180 research outputs found

    Online Deliberation in Academia: Evaluating the Quality and Legitimacy of Cooperatively Developed University Regulations

    Get PDF
    This article focuses on the potential of online participation to enable the cooperative development of norms by affected stakeholders, investigating whether such processes can produce norms of both high quality and legitimacy. To answer this question, we designed, implemented, and evaluated an online norm setting process that goes beyond the scope of those usually described in the literature. Taking as a case study a process to redraft the examination regulations for doctoral degrees at a science faculty of a German university, we show that such instances of online deliberation can integrate the diversity of opinions of all affected stakeholders. The result was a norm that implemented previously controversial external recommendations for doctoral dissertation procedures and that was met with high satisfaction from both those who participated as well as those who remained passive. While we believe that the university context in which this process was conducted is particularly promising for such efforts because of its organization, its members, and the issue that was at stake, we argue that similar conducive conditions exist, for example, for political parties. As such, the findings can be instructive for understanding the potential and limits of successful online participation in other contexts

    M-CSF instructs myeloid lineage fate in single haematopoietic stem cells

    Get PDF
    Under stress conditions such as infection or inflammation the body rapidly needs to generate new blood cells that are adapted to the challenge. Haematopoietic cytokines are known to increase output of specific mature cells by affecting survival, expansion and differentiation of lineage-committed progenitors, but it has been debated whether long-term haematopoietic stem cells (HSCs) are susceptible to direct lineage-specifying effects of cytokines. Although genetic changes in transcription factor balance can sensitize HSCs to cytokine instruction, the initiation of HSC commitment is generally thought to be triggered by stochastic fluctuation in cell-intrinsic regulators such as lineage-specific transcription factors, leaving cytokines to ensure survival and proliferation of the progeny cells. Here we show that macrophage colony-stimulating factor (M-CSF, also called CSF1), a myeloid cytokine released during infection and inflammation, can directly induce the myeloid master regulator PU.1 and instruct myeloid cell-fate change in mouse HSCs, independently of selective survival or proliferation. Video imaging and single-cell gene expression analysis revealed that stimulation of highly purified HSCs with M-CSF in culture resulted in activation of the PU.1 promoter and an increased number of PU.1(+) cells with myeloid gene signature and differentiation potential. In vivo, high systemic levels of M-CSF directly stimulated M-CSF-receptor-dependent activation of endogenous PU.1 protein in single HSCs and induced a PU.1-dependent myeloid differentiation preference. Our data demonstrate that lineage-specific cytokines can act directly on HSCs in vitro and in vivo to instruct a change of cell identity. This fundamentally changes the current view of how HSCs respond to environmental challenge and implicates stress-induced cytokines as direct instructors of HSC fate

    Efficient CRISPR-mediated mutagenesis in primary immune cells using CrispRGold and a C57BL/6 Cas9 transgenic mouse line

    Get PDF
    Applying clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR associated protein 9 (Cas9)-mediated mutagenesis to primary mouse immune cells, we used high-fidelity single guide RNAs (sgRNAs) designed with an sgRNA design tool (CrispRGold) to target genes in primary B cells, T cells, and macrophages isolated from a Cas9 transgenic mouse line. Using this system, we achieved an average knockout efficiency of 80% in B cells. On this basis, we established a robust small-scale CRISPR-mediated screen in these cells and identified genes essential for B-cell activation and plasma cell differentiation. This screening system does not require deep sequencing and may serve as a precedent for the application of CRISPR/Cas9 to primary mouse cells

    Factors associated with shunt dynamic in patients with cryptogenic stroke and patent foramen ovale: an observational cohort study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>As previously reported there is evidence for a reduction in right to left shunt (RLS) in stroke patients with patent foramen ovale (PFO). This occurs predominantly in patients with cryptogenic stroke (CS). We therefore analysed factors associated with a shunt reduction on follow-up in stroke patients suffering of CS.</p> <p>Methods</p> <p>On index event PFO and RLS were proven by transesophageal echocardiography and contrast-enhanced transcranial Doppler-sonography (ce-TCD). Silent PE was proved by ventilation perfusion scintigraphy (V/Q) within the stroke work-up on index event; all scans were re-evaluated in a blinded manner by two experts. The RLS was re-assessed on follow-up by ce-TCD. A reduction in shunt volume was defined as a difference of ≥20 microembolic signals (MES) or the lack of evidence of RLS on follow-up. For subsequent analyses patients with CS were considered; parameters such as deep vein thrombosis (DVT) and silent pulmonary embolism (PE) were analysed.</p> <p>Results</p> <p>In 39 PFO patients suffering of a CS the RLS was re-assessed on follow-up. In all patients (n = 39) with CS a V/Q was performed; the median age was 40 years, 24 (61.5%) patients were female. In 27 patients a reduction in RLS was evident. Silent PE was evident in 18/39 patients (46.2%). Factors such as atrial septum aneurysm, DVT or even silent PE were not associated with RLS dynamics. A greater time delay from index event to follow-up assessment was associated with a decrease in shunt volume (median 12 vs. 6 months, <it>p </it>= 0.013).</p> <p>Conclusions</p> <p>In patients with CS a reduction in RLS is not associated with the presence of a venous embolic event such as DVT or silent PE. A greater time delay between the initial and the follow-up investigation increases the likelihood for the detection of a reduction in RLS.</p

    c-Maf controls immune responses by regulating disease-specific gene networks and repressing IL-2 in CD4+ T cells

    Get PDF
    The transcription factor c-Maf induces the anti-inflammatory cytokine IL-10 in CD4+ T cells in vitro. However, the global effects of c-Maf on diverse immune responses in vivo are unknown. Here we found that c-Maf regulated IL-10 production in CD4+ T cells in disease models involving the TH1 subset of helper T cells (malaria), TH2 cells (allergy) and TH17 cells (autoimmunity) in vivo. Although mice with c-Maf deficiency targeted to T cells showed greater pathology in TH1 and TH2 responses, TH17 cell–mediated pathology was reduced in this context, with an accompanying decrease in TH17 cells and increase in Foxp3+ regulatory T cells. Bivariate genomic footprinting elucidated the c-Maf transcription-factor network, including enhanced activity of NFAT; this led to the identification and validation of c-Maf as a negative regulator of IL-2. The decreased expression of the gene encoding the transcription factor RORγt (Rorc) that resulted from c-Maf deficiency was dependent on IL-2, which explained the in vivo observations. Thus, c-Maf is a positive and negative regulator of the expression of cytokine-encoding genes, with context-specific effects that allow each immune response to occur in a controlled yet effective manner

    Physiological roles of macrophages

    Get PDF
    Macrophages are present in mammals from midgestation, contributing to physiologic homeostasis throughout life. Macrophages arise from yolk sac and foetal liver progenitors during embryonic development in the mouse and persist in different organs as heterogeneous, self-renewing tissue-resident populations. Bone marrow-derived blood monocytes are recruited after birth to replenish tissue-resident populations and to meet further demands during inflammation, infection and metabolic perturbations. Macrophages of mixed origin and different locations vary in replication and turnover, but are all active in mRNA and protein synthesis, fulfilling organ-specific and systemic trophic functions, in addition to host defence. In this review we emphasise selected properties and non-immune functions of tissue macrophages which contribute to physiologic homeostasis

    Discovery and Characterization of Novel Vascular and Hematopoietic Genes Downstream of Etsrp in Zebrafish

    Get PDF
    The transcription factor Etsrp is required for vasculogenesis and primitive myelopoiesis in zebrafish. When ectopically expressed, etsrp is sufficient to induce the expression of many vascular and myeloid genes in zebrafish. The mammalian homolog of etsrp, ER71/Etv2, is also essential for vascular and hematopoietic development. To identify genes downstream of etsrp, gain-of-function experiments were performed for etsrp in zebrafish embryos followed by transcription profile analysis by microarray. Subsequent in vivo expression studies resulted in the identification of fourteen genes with blood and/or vascular expression, six of these being completely novel. Regulation of these genes by etsrp was confirmed by ectopic induction in etsrp overexpressing embryos and decreased expression in etsrp deficient embryos. Additional functional analysis of two newly discovered genes, hapln1b and sh3gl3, demonstrates their importance in embryonic vascular development. The results described here identify a group of genes downstream of etsrp likely to be critical for vascular and/or myeloid development

    The protozoan parasite Theileria annulata alters the differentiation state of the infected macrophage and suppresses musculoaponeurotic fibrosarcoma oncogene (MAF) transcription factors

    Get PDF
    AbstractThe tick-borne protozoan parasite Theileria annulata causes a debilitating disease of cattle called Tropical Theileriosis. The parasite predominantly invades bovine macrophages (mϕ) and induces host cell transformation by a mechanism that has not been fully elucidated. Infection is associated with loss of characteristic mϕ functions and phenotypic markers, indicative of host cell de-differentiation. We have investigated the effect of T. annulata infection on the expression of the mϕ differentiation marker c-maf. The up-regulation of c-maf mRNA levels observed during bovine monocyte differentiation to mϕ was suppressed by T. annulata infection. Furthermore, mRNA levels for c-maf and the closely related transcription factor mafB were significantly lower in established T. annulata-infected cell-lines than in bovine monocyte-derived mϕ. Treatment of T. annulata-infected cells with the theileriacidal drug buparvaquone induced up-regulation of c-maf and mafB, which correlated with altered expression of down-stream target genes, e.g. up-regulation of integrin B7 and down-regulation of IL12A. Furthermore, T. annulata infection is associated with the suppression of the transcription factors, Pu.1 and RUNX1, and colony stimulating factor 1 receptor (CSF1R) which are also involved in the regulation of monocyte/mϕ differentiation. We believe these results provide the first direct evidence that T. annulata modulates the host mϕ differentiation state, which may diminish the defence capabilities of the infected cell and/or promote cell proliferation. Musculoaponeurotic fibrosarcoma oncogene (MAF) transcription factors play an important role in cell proliferation, differentiation and survival; therefore, regulation of these genes may be a major mechanism employed by T. annulata to survive within the infected mϕ
    corecore