 21.8 10.5 77.9 3784.8 6489.3

6. 6 (1) 5 (2) 1 (3) 14 (4) 776 (5) 5956 (8)
65.9 55.0 10.5 156.2 8707.3 66,536.0

7. 12 (1) 5 (2) 2 (3) 114 (4) 793 (5) 150 (8)
132.6 55.2 21.9 1279.8 8896.8 1673.0

8. 9 (1) 1 (2,3) 10 (4) 454 (5,6)
99.3 10.5 112.0 5093.0

9. 3(1) 3 (3) 1 (2) 108 (4) 185 (5) 660 (7)
32.5 32.8 10.5 1210.8 2076.1 7366.8

10. 36 (1) 1 (2,3) 65 (4) 646 (5) 2607 (8)
399.4 10.4 729.6 7240.0 29,143.9

11. 6 (1) 1 (2) 1 (3) 127 (5) 52 (4) 967 (6)
66.0 10.4 10.6 1425.9 579.3 10,805.1

12. 2 (1) 3 (2,3) 52 (4) 119 (7)
21.5 32.9 584.1 1334.6

13. 4(1) 4 (3) 3 (2) 193 (4) 34 (5) 57 (6)
43.8 44.3 32.8 2167.4 380.7 635.7

14. 8 (1) 3 (2) 1 (3) 74 (5) 7 (4) 1001 (6)
88.2 32.8 10.5 830.0 77.3 11,190.1

15. 22 (1) 2 (2) 2 (3) 97 (4) 1152 (5) 4911 (8)
243.8 21.6 21.7 1089.0 12,919.2 54,877.0

* For explanatIOn regarding errors 112 and 3, see comments on pages 39 and 53.

I-I

APPENDIX I: EXPERIMENT DATA FOR SUBJECT PROGRAM B1 (Contmued)

Explanation: Repetltlon no. Failure case no. (Error no.)
Tlme to failure in elapsed seconds

16. 2(1) 5 (3) 5 (2) 39 (5) 13 (4) 814 (7)
21.6 55.5 55.3 437.6 144.2 9101.1

17. 1 (1) 6 (2) 10 (3) 66 (4) 381 (5) 369 (6)
10.5 66.5 111.3 740.8 4272.3 4125.7

18. 3 (1) 4 (3) 5 (2) 87 (4) 31 (5) 1963 (6)
32.5 44.0 55.2 976.3 346.8 21,943.1

19. 5 (1) 5 (2,3) 166 (7) 193 (4)
54.8 55.2 1861.9 2161.1

20. 1 (1) 1 (2) 9 (3) 47 (4) 205 (5) 215 (6)
10.3 10.4 100.1 527.2 2297.4 2401.3

21. 12 (1) 2 (2,3) 67 (4) 492 (5) 1461 (6)
132.6 21.7 752.1 5515.1 16,343.9

22. 11 (1) 2 (2,3) 321 (5) 104 (4) 3239 (7)
121.4 21.7 3605.2 1160.7 36,223.7

23. 1 (1) 3 (2,3) 84 (4) 401 (5) 3368 (8)
10.4 32.8 944.4 4497.4 37,647.8

24. 5 (1) 1 (2,3) 116 (4) 677 (5) 528 (8)
54.8 10.4 1301.9 7591.7 5903.9

25. 5 (1) 1 (2,3) 2 (4) 25 (5) 2124 (6)
54.9 10.5 21.8 279.6 23,742.8

26. 19 (1) 1 (2,3) 21 (4) 49 (5,6)
210.5 10.6 235.1 549.2

27. 3 (1) 1 (2,3) 19 (4) 5.2 (5) 1442 (6)
32.6 10.5 212.8 5744.3 16,123.9

28. 5 (1) 1 (3) 3 (2) 244 (4) 323 (5) 1683 (7)
55.2 10.7 32.8 2739.3 3624.0 18,809.7

29. 1 (1) 1 (3) 1 (2) 207 (4) 108 (5) 1919 (6,8)
10.4 10.5 10.5 2324.8 1212.0 21,448.0

30. 11 (1) 1 (2,3) 112 (4) 48 (5) 449 (6)
121.5 10.5 1257.6 537.9 5018.4

1-2

APPENDIX I: EXPERIMENT DATA FOR SUBJECT PROGRAM Bl (Continued)

ExplanatIon: RepetitIon no. Failure case no. (Error no.)
Time to failure In elapsed seconds

31. 2 (1) 2 (2) 1 (3) 24 (4) 50 (8)
21.4 21.6 10.7 269.0 559.8

32. 6 (1) 1 (2,3) 11 (5) 62 (4) 755 (6)
65.9 10.6 123.0 691.4 8438.7

33. 9 (1) 3 (3) 3 (2) 199 (4) 77 (5) 294 (8)
99.4 33.0 32.6 2234.1 863.8 3283.0

34. 10 (1) 1 (2,3) 8 (4) 40 (5) 564 (8)
110.6 10.5 89.0 448.1 6302.9

35. 11 (1) 1 (3) 4 (2) 165 (4) 77 (5) 3270 (6)
121.6 10.5 44.3 1852.9 860.8 36,540.6

36. 2 (1) 3 (3) 2 (2) 156 (4) 768 (5) 1854 (7)
21.5 32.9 21.6 1752.9 8613.8 20,728.5

37. 18 (1) 1 (2) 6 (3) 48 (4) 7 (5) 1313 (6)
199.4 10.4 66.9 539.0 77.7 14,677.5

38. 2 (1) 1 (2,3) 8 (5) 117 (4) 373 (9)
21.4 10.4 89.3 1306.1 4168.9

39. 2(1) 1 (2,3) 93 (4) 518 (5) 1668 (6)
21.6 10.4 1044.2 5815.6 18,651.1

40. 7 (1) 3 (3) 2 (2) 491 (4) 576 (5) 6030 (9)
77.1 32.8 21.7 5519.2 6462.0 67,377.9

41. 8 (1) 2 (2) 3 (3) 154 (4) 104 (5) 415 (6)
88.3 21.6 33.3 1730.0 1165.4 4632.5

42. 4 (1) 2 (2,3) 77 (5) 213 (4) 3387 (7)
43.7 21.7 866.0 2377.4 37,832.4

43. 3 (1) 4 (2) 1 (3) 176 (4) 980 (5) 1560 (6)
32.6 44.1 10.6 1976.9 10,990.4 17,406.5

44. 5 (1) 1 (3) 2 (2) 95 (4) 162 (5) 282 (8)
54.8 10.7 21.7 1067.8 1816.5 3149.3

45. 1 (1) 2 (2) 1 (3) 50 (4) 267 (5) 1258 (6)
10.4 21.6 10.4 562.1 2992.6 14,066.7

1-3

APPENDIX I: EXPERIMENT DATA FOR SUBJECT PROGRAM Bl (Continued)

Explanation: RepetitIon no. Failure case no. (Error no.)
TIme to fallure in elapsed seconds

46. 1 (1) 1 (2,3) 487 (4) 44 (5) 6372 (7)
10.4 10.5 5476.5 493.8 71,233.0

47. 3(1) 1 (2) 11 (3) 49 (4) 139 (5) 1642 (7)
32.6 10.5 122.3 549.9 1557.9 18,357.2

,
48. 6 (1) 1 (2) 2 (3) 67 (4) 345 (5) 1582 (9)

66.1 10.4 21.8 752.9 3868.5 17,689.7

49. 2 (1) 5 (3) 2 (2) 201 (4) 890 (5) 3702 (6)
21.5 55.1 21.7 2260.3 9984.2 41,360.2

50. 13 (1) 1 (2) 1 (3) 371 (5) 17 (4) 1264 (6)
143.8 10.5 10.5 4167.7 188.5 14,126.6

1-4

APPENDIX J: EXPERIMENT OAT A FOR SUBJECT PROGRAM A2

ExplanatiOn: RepetItion no. Failure case no. (Error no.)
TIme to failure in elapsed seconds

1. 2 (1) 10 (2) 5 (3) 114 (4) 32,808 (5)
.020 .148 .191 2.172 2952.103

2. 1 (1,2) 44 (4) 118 (3) 12,008 (5)
.012 2.121 14.750 267.359

3. 1 (1) 5 (2) 1 (4) 180 (3) 7917 (5)
.008 .080 .070 24.973 157.219

4. 1 (1) 5 (2) 17 (4) 41 (3) 216 (5)
.008 .080 1.230 3.230 3.629

5. 1 (1,2) 20 (3) 103 (4) 5034 (5)
.008 .402 1.711 90.039

6. 1 (1) 3 (3) 4 (2) 5 (4) 413 (5)
.012 .049 .070 .090 13.320

7. 1 (1) 5 (2) 32 (4) 13 (3) 10,779 (5)
.012 .070 .832 1.629 338.655

8. 1 (1) 1 (2) 25 (4) 21 (3) 3986 (5)
.012 .021 .820 2.641 64.770

9. 2 (1) 14 (4) 10 (3) 6 (2) 7218 (5)
.031 .209 .453 .160 267.996

10. 1 (1) 7 (2,4) 12 (3) 11,839 (5)
.012 .100 1.328 203.274

11. 1 (1) 2 (2) 10 (4) 101 (3) 18,813 (5)
.023 .031 .180 8.863 406.640

12. 1 (1) 4 (2) 41 (4) 21 (3) 8655 (5)
.012 .100 2.051 2.840 143.086

13. 1 (1) 2 (2) 105 (4) 93 (3) 5,576 (5)
.008 .039 2.621 11 • .3.59 1.32.016

14. 1 (1,2) 14 (4) 23 (3) 6645 (5)
.008 .301 3.539 145.703

15. 1 (1) 2 (2) 26 (4) 92 (3) 2731 (5)
.020 .051 1.422 5.449 41.523

J-1

APPENDIX J: EXPERIMENT DATA FOR SUBJECT PROGRAM A2 (Continued)

ExplanatIon: RepetItion no. FaIlure case no. (Error no.)
TIme to failure In elapsed seconds

16. 1 (1) 4 (2) 47 (3) 49 (4) 3375 (5)
.012 .121 .980 .879 50.844

17. 1 (1) 11 (2) 27 (4) 27 (3) 2504 (5)
.008 .250 .590 .887 38.367

18. 2 (1) 6 (2) 7 (3) 50 (4) 3789 (5) .031 .150 .129 .898 56.688

19. 1 (1) 6 (2) 47 (3) 132 (4) 245 (5)
.012 .150 2.410 2.293 3.680

20. 2 (1,2) 20 (3) 44 (4) 4121 (5)
.047 .449 .988 62.219

21. 1 (1,4) 10 (2) 127 (3) 10,894 (5)
.012 .320 6.770 249.656

22. 1 (1) 1 (2) 19 (4) 6 (3) 2575 (5)
.008 .020 .328 .090 39.992

23. 1 (1) 12 (2) 7 (4) 25 (3)
.008 .270 .281 1.660

24. 1 (1) 3 (2) 22 (4) .38 (.3)
.008 .070 .461 3.910

25. 1 (1) 2 (2) 50 (4) 16 (3)
.012 .039 1.031 1.520

26. 2 (1) 5 (2) 14 (4) 2 (3)
.031 .141 .223 .262

27. 1 (1) 2 (2) 10 (3) 26 (4)
.012 .061 .332 1.137

28. 1 (1) 1 (2) 64 (4) 30 (3)
.020 .051 .961 1.301

29. 1 (2) 1 (1) 20 (4) 52 (3)
.020 .010 .289 1.113

30. 1 (1) 7 (2) 66 (3) 1 (4)
.020 .180 1.000 .027

J-2

APPENDIX J: EXPERIMENT DATA FOR SUBJECT PROGRAM A2 (Continued)

Explanation: Repetition no. Failure case no. (Error no.)
TIme to failure in elapsed seconds

31. 1 (1) 6 (2) 2 (4) 16 (3)
.012 .160 .051 .973

32. 1 (1,2) 31 (4) 117 (3)
.020 .531 9.379

33. 1 (1) 1 (2) 9 (3) 106 (4)
.020 .039 .438 1.891

34. 1 (1) 3 (2) 3 (4) 37 (3)
.012 .080 .070 5.008

35. 1 (1,2) 1 (4) 1 (3)
.008 .020 .023

36. 1 (1) 7 (2) 2 (3) 5 (5)
.012 .158 .031 .090

37. 3 (2) 1 (1) 60 (4) 77 (3)
.039 .010 2.738 7.930

38. 2 (1) 3 (2) 26 (3) 1 (4)
.039 .080 1.520 .023

39. 1 (1,2) 10 (4) 54 (3)
.008 .172 11.020

40. 1 (1,2) 63 (3) 28 (4)
.012 2.723 .520

41. 3(1) 8 (2) 44 (3) 65 (4)
.039 .170 1.859 1.172

42. 1 (1) 2 (2) 42 (4) 39 (3)
.020 .029 .637 9.219

43. 1 (1,2) 19 (4) 71 (3)
.008 .281 4.539

44. 1 (1,2) 38 (4) 12 (3)
.012 .566 1.398

45. 2 (1) 4 (2) 72 (5)
.031 .090 1.102

J-3

APPENDIX J: EXPERIMENT DATA FOR SUBJECT PROGRAM A2 (ContInued)

ExplanatIOn: Repetition no. Failure case no. (Error no.)
Time to faIlure in elapsed seconds

46. 1 (1) 1 (2) 20 (3) 15 (4)
.012 .020 .410 .277

47. 2 (1) 10 (2) 62 (3) 137 (4)
.039 .250 1.102 2.621

48. 1 (1) 3 (2) 1 (3) 29 (4) .
.012 .080 .031 .527

49. 1 (1) 6 (2) 26 (4) 44 (3)
.020 .191 .551 1.918

50. 1 (1) 2 (2) 8 (3) 145 (4)
.020 .070 .129 2.500

J-4

APPENDIX K: EXPERIMENT DATA FOR SUBJECT PROGRAM B2

Explanation: Repetitlon no. Failure case no. (Error no.)
Time to failure In elapsed seconds

1. 2 (1,2) 1880 (3)
.148 85.055

2. 7 (1) 14 (2) 6739 (3)
.270 .230 247.984

3. 4 (1) 330 (2) 2262 (3)
.078 6.090 98.914

4. 5 (1) 23 (2) 10,993 (3)
.109 .387 288.757

5. 11 (1) 68 (2) 11,924 (3)
.250 1.230 205.164

6. 8 (1) 48 (2) 5802 (3)
.152 .980 104.773

7. 13 (1) 105 (2) 761 (3)
.230 1.871 12.570

8. 2 (1) 9 (2) 19,628 (3)
.031 .148 348.61

9. 2 (1) 10 (2) 5873 (3)
.039 .188 99.078

10. 2 (1) 54 (2) 11,202 (3)
.039 1.027 187.11

11. 2 (1) 41 (2) 537 (3)
.051 .910 8.938

12. 1 (1) 116 (2) 1880 (3)
.020 2.141 31.383

13. 6 (1) 15 (2) 4771 (3)
.098 .223 82.906

14-. 1 (1) 12 (2) 8638 (3)
.008 .199 184.907

15. 4 (1) 23 (2) 116 (3)
.063 .422 3.340

K-1

APPENDIX K: EXPERIMENT OAT A FOR SUBJECT PROGRAM B2 (Continued)

ExplanatIon: Repetition no. Fatlure case no. (Error no.)
Time to failure In elapsed seconds

16. 16 (1) 12 (2) 4067 (3)
.320 .227 93.25

17. 14 (2) 4 (1) 23,398 (3)
.270 .100 905.889

18. 17 (1) 34 (2) 11,416 (3)
.363 .621 238.797

19. 12 (1) 42 (2) 13,551 (3)
.262 .789 388.720

20. 19 (1) 33 (2) 14,895 (3)
.363 .621 835.157

21. 4 (1) 18 (2) 3074 (3)
.066 .309 86.406

22. 8 (1) 9 (2) 3853 (3)
.137 .160 164.168

23. 6 (2) 2 (1) 33,447 (3)
.113 .041 1418.960

24. 1 (2) 5 (1) 1532 (3)
.020 .121 25.430

25. 2 (1) 43 (2) 16,366 (3)
.039 .762 266.973

26. 10 (1) 2 (2) 1526 (3)
.188 .031 24.949

27. 2 (1) 10 (2) 37,447 (3)
.031 .180 621.170

28. 6 (1) 49 (2) 1532 (3)
.109 .961 25.69

29. 11 (1) 56 (2) 12,000 Truncated
.188 1.027 234.92

30. 3 (1) 16 (2)
.059 .281

K-2

APPENDIX K: EXPERIMENT DATA FOR SUBJECT PROGRAM B2 (Continued)

Explanation: Repetl tion no. Failure case no. (Error no.)
Time to failure in elapsed seconds

31. 8 (1) 28 (2)
.211 .551

32. 2(1) 29 (2)
.063 .492

33. 18 (1) 14 (2)
.391 .219

34. 11 (2) 27 (1)
.316 .670

35. 3 (1) 37 (2)
.051 .699

36. 12 (1) 65 (2)
.293 1.137

37. 17 (1) 40 (2)
.480 .730

38. 8 (1) 3 (2)
.184 .051

39. 4 (1) 38 (2)
.141 .648

40. 14 (1) 39 (2)
.449 .770

41. 3 (1) 56 (2)
.090 1.039

42. 2 (1) 7 (2)
.063 .168

43. 7 (1) 2 (2)
.148 .039

44. 3 (1) 53 (2)
.098 1.270

45. 13 (1) 119 (2)
.352 2.090

K-3

APPENDIX K: EXPERIMENT DATA FOR SUBJECT PROGRAM B2 {Continued}

ExplanatIOn: RepetItion no. FaIlure case no. (Error no.)
TIme to failure In elapsed seconds

46. 6 (1) 6 (2)
.160 .098

47. 3 (1) 66 (2)
.090 1.281

48. 5 (1) 56 (2)
.109 .988

49. 3 (1) 3 (2)
.117 .051

50. 2 (1) 12 (2)
.031 .211

K-4

APPENDIX L: EXPERIMENT DATA FOR SUBJECT PROGRAM A3

ExplanatIon: RepetItion no. FaIlure case no. (Error no.)
TIme to faIlure in elapsed CRU's

1. 1 (1) 7 (2) 4 (6,10)
1 3 2

2. 5 (1) 10 (2) 68 (6) 112 (5) 117 (3,4)
3 5 32 63 61

3. 2 (1,4)
1

4. 21 (1,2) 20 (6) 46 (5) 13 (3)
12 13 24 7

5. 7 (1) 20 (5) 10 (3,4)
2 11 8

6. 2 (1) 3 (3) 10 (5) 71 (6) 10 (7)
2 2 6 34 5

7. 6 (1) 28 (6) 19 (5) 35 (7,10)
3 19 9 22

8. 19 (1) 22 (5) 50 (6) 16 (8)
11 13 34 8

9. 1 (1) 34 (2) 102 (7) 76 (5) 52 (6)
0 16 49 54 34

10. 3 (1) 10 (2) 66 (6) 18 (7) 73 (l0)
1 6 32 8 34

11. 3 (1) 70 (2) 11 (5) 25 (4)
3 40 6 15

12. 2 (2) 1 (1) 24 (6,10)
2 1 14

13. 2 (1,5) 2 (2) 47 (8)
1 1 26

14. 3 (1) 64 (2) 5 (5) 24 (6) 3 (4)
4 36 3 11 2

15. 4 (1) 71 (7) 33 (6) 9 (10)
3 41 21 5

L-l

APPENDIX L: EXPERIMENT DATA FOR SUBJECT PROGRAM A3 (Continued)

ExplanatIon: RepetitIon no. Failure case no. (Error no.)
TIme to failure in elapsed CRU's

16. 2 (2) 3 (1) 12 (5,7) 40 (6)
2 2 8 16

17. 2 (1) 4 (2) 38 (4)
2 2 25

18. 4 (1) 5 (2) 44 (6) 59 (5) 4 (10)
1 3 21 33 2

19. 12 (1) 12 (7) 18 (2) 26 (6) 13 (10)
7 8 12 16 9

20. 5 (1) 8 (6) 1 (2) 50 (5) 109 (8)
2 5 0 27 48

21. 1 (1) 13 (2) 20 (6,10)
1 7 8

22. 3 (1) 8 (2) 9 (5) 52 (6) 42 (4)
0 3 5 29 19

23. 2 (1) 7 (6) 25 (2) 35 (4)
1 3 13 16

24. 5 (1) 8 (5) 42 (2) 48 (6,10)
3 4 28 30

25. 2 (1) 19 (6) 63 (5) 23 (2) 16 (3)
1 10 33 17 10

26. 1 (1) 1 (4)
1 0

27. 3 (1) 2 (6) 2 (2) 12 (5) 53 (7)
2 1 0 4 32

28. 1 (1) 12 (5) 45 (7) 45 (2) 3 (4)
0 6 45 21 1

29. 1 (1) 4 (7) 34 (4)
0 1 22

30. 2 (1) 60 (2) 34 (5) 153 (6) 38 (7,10)
1 28 13 84 24

L-2

APPENDIX L: EXPERIMENT DATA FOR SUBJECT PROGRAM A3 (Continued)

Explanation: Repetition no. FaIlure case no. (Error no.)
Time to failure in elapsed CRU's

31. 6 (1,2) 30 (7) 18 (5) 2 (6)
1 17 10 0

32. 2 (1) 60 (2) 15 (5) 45 (6) 21 (3)
0 32 7 15 14

33. 13 (1) 46 (7) 21 (2) 100 (3) 37 (6)
12 22 12 58 18

34. 1 (1) 21 (6) 10 (7) 13 (5) 24 (2)
2 10 7 6 11

35. 2 (1) 5 (3) 2 (7) 15 (2) 13 (6)
2 3 0 7 9

36. 1 (1) 25 (2) 3 (6) 77 (7,10)
0 14 2 41

37. 1 (1) 17 (5) 9 (2) 9 (6) 9 (10)
1 8 7 5 7

38. 2 (1) 2 (8)
2 1

39. 5 (1) 1 (6) 51 (2) 58 (5) 209 (3)
3 1 26 26 102

40. 5 (1) 12 (5) 50 (6) 5 (2) 73 (10)
4 6 38 4 45

41. 3 (1) 40 (8)
1 21

42. 1 (1) 8 (5) 1 (2) 23 (6) 17 (10)
0 6 1 13 9

43. 4 (1) 18 (6) 27 (5) 63 (2) 12 (8)
2 10 17 42 7

44. 10 (2) 3 (1) 7 (3,9)
8 1 5

45. 1 (1) 11 (8)
1 5

L-3

APPENDIX L: EXPERIMENT DATA FOR SUBJECT PROGRAM A3 (ContInued)

Explanation: RepetItion no. FaIlure case no. (Error no.)
Time to failure in elapsed CRU's

46. 3 (1) 70 (2) 151 (5) 34 (6) 125 (10)
2 40 91 19 78

47. 5 (1) 12 (5) 57 (4)
2 5 45

48. 6 (1) 20 (3) 7 (5) 23 (6) 85 (2)
3 11 4 12 44

49. 2 (1) 19 (6) 9 (2) II (7,10)
1 11 5 1

50. 1 (2) 3 (1) 16 (7) 15 (3) 13 (5)
2 2 6 12 8

L-4

APPENDIX M: EXPERIMENT DATA FOR SUBJECT PROGRAM B3

Explanation: Repetition no. Failure case no. (Error no.)
Time to failure in elapsed CRU's

1. 3 (1) 21 (2) 145 (6)
2 14 62

2. 2 (1) 23 (2) 157 (5) 388 (4) 75 (3) 206 (7)
1 10 66 221 32 91

3. 4 (2) 2 (1) 54 (7)
3 2 21

4. 4 (1) 4 (2) 9 (5) 77 (7)
3 2 5 43

5. 1 (1) 23 (2) 111 (4) 28 (7)
1 15 52 12

6. 1 (1) 23 (2) 162 (4) 34 (5) 755 (7)
1 10 74 18 354

7. 3 (1) 5 (2) 51 (5) 259 (7)
2 0 30 139

8. 2(1) 16 (2) 31 (5) 312 (7)
1 9 13 166

9. 3(1) 2 (2) 7 (5) 80 (7)
2 1 2 53

10. 1 0) 23 (2) 190 (5) 83 (7)
0 14 97 44

11. 2 (1) 23 (2) 60 (5) 166 (7)
0 15 26 94

12. 4 (1) 10 (2) 60 (5) 554 (4) 318 (3) 1128 (6)
2 5 34 312 154 520

13. 1 (1) 19 (2) 158 (5) 141 (4) 833 (7)
1 10 77 81 390

14. 1 (1) 5 (2) 12 (5) 155 (4) 174 (7)
0 1 7 83 67

15. 6 (1) 5 (2) 246 (5) 380 (4) 624 (7)
2 2 117 194 308

M-l

APPENDIX M: EXPERIMENT DATA FOR SUBJECT PROGRAM B3 (Continued)

Explanation: Repetition no. Failure case no. (Error no.)
Time to failure in elapsed CRU's

16. 7 (1) 1 (2) 8 (7)
4 0 5

17. 1 (1) 9 (2,4) 72(7)
1 6 32

18. 1 (1) 26 (2) 68 (4) 105 (5) 75 (7)
1 13 32 48 30

19. 2 (2) 1 (1) 82 (7)
1 1 35

20. 2 (2) 8 (1) 134 (7)
0 2 62

21. 1 (2) 2(1) 247 (5) 467 (7)
0 0 116 250

22. 1 (1) 6 (2) 211 (5) 54 (4) 351 (7)
0 1 88 29 152

23. 3 (1) 6 (2) 328 (7)
2 0 141

24. 3 (2) 1 (1) 70 (6)
1 1 27

25. 1 (1) 14 (2) 51 (5) 571 (7)
0 6 28 338

26. 1 (1) 8 (2) 61 (4) 593 (5) 539 (3) 785 (7)
1 5 26 238 225 364

27. 3 (1) 2 (2) 165 (7)
1 1 75

28. 2(1) 10 (2) 92 (5) 26 (4) 107 (7)
0 7 39 20 51

29. 2 (1) 9 (2) 32 (7)
0 4 15

30. 4 (1) 1 (2) 49 (5) 186 (4) 546 (7)
2 0 17 103 257

M-2

APPENDIX M: EXPERIMENT DATA FOR SUBJECT PROGRAM B3 (Continued)

Explanation: Repeti tion no. Failure case no. (Error no.)
Time to failure in elapsed CRU's

31. 2 (1) 7 (5) 14 (2) 338 (7)
1 5 7 179

32. 2(1) 7 (2) 76 (5) 681 (7)
1 3 28 391

33. 1 (1) 4 (2) 72 (5) 109 (7)
0 4 32 55

34. 1 (1) 3 (2) 96 (7)
0 1 43

35. 2 (1) 6 (2) 122 (4) 21 (5) 216 (3) 1101 (7)
1 1 55 10 102 528

36. 7 (2) 1 (1) 69 (5) 231 (6)
2 1 32 117

37. 2(1) 5 (2,3) 114 (5) 236 (6)
1 2 52 90

38. 2 (1) 1 (2) 459 (3) 14 (5) 405 (7)
2 1 197 7 185

39. 4 (1) 6 (2,4) 134 (5) 1022 (7)
2 3 63 469

40. 2 (1) 25 (2) 89 (6)
1 12 42

41. 1 (1) 21 (2) 46 (7)
1 13 23

42. 1 (1) 5 (2) 64 (5) 144 (7)
1 4 28 82

43. 2 (2) 2 (1) 2 (4) 226 (6)
1 2 1 105

44. 5 (1) 4 (2) 65 (7)
2 1 30

45. 6 (1) 7 (2) 31 (5) 27 (6)
1 4 13 12

M-3

APPENDIX M: EXPERIMENT DATA FOR SUBJECT PROGRAM B3 (Contmued)

Explanation: Repetition no. Failure case no. (Error no.)
Time to failure in elapsed CRU's

46. 1 (1) 1 (2,4,5) 669 (7)
0 0 279

47. 16 (1) 21 (2) 395 (5) 46 (7)
6 14 181 24

48. 6 (1) 17 (2) 2 (5) 657 (4) , --, 105 (6)
3 8 1 360 50

49. 1 (1) 6 (2) 56 (7)
0 4 25

50. 1 (1) 25 (2) 165 (4) 217 (7)
0 14 76 99

M-4

1 Report No I 2 Government Accession No 3 RecIpient's Catalog No

NASA CR-165836

4 Title and Subtitle 5 Report Date

Software Rellabillty: Repetltlve Run
February 9, 1982

ExperimentatIOn and Modellmg 6 Performing Organization Code

7 Author(s)
8 Performing Organization Report No

Phyllis M. Nagel
James A. Sknvan

BCS-40366

10 Work Unit No

9 Performing Organization Name and Address

Boemg Computer Servlces Company 11 Contract or Grant No
Space and Mllltary Appllcatlons Dlvlslon

NASl-1648l
P.o. Box 24346
Seattle, WA 98124

13 Type of Report and Period Covered

12 Sponsoring Agency Name and Address Contractor

Natlonal Aeronautlcs and Space Admlnlstratlon
14 Sponsoring Agency Code

Washmgton, D.C. 20546

15 Supplementary Notes

Langley Techmcal Momtor: Gerard E. Mlgneault

16 Abstract

ThlS paper reports on a software expenment conducted wlth repetltlve run samplmg. A run lS a sequence

of mterfailure tlmes recorded on each of a senes of program states. Runs are replicated by relmtlallzmg

the program to the state of ltS ongmal release and repeatmg the process of obtammg mterfallure tlmes on

mdependently generated mput data. Thls data has been used to vertfy that mterfallure tlmes are very

nearly exponentlally dlstnbuted and to obtam good estlmates of the fallure rates of mdlvidual errors and

demonstrate how wldely they vary. Thls fact mvalldates many of the popular software rehablllty models

now muse. It was observed that the log fallure rate of Interfallure tlme was nearly lmear as a functlOn of

the number of errors corrected. A new model of software rellablhty lS proposed that Incorporates these

observa tlOns.

17 Key Words (Suggested by Author(s)) 18 Distribution Statement

'Software rellablhty, software errors, software Unclassifled - Unhmlted

testing, rehablhty modelling, software
expert menta tlOn

19 SecUrltv Classlf (of thiS report) 20 SecUrity Classlf (of thiS page) 21 No of Pages 22 Price'

Unclasslfied U nclasslf led 134

* For sale by the NatIOnal Technical Information SerVice, Springfield. Virginia 22161

NASA-C-168 (Rev 10-75)

End of Document

