
Supplementary information: 

 

Computational Methods: 

Gene expression analysis 

For in vitro differentiated TH cells, samples were normalized using DESeq1 within the Strand 

NGS software suite. A gene was retained for further analysis if it had > 20 reads in all three 

replicates in at least one condition, resulting in 12,742 genes (Naive, TH0+block, TH0, TH1, 

TH1+IL-27, TH2, TH17, VitD3/Dex at times 0, 0.5, 2 and 4 hours post re-stimulation in vitro, 

and Foxp3RFP+IL-10GFP+ or IL-10GFP- ex vivo) have values within cut-off). To identify 

genes of interest, we assessed the Pearson correlation coefficients of their expression across 34 

samples with that of IL10 (Strand NGS); we identified transcription factors among these genes 

using a manually curated list using GO annotations and GeneSpring GX, Agilent 

Technologies). 

 

For ex vivo CD4+ T cells, all analyses were performed with the R statistical package version 

3.3.1 (2016) and Bioconductor libraries version 3.32.   For each sample, expressed genes were 

identified by fitting a two-component Gaussian mixture to the log2 (raw count+1) value with 

mclust3, using a probability threshold of belonging to the expressed class of 0.1. A gene was 

considered reliably expressed if it belonged to the expressed class in ≧ 3 samples. The log2 

intensity values of the identified 11,769 reliably expressed genes were normalized across all 

samples using limma4. Unsupervised hierarchical clustering analysis of the samples was 

performed using the Spearman correlation as a distance measure and the complete-linkage 

clustering using the R package gplots5 (Figure 3a). 

 

Singular Value Decomposition (SVD) analysis 

SVD was performed on the filtered and quantile normalized mRNA expression data set (11,769 

genes) to characterize the overall structure of the data and identify major sources of gene 

expression variation. Three linear models were fitted to each right singular vector: the full 

linear model, in which the design formula contains both the disease and the strain factors, and 

two reduced models, in which either the strain or the disease factor was used. To test the 

association of each principal component with the disease and/or the strain factor we performed 

an analysis of variance between the full linear model (strain and disease) and each of the two 

individual reduced models; both the P-value of the Chi-squared-test of ANOVA and the 
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Akaike Information Criterion (AIC) were considered. Finally, the most informative 

components were identified using the following criteria: (1) the fraction of explained variance 

in gene expression for a given component is above 4% (visual identification of the threshold 

which corresponds to the lower part of the elbow), (2) P-value of the Chi-test of ANOVA < 

0.01 between full and the reduced model, and (3) AIC of the reduced model is lower than AIC 

of the full model (Figure 3b-c). To visualize the right singular vectors, we plotted the average 

expression of right singular vectors per sample group coloring all samples corresponding to 

Maf fl/fl black, and those corresponding to Maf fl/fl Cd4-cre white (Figure 3d). The biological 

interpretation of the principal components was facilitated by the identification of the genes 

whose expression profiles correlate and contribute most strongly (either positively or 

negatively) with the expression profile of the singular vector. The highest (most positive scores 

in both projection and correlation) and lowest (most negative scores in both correlation and 

projection) genes were selected for each singular vector using the K-mean clustering method 

allowing 10 clusters per component, and selecting those genes belonging to the most positive 

and negative cluster. 

 

GO analysis of the genes contributing most to each component of the SVD analysis and the 

differentially up- and down-regulated genes was performed using a Fisher test with topGO 

Bioconductor package8. Only GO terms containing at least 10 annotated genes were 

considered. A P-value of 0.05 was used as the level of significance. The top significant GO 

terms were manually selected by removing redundant GO terms and terms which contain fewer 

than 5 significant genes (Figure 3d). 

 

Differential gene expression 

For differential gene expression analysis, samples were normalized using DESeq1 within 

Strand NGS. For each infection condition, genes were then filtered (>20 reads in all three 

replicates), leaving 12,037 (malaria), 13,554 (HDM allergy) and 12,053 genes (EAE). with 

more than 20 reads where at least 100 percent of samples in any 1 out of 2 conditions (Maf fl/fl 

and Maf fl/fl Cd4-cre) have values within cut-off. Differentially expressed genes were 

determined by two-sided moderated t-test (Avadis NGS; cut off P<0.05 and absolute fold 

change>1.5); 2,635 (malaria), 1,073 in (HDM allergy) and 265 (EAE). Proportional Venn 

diagrams were generated using eulerAPE6 (Figure 4a). Ingenuity Pathway Analysis (IPA) 

(QIAGEN Redwood City, www.qiagen.com/ingenuity) was used to retrieve the following 

annotations: transcription regulator, ligand dependent nuclear receptor, transmembrane 
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receptor + G-protein coupled receptor and cytokine + growth factor (249, 53 and 138 genes 

respectively = 440 in total of 3,967 differentially expressed genes). We used the IPA annotated 

gene-gene interactions to generate networks visualized with Cytoscape7 (Figure 4b-d). 

 

ChIP-seq data analysis 

Raw sequencing reads for c-Maf ChIP-seq were obtained from GEO GSE40918 (single end, 

read length 36 nt)9 and given the nature of the library was analyzed as follows. Reads were 

trimmed using Trimmomatic 0.36 (parameters HEADCROP:2 TRAILING:25 MINLEN:26)10 

and then mapped to the mouse genome mm10 using Bowtie 1.1.2 (parameters y -m2 --best --

strata -S)11. Peaks were called for each replicate using MACS2 2.1.1 (default parameters; q-

value < 0.01)12 and a consensus peak set was generated from the union of both replicates; for 

overlapping peaks, the one with the best confidence score was kept. This resulted in 45,727 c-

MAF ChIP-seq peaks (Supplementary figure 5). A consensus c-Maf binding motif was inferred 

from the ChIP-seq dataset using the CRUNCH suite13 and validated using the ~2000 most 

confident ChIPseq peaks, as determined by q-value, using the MEME-ChIP14 software (data 

not shown). The motif is shown in Supplementary figure 5. All queries for motif matches on 

both DNA strands within the ATAC-seq peak sequences were performed using FIMO15. 

 

ATAC-seq data analysis 

ATAC-seq libraries were sequenced using Illumina HiSeq 2500 (paired end, lengths ranging 

from 50 to 100 nt) and given the nature of the library was analyzed as follows (method is 

distinct from ChIP-seq analysis owing to differences in data content). Adapters and low-quality 

bases were removed from reads using Skewer 0.2.216 (parameters -m pe -q 26 -Q 30 -e -l 30 -

L 50). Reads were mapped to the mouse genome mm10 using BWA-MEM17 with default 

parameters. Duplicates were removed using Picard 2.1.118; discordant alignments, and/or with 

a mapQ<30 were discarded using SAMtools 1.3.119. Mapped reads were shifted by +4 and -5 

bp on the forward or reverse strands respectively to account for the transposase insertion. 

Fragments spanning nucleosomes (>99bp length) were removed as performed by Buenrostro 

et al20. Peaks representing open chromatin regions were identified for each sample using 

MACS2 2.1.1 using parameters designed for finding enrichment in cutting sites12 (parameters 

--keep-dup all --nomodel --shift -100 --extsize 200; q-value < 0.01). 

 

We used DiffBind 2.0.221 (parameters dba.count:minOverlap=0, score= 

DBA_SCORE_RPKM, bRemoveDuplicates=FALSE, bUseSummarizeOverlaps= TRUE; 
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dba.analyze: method=DBA_DESEQ2, bFullLibrarySize=T) to normalize for library sizes 

across all samples, and we calculated the Spearman correlation coefficients of normalized read 

counts between each pair of  ATAC-seq sample. Samples were hierarchically clustered using 

the pairwise correlation coefficients and visualized using the BioConductor ComplexHeatmap 

library22 (Figure 6a). 

 

For each disease model, we defined a consensus set of ATAC-seq peaks as the union of peaks 

found in the Maf fl/fl Cd4-cre and Maf fl/fl samples (Malaria: 87,533; HDM: 54,745; EAE: 

42,286 peaks). Diffbind 2.0.2 was also used to identify changes in ATAC-seq peaks between 

Maf fl/fl Cd4-cre and Maf fl/fl, interpreted as chromatin remodeling events (Figure 6b; absolute 

fold-change in read coverage>1.5 and FDR<0.05). The sequences underlying the 1,273 

remodeled peaks belonging to the malaria dataset were subjected to de novo motif discovery 

using MEME-ChIP14. 

 

Assigning direct and indirect targets of c-Maf regulation 

ATAC-seq peaks were defined as c-Maf-associated if they overlapped with a c-Maf ChIP-seq 

peak or contained a c-Maf-motif match (Supplementary figure 5). The distance distributions 

between ATAC-seq peaks and annotated transcription start sites (TSS) show that c-Maf-

associated peaks tend to occur much closer to genes, with most within 3kb of the TSS. A gene 

was assigned to an ATAC-seq peak if the peak overlapped or fell within +/- 3kb of the gene 

body boundaries; assignments were performed using the ChIPseeker BioConductor library23. 

In each treatment condition, a differentially expressed gene was defined as a direct c-Maf target 

if it was assigned to a c-Maf-associated ATAC-seq peak (1,828 genes in Malaria, 631 in HDM, 

149 in EAE; Supplementary figure 5). All others were defined as indirect targets. 

 

We tested the enrichment of c-Maf-associated ATAC-seq peaks among differentially expressed 

genes, compared with non-differentially expressed genes (Extended Data Table 1). The 

enrichment is statistically significant for HDM and EAE (p<2.2e-16 and p<1.704e-03 

respectively; Chi-squared test). There is also an enrichment for malaria though it does not meet 

the threshold for statistical significance (p=0.06; Chi-squared test); this is in line with 

observations that malaria samples display a much broader set of differentially expressed genes 

(Figure 4a). 
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In order to highlight genes with high c-Maf abundance within accessible regions from those 

with few c-Maf sites we calculated a score for every gene g: 

 

𝑆𝑐𝑜𝑟𝑒(𝑔) =
1

𝑘
∑−𝑙𝑜𝑔10(𝐶𝑖)

𝑗

𝑖=1

 

where k is the number of ATAC-seq peaks assigned to gene g; j is the number of ChIP-seq 

peaks that intersect any of the k ATAC-seq peaks; C is the q-value confidence score for a ChIP-

seq peak. These scores were converted to rank-based quantiles. Same methodology was applied 

for motif data, using the P-value of the match as C. These scores are used to display the 

heatmaps in (Figure 6c). 

 

We cross-checked the direct and indirect target assignments using, the Binding and Expression 

Target Analysis (BETA) software24 (parameters -g mm10 --da 1 --df 0.05 -c 1). BETA takes 

as input TF-binding and gene expression data, modelling the regulatory potential of a binding 

site according to its distance to the TSS. BETA does not accept fold-change cutoffs to 

denominate differentially expressed genes, therefore to ensure the same set of differentially 

expressed genes we set the fold-changes of non-differentially expressed genes to 0, upregulated 

genes to 1 and down-regulated to -1, and left the P-values unchanged (used by BETA to rank 

the expression changes). The ChIP-seq data was intersected with the ATAC-seq data, thus, 

only ChIP-seq peaks within accessible regions in each context would affect the outcome of the 

software. Heatmap visualization of these scores was done using the ComplexHeatmap 

BioConductor library (Figure 6c). 

 

Genome-wide differential footprints 

To identify regulators with potential differences in TF-binding in Maf fl/fl Cd4-cre and Maf fl/fl 

samples, we applied the BaGFoot software using all ATAC-seq peaks identified in each 

treatment condition25. BaGFoot predicts these changes by searching for TF-binding motif 

matches in regions with altered ATAC-seq insertion patterns between two conditions. We used 

all 129 motifs of class A and B quality in the HOCOMOCO database v1026. Since BaGFoot 

currently does not consider replicates we performed three Maf fl/fl Cd4-cre and Maf fl/fl pair-

wise comparisons for each disease model and calculated the average changes in accessibility 

and footprint-depth. Results are displayed as bagplots, using a fence of factor 2 (Figure 7a). 

We identified TFs with potentially altered binding by identifying the outliers of the multivariate 
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distribution, as assessed by the Mahalanobis distance of each TF to the multivariate 

distribution. The statistical significance of these distances was tested using a Chi-square 

distribution followed by a Benjamini-Hochberg correction for multiple-testing, the 

recommended approach by BaGFoot.  

 

We also assessed if any of the TFs identified by BaGFoot could explain the expression changes 

of the indirect c-Maf targets. For this, we tested whether the corresponding motif is enriched 

within the accessible neighbourhood of differentially expressed genes compared with non-

differentially expressed genes using a Fisher’s exact test, with Benjamini-Hochberg correction 

for multiple-testing (q-value<0.05) (Table 2 and Figure 7a) 

 

The displayed metaprofile of Tn5 insertions, the footprint, was corrected for Tn5 insertion bias 

obtained from BaGFoot software. The footprint shown depicts the average of the three 

biological replicates, the dashed lines correspond to the average Tn5 insertions in such 

metaprofile. 

 

Visualization of sequencing data 

All sequencing data presented in Genome Browser views were normalized to RPKMs using 

the bamCoverage software in DeepTools 2.4.227. Tracks were visualized using IGV 2.3.89 28, 

with replicates overlaid on top of each other. The fold-change values of ATAC-seq peaks were 

retrieved by DiffBind 2.0.2, these represent changes in chromatin accessibility (negative and 

positive values being a reduction or gain in accessibility, respectively, and 0 means no change). 

c-Maf ChIP-seq peak q-values were retrieved with MACS2 (q-values were -log10 transformed, 

thus, the greater the number the higher the confidence of existence of a peak). A bedgraph file 

was generated for each data type and treatment. The resulting bedgraph files were imported to 

IGV and visualized using “heatmap” option. 
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