1,007 research outputs found

    Stable water isotopes in HadCM3: isotopic signature of El Nino-Southern Oscillation and the tropical amount effect

    Get PDF
    Stable water isotopes have been added to the full hydrological cycle of the Hadley Centre Climate model (HadCM3) coupled atmosphere-ocean GCM. Simulations of delta O-18 in precipitation and at the ocean surface compare well with observations for the present-day climate. The model has been used to investigate the isotopic anomalies associated with ENSO; it is found that the anomalous delta O-18 in precipitation is correlated with the anomalous precipitation amount in accordance with the "amount effect.'' The El Nino delta O-18 anomaly at the ocean surface is largest in coastal regions because of the mixing of ocean water and the more depleted runoff from the land surface. Coral delta O-18 anomalies were estimated, using an established empirical relationship, and generally reflect ocean surface delta O-18 anomalies in coastal regions and sea surface temperatures away from the coast. The spatial relationship between tropical precipitation and delta O-18 was investigated for the El Nino anomaly simulated by HadCM3. Weighting the El Nino precipitation anomaly by the precipitation amount at each grid box gave a large increase in the spatial correlation between tropical precipitation and delta O-18. This improvement was most apparent over land points and between 10 and 20 degrees of latitude

    A new direction in the pathogenesis of idiopathic pulmonary fibrosis?

    Get PDF
    A recent review article suggested that idiopathic pulmonary fibrosis (IPF) is a disease that is associated more with abnormal wound healing than with inflammation. Data derived from transgenic and gene transfer rodent models suggest that lung inflammation may be a necessary but insufficient component of IPF, and that at some point in the natural history of the disease IPF becomes no longer dependent on the inflammatory response for propagation. Altered microenvironment and involvement of epithelial cell/mesenchymal cell interaction are the most likely contributors to the pathogenesis of this chronic progressive disorder

    Shrinking the lymphatic filariasis map of Ethiopia: reassessing the population at risk through nationwide mapping

    Get PDF
    BACKGROUND Mapping of lymphatic filariasis (LF) is essential for the delineation of endemic implementation units and determining the population at risk that will be targeted for mass drug administration (MDA). Prior to the current study, only 116 of the 832 woredas (districts) in Ethiopia had been mapped for LF. The aim of this study was to perform a nationwide mapping exercise to determine the number of people that should be targeted for MDA in 2016 when national coverage was anticipated. METHODOLOGY/PRINCIPAL FINDING A two-stage cluster purposive sampling was used to conduct a community-based cross-sectional survey for an integrated mapping of LF and podoconiosis, in seven regional states and two city administrations. Two communities in each woreda were purposely selected using the World Health Organization (WHO) mapping strategy for LF based on sampling 100 individuals per community and two purposely selected communities per woreda. Overall, 130 166 people were examined in 1315 communities in 658 woredas. In total, 140 people were found to be positive for circulating LF antigen by immunochromatographic card test (ICT) in 89 communities. Based on WHO guidelines, 75 of the 658 woredas surveyed in the nine regions were found to be endemic for LF with a 2016 projected population of 9 267 410 residing in areas of active disease transmission. Combining these results with other data it is estimated that 11 580 010 people in 112 woredas will be exposed to infection in 2016. CONCLUSIONS We have conducted nationwide mapping of LF in Ethiopia and demonstrated that the number of people living in LF endemic areas is 60% lower than current estimates. We also showed that integrated mapping of multiple NTDs is feasible and cost effective and if properly planned, can be quickly achieved at national scale

    Topical rosiglitazone is an effective anti-scarring agent in the cornea

    Get PDF
    Corneal scarring remains a major cause of blindness world-wide, with limited treatment options, all of which have side-effects. Here, we tested the hypothesis that topical application of Rosiglitazone, a Thiazolidinedione and ligand of peroxisome proliferator activated receptor gamma (PPARγ), can effectively block scar formation in a cat model of corneal damage. Adult cats underwent bilateral epithelial debridement followed by excimer laser ablation of the central corneal stroma to a depth of ~160 µm as a means of experimentally inducing a reproducible wound. Eyes were then left untreated, or received 50 µl of either 10 µM Rosiglitazone in DMSO/Celluvisc, DMSO/Celluvisc vehicle or Celluvisc vehicle twice daily for 2 weeks. Cellular aspects of corneal wound healing were evaluated with in vivo confocal imaging and post-mortem immunohistochemistry for alpha smooth muscle actin (αSMA). Impacts of the wound and treatments on optical quality were assessed using wavefront sensing and optical coherence tomography at 2, 4, 8 and 12 weeks post-operatively. In parallel, cat corneal fibroblasts were cultured to assess the effects of Rosiglitazone on TGFβ-induced αSMA expression. Topical application of Rosiglitazone to cat eyes after injury decreased αSMA expression and haze, as well as the induction of lower-order and residual, higher-order wavefront aberrations compared to vehicle-treated eyes. Rosiglitazone also inhibited TGFβ-induced αSMA expression in cultured corneal fibroblasts. In conclusion, Rosiglitazone effectively controlled corneal fibrosis in vivo and in vitro, while restoring corneal thickness and optics. Its topical application may represent an effective, new avenue for the prevention of corneal scarring with distinct advantages for pathologically thin corneas

    Preparing teams of neuro-typical and neuro-atypical students with a computer orchestrated group learning environment for collaborative work:A multi case study

    Get PDF
    The number of students entering higher education with a diagnosis of Autism or ADHD is on the rise, and within engineering it is higher than the sector average. This calls for understanding how these students experience higher education and how best to support them in overcoming socio-communication challenges and developing the teamwork skills required by industry. This article investigates a novel Computer Orchestrated Group Learning Environment (COGLE) that orchestrates content delivery and learning in small face-to-face groups of neuro-typical (NT) and neuroatypical (NAT) engineering students. This research uses a literal replication logic, where multiple similar case studies contribute evidence towards analytical generalisation and transferability. COGLE is used in the first case in a flipped classroom setting and in the second case within a Project Based Learning setting. The teamwork skills of NT and NAT students were compared. Normalised learning gain (NLG) scores were computed using pre and post test data. Qualitative comments provide insights into the experience of NT and NAT students. Key lessons learnt highlight the importance of learning together to master content before engaging in collaborative activities such as peer instruction commonly within flipped classrooms and teamwork within Project Based Learning. In both case studies, NT and NAT students had comparable NLG scores and developed their team working skills. This research shows that both staff and students can benefit from COGLE as it prepares students for collaborative working by improving both technical knowledge and team working skills freeing up staff to focus on guiding and supporting student learning

    Dysbiosis in inflammatory bowel disease: a role for bacteriophages?

    Get PDF
    International audienceIntestinal bacteria have been implicated in theinitiation and amplification of inflammatory bowel disease (IBD). The dysbiosis theory, reviewed by Tamboli et al (Gut 2004;53:1), is that an imbalance between putative ‘‘harmful'' versus ‘‘protective'' bacterial species may promote chronic intestinal inflammation

    Sea ice feedbacks influence the isotopic signature of Greenland ice sheet elevation changes: Last interglacial HadCM3 simulations

    Get PDF
    Changes in the Greenland ice sheet (GIS) affect global sea level. Greenland stable water isotope (δ18O) records from ice cores offer information on past changes in the surface of the GIS. Here, we use the isotope-enabled Hadley Centre Coupled Model version 3 (HadCM3) climate model to simulate a set of last interglacial (LIG) idealised GIS surface elevation change scenarios focusing on GIS ice core sites. We investigate how δ18O depends on the magnitude and sign of GIS elevation change and evaluate how the response is altered by sea ice changes. We find that modifying GIS elevation induces changes in Northern Hemisphere atmospheric circulation, sea ice and precipitation patterns. These climate feedbacks lead to ice-core-averaged isotopic lapse rates of 0.49 ‰ (100 m)−1 for the lowered GIS states and 0.29 ‰ (100 m)−1 for the enlarged GIS states. This is lower than the spatially derived Greenland lapse rates of 0.62–0.72 ‰ (100 m)−1. These results thus suggest non-linearities in the isotope–elevation relationship and have consequences for the interpretation of past elevation and climate changes across Greenland. In particular, our results suggest that winter sea ice changes may significantly influence isotope–elevation gradients: winter sea ice effect can decrease (increase) modelled core-averaged isotopic lapse rate values by about −19 % (and +28 %) for the lowered (enlarged) GIS states, respectively. The largest influence of sea ice on δ18O changes is found in coastal regions like the Camp Century site

    Numerical modelling of MPA-CVD reactors with the discontinuous Galerkin finite element method

    Get PDF
    In this article we develop a fully self consistent mathematical model describing the formation of a hydrogen plasma in a microwave power assisted chemical vapour deposition (MPA-CVD) reactor employed for the manufacture of synthetic diamond. The underlying multi-physics model includes constituent equations for the background gas mass average velocity, gas temperature, electromagnetic field energy and plasma density. The proposed mathematical model is numerically approximated based on exploiting the discontinuous Galerkin finite element method. We demonstrate the practical performance of this computational approach on a variety of CVD reactor geometries for a range of operating conditions
    • …
    corecore