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Under stress conditions such as infection or inflammation the body rapidly needs to generate new 

blood cells that are adapted to the challenge. Haematopoietic cytokines are known to increase output 

of specific mature cells by affecting survival, expansion and differentiation of lineage committed 

progenitors1,2 but it has been debated whether long-term haematopoietic stem cells (HSC) are 

susceptible to direct lineage-specifying effects of cytokines. Although genetic changes in transcription 

factor balance can sensitize HSC to cytokine instruction3, the initiation of HSC commitment is 

generally thought to be triggered by stochastic fluctuation in cell intrinsic regulators such as lineage 

specific transcription factors4,5,6,7, leaving cytokines to ensure survival and proliferation of the progeny 

cells8,9. Here we show that M-CSF, a myeloid cytokine released during infection and inflammation, can 

directly induce the myeloid master regulator PU.1 and instruct myeloid cell fate change in HSC, 

independently of selective survival or proliferation. Video imaging and single cell gene expression 

analysis revealed that stimulation of highly purified HSC with M-CSF in culture resulted in activation 

of the PU.1 promoter and an increased number of PU.1+ cells with myeloid gene signature and 

differentiation potential. In vivo, high systemic levels of M-CSF directly stimulated M-CSF receptor 

dependent activation of endogenous PU.1 protein in single HSC and induced a PU.1 dependent 

myeloid differentiation preference. Our data demonstrate that lineage specific cytokines can act 

directly on HSC in vitro and in vivo to instruct a change of cell identity. This fundamentally changes 

the current view of how HSC respond to environmental challenge and implicates stress-induced 

cytokines as direct instructors of HSC fate. 

 



Lineage specific cytokines such as macrophage colony stimulating factor (M-CSF/CSF-1), can be 

strongly induced during physiological stress or infection10,11. and potently increase the production of 

mature cells from lineage-committed progenitors1,2. According to the prevailing model, however, they 

are generally not believed to directly influence differentiation decisions of haematopoietic stem cells 

(HSC)9,12,13. Cell fate choice of HSC has traditionally been explained by stochastic models14. In this view 

transcriptional noise15 and random variations in competing lineage determining transcription factors 

lead to cross-antagonistic switches that initiate lineage choice4,5,6,7, whereas cytokines are thought to 

only act on the resulting progeny cells by stimulating their survival and proliferation8,9. A key example 

of such a master regulator is the transcription factor PU.1 that induces myelo-monocytic 

differentiation16,17. It is generally unknown whether external signals could drive the initial activation of 

such intrinsic master regulators. Since HSC deficient for the transcription factor MafB are sensitized to 

PU.1 activation in response to M-CSF3, we have investigated whether high systemic M-CSF levels could 

induce PU.1 and instruct myelo-monocytic fate in wt HSC without prior modification of transcription 

factor balance. 

 

We observed that lipopolysacharide (LPS), a strong mimetic of bacterial infection stimulating high 

systemic levels of M-CSF11 (sup.fig.1a), induced an up-regulation of GFP in long term HSC 

(CD117+sca+Lin-CD135-CD34-CD150+) of PU.1-GFP reporter mice18 (sup.fig.1b,c). Consistent with the 

expression of the M-CSF receptor (M-CSFR) in HSC (sup.fig.2)3,19, direct intravenous injection of 

recombinant M-CSF also induced significantly increased PU.1 activation in HSC after 16h (fig.1a,b). The 

treatment caused no significant change in M-CSFR or MafB expression (sup. fig.3), arguing against 

selection of myeloid primed HSC with high M-CSFR or low MafB levels. M-CSF also induced no change 

in the proportion of CD150hi HSC, reported to have myeloid lineage bias20, in GFP-positive or –negative 

HSC (sup.fig.4a-c) and activated PU.1 to a similar extent in CD150hi HSC (fig.1c) as in total HSC 

(fig.1a,b). Finally cultured CD150hi HSC revealed no proliferation or survival advantage in the presence 

of M-CSF (sup.fig.5a). Together these data argued against selective amplification or survival of a pre-

existing HSC sub-population and indicated that M-CSF could newly induce PU.1 expression in HSC.  

 

As shown in fig.1d, the M-CSF effect on stem cells was direct and specific, since FACS purified HSC 

showed increased PU.1 expression after 16h in culture with M-CSF but not with GM-CSF or G-CSF, 

cytokines that may also be released during infection21. The observed changes in gene expression 

cannot be explained by M-CSF dependent selection of PU.1+ cells, as video-microscopy of cultured HSC 

showed no proliferation or survival advantage in M-CSF and PU.1 was induced before onset of cell 

division (sup.fig.5,6). Continuous observation of individual GFP-negative sorted HSC from PU.1-GFP 



mice by video imaging confirmed that M-CSF could induce PU.1 expression in previously PU.1 negative 

cells (fig.2.a-c, sup.Video1-3). We recorded the fate of HSC between 18 hours and 42 hours of culture, 

when both the induction of PU.1 in previously negative cells and the division of PU.1+ cells could 

theoretically occur. At the end of the 24h observation period over two-fold more PU.1+ cells had 

developed in M-CSF than under control conditions (fig.2d) and backtracking the origin of these cells 

revealed that all PU.1+ cells were derived from previously PU.1 negative cells, but none from divisions 

of PU.1+ cells. Although the absence of PU.1+ cell division may be partially due to the phototoxic effects 

of GFP excitement 22,23, we could conclude that the observed increase in PU.1+ cells was entirely due to 

M-CSF induced activation of the PU.1 reporter. These commitment events of PU.1 activation occurred 8 

hours earlier and at a higher rate over the whole observation period in the presence of M-CSF (fig.2e). 

Our results indicated that M-CSF could directly increase PU.1 promoter activation in single, previously 

PU.1 negative HSC.  

 

To further investigate whether M-CSF induced PU.1 activation changed the cell identity of individual 

HSC we analyzed the mRNA expression profile of single cells by nanofluidic real time PCR on 

FluidigmTM dynamic arrays. Consistent with their stem cell identity almost all freshly isolated HSC 

expressed stem and progenitor cell associated genes and about half expressed either no (lin-) or 

multiple lineage specific genes (mix). The remainder showed mainly megakaryocytic (Meg), 

megakaryocytic-erythroid (MegE) or myeloid lineage priming (fig.3a, sup.fig.7). Culture for 16h 

without M-CSF led to an increased number of cells with a mixed lineage profile at the expense of Meg 

and lin- profiles (fig.3b, sup.fig.8). By contrast, culture in the presence of M-CSF induced a strong 

increase of cells with a myeloid gene expression signature (fig.3c, sup.fig.9, sup.table1). Consistent with 

the video microscopy results the increase in myeloid gene expression was associated with a doubling 

of the number of PU.1+ cells (fig.3d). Interestingly, this increase was entirely due to PU.1+ cells with a 

myeloid signature that did not express genes from any other lineage. By contrast, the number of PU.1+ 

cells that also expressed non-myeloid genes remained approximately constant (fig.3d). Together this 

indicated that M-CSF induced PU.1+ cells had assumed a myeloid cell identity. To evaluate whether this 

change in gene expression reflected a functional myeloid lineage choice in vivo we compared the 

differentiation potential of unstimulated PU.1- HSC to PU.1- and PU.1+ HSC after in vivo priming with 

M-CSF (fig.3e). Progenitor analysis in the spleen 2 weeks after transplantation of these populations 

revealed a higher ratio of granulocyte/macrophage progenitors (GMP) to megakaryocytic/erythroid 

progenitors (MEP) developing from PU.1+ HSC than from PU.1- HSC (fig.3f,g). We observed a similar 

increase in myeloid differentiation potential for PU.1+ cells derived from M-CSF stimulated PU.1- HSC 



in culture (sup.fig.10a-d). Together these data showed that M-CSF induced PU.1 led to a myeloid cell 

fate change in single HSC.  

 

To further investigate, whether M-CSF could also induce a cell fate change of individual HSC in vivo, we 

transplanted CFSE-labelled HSC into the spleen, a site of extra-medullary haematopoiesis with adapted 

stem cell niches3,24, and analyzed expression of endogenous PU.1 protein by immuno-fluorescence in 

single HSC after 24h (fig.4a). Whereas the vast majority of HSC were PU.1 negative immediately after 

transplantation, nearly all had activated PU.1 after transfer into spleens of LPS challenged hosts 

(fig.4b,c). This effect was principally dependent on M-CSF signalling as a blocking antibody against the 

M-CSF receptor25 strongly inhibited PU.1 activation. Furthermore, direct injection of recombinant M-

CSF resulted in a similar strong induction of PU.1 in the transplanted HSC (fig.4b,c). This effect 

appeared to be entirely cell autonomous, as M-CSF receptor deficient (M-CSFR-/-)26 HSC showed no 

higher activation of PU.1 in M-CSF stimulated than control recipients (fig.4d,e). Similarly, small 

molecule inhibitors of the M-CSFR or PI3K, ERK and SRC kinases that signal downstream of the 

receptor27 also prevented induction of PU.1 (fig.4f), consistent with the stimulation of transcriptional 

activators of the pu.1 gene by these pathways (sup. discussion). Furthermore, transplantation of in vivo 

M-CSF primed CD45.2 HSC into sub-lethally irradiated CD45.1 recipients revealed an increased ratio of 

GMP to MEP progenitors in the spleen after 2 weeks (fig.4g, sup.fig.11a,b) and an increased myeloid to 

lymphoid cell ratio in peripheral blood after 4 weeks (sup.fig.11c). In competitive transplantation 

assays M-CSF primed HSC also showed a myeloid advantage compared to platelet and lymphoid 

contribution at 4 weeks in the blood that re-equilibrated after 6 weeks and did not compromise long-

term multi-lineage contribution (fig.4h, sup.fig.12). Finally, this myeloid differentiation preference of 

M-CSF primed HSC could be abolished by deletion of PU.1 (fig.4i, sup.fig.13). Together these results 

indicated that M-CSF could directly instruct a change in cell identity of single HSC in vivo that resulted 

in a reversible, PU.1-dependent myeloid differentiation preference. 

 

Our results show that under haematopoietic stress conditions of infection high systemic levels of M-

CSF can directly instruct myeloid gene expression and differentiation preference of HSC. This 

challenges both the current view of cytokine action and how HSC make differentiation decision. 

Whereas cytokines are commonly thought to act on lineage-committed progenitors, we here show that 

stem cells are direct targets of lineage instruction by cytokines. HSC have been shown to proliferate in 

response to signals characteristic of bacterial28 or viral infections29 but without changing lineage 

specific gene expression or differentiation potential. In line with the prevailing paradigm of selective 

cytokine action it has been proposed that distinct stem cell subtypes could have a selective advantage 



in response to different stimuli30. Such a mechanism is difficult to distinguish from instructive 

mechanisms on a population basis. We have therefore employed multiple assays of single cell analysis 

in culture and in vivo in a time window before the onset of cell division to distinguish induced changes 

of lineage specification from selective mechanisms. These data indicate that M-CSF can directly change 

stem cell identity by activation of the myeloid master regulator PU.1 on the promoter, message and 

protein level, independently of selective survival or proliferation. The multi-lineage priming of gene 

expression in haematopoietic stem cells has generally been interpreted as indication that initial cell 

fate decisions are driven solely by stochastic fluctuations in the balance of lineage specific 

transcription factors4,5,6,12,13. Our data now indicate that cytokines can not only amplify random choices 

but also directly activate key regulators of lineage specification such as PU.1 to instruct lineage output 

of haematopoietic stem cells. Cytokines released during specific challenges may thus directly shunt the 

differentiation choice of HSC to an insult tailored output of progeny. This discovery may also provide 

new opportunities for the beneficial manipulation of stem cell fate under pathological or 

transplantation conditions.  
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Methods summary  

Flowcytometry, bone marrow transplantation and in vivo immunofluorescence of HSC were performed 

essentially as described3. Single cell nano-fluidics-based real-time PCR was performed using a 

BioMarkTM HD system and 96.96 dynamic arrays (Fluidigm, CA, USA) and videomicroscopy analysis 

followed proposed standards23. Details of procedures and reagents are described in Supplementary 

Methods. 
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Figure legends  

 

Fig.1 M-CSF activates the myeloid master regulator PU.1 in HSC 

a-c)Representative FACS profile (a) and quantification of GFP expression in HSC (b) or CD150hi HSC 

(c) of PU.1-GFP reporter mice 16h after control (PBS) or M-CSF injection. ***p=0,009; **p=0,03.  

d) Quantitative RT-PCR analysis of PU.1 expression normalized to GAPDH expression (R.U.) in 

sorted HSC after 16h culture in the absence or presence of M,CSF, GM-CSF or G-CSF. Error bars 

show standard deviation of duplicates. 

 

Fig.2 Continuous video-imaging of PU.1+ cell generation from individual PU.1 negative HSC. 

a) GFP-fluorescence intensity at 10 minute intervals (dots) and sliding median (lines) over 12h 

observation time of 3 individual GFP negative sorted HSC from PU.1-GFP reporter mice after 

18h in M-CSF culture, representative of cells quantified in fig.2e (n=39). Green: cells activating 

GFP, black: cell remaining GFP negative. 

b) Still photos taken at times indicated by symbols in a) of fields with 2 representative HSC (cells 

A,B) showing activation of PU.1 at different time points. Cell C was outside of the shown field. 

c) Still photos taken at 40 min intervals over 8h of 3 representative HSC in M-CSF culture without 

(cell C) or with activation of PU.1 (cells A,D), representative of cells quantified in fig.2e (n=39). 

Complete videos are shown in Sup.Video1-3.  

d) Quantification of PU.1+ cells derived from PU.1 negative HSC (committed cells) with (n=39) or 

without M-CSF (n=42) as percentage of total cells after 24h observation period. *p < 0.1.  

e) Timing of PU.1 activation in PU.1 negative HSC of cells shown in d) over 24h observation period. 

 

Fig.3 M-CSF activates PU.1 and instructs myeloid identity in single HSC  

a-c) Gene expression analysis of single cells (rows) for lineage or stem cell representative genes 

(columns) using duplicate nano-fluidic real time PCR on FluidigmTM array for freshly isolated 

HSC (a) or after 16 hours of culture in the absence (b) or the presence of M-CSF (c). Genes are 

grouped by lineage indicated on top and individual cells were clustered according to lineage 

specific, mixed or lineage negative gene expression profiles shown in bar and pie diagrams on 

the right. Full gene list and blow up in sup.fig. 7-9. **p= 0.04, n=41,45,45.  

d) Individual PU.1+ cells with a myeloid gene expression profile (blue) or expressing other lineage 

genes (white) as a percentage of total cells. *** p=0.009 (0h), and 0,005 (-M-CSF). 



e) Experimental design for transplantation of sorted PU.1- and PU.1+ HSC from in vivo M-CSF 

primed CD45.2 PU.1-GFP mice into sub-lethally irradiated CD45.1 recipients and analysis of 

progeny cells after 2 weeks in the spleen (sup.fig.14). 

f,g) Representative FACS profiles (f) and quantification of the ratio (g) of donor GMP and MEP 

progenitors derived from transplanted PU.1- or PU.1+ HSC before or after M-CSF stimulation in 

vivo. **p=0.05, ***p=0.01, n=4,8,4. 

 
Fig.4. M-CSF directly induces endogenous PU.1 protein in single HSC in vivo and stimulates a 

reversible, PU.1-dependent myeloid differentiation preference. 

a) Experimental design of HSC transplantation into spleens of LPS or M-CSF stimulated hosts and 

typical immuno-fluorescence detection of PU.1 in CFSE-labelled HSC 24h after transplantation 

for two representative PU.1+ and one PU.1- cell. DAPI, nuclear stain.  

b,c) Representative immuno-fluorescence images (b) and percentage (c) of PU.1+ HSC immediately 

(0h) or 24h after transplantation into LPS stimulated host with isotype control (IC) or anti-M-

CSF receptor blocking antibody (AFS98), or into M-CSF injected hosts. (n>30). 

d,e) Representative immuno-fluorescence images (d) and percentage (e) of PU.1+ cells 

immediately (0h) or 24h after transplantation of wt or M-CSFR-/- HSC into mock or M-CSF 

stimulated hosts. (n>50). 

f) Percentage of PU.1+ cells 24h after transplantation of HSC into M-CSF stimulated hosts in the 

absence or presence of kinase inhibitors for M-CSFR (GW2580), PI3K (LY294002), ERK/MAPK 

(PD98059) and SRC (SU6656). (n=50). 

g)  Ratio of donor GMP to MEP progenitors in the spleens of sub-lethally irradiated recipients 2 

weeks after transplantation of in vivo M-CSF primed or control HSC. Experimental design is 

shown in sup.fig.11.  

***p=0.003, n=8,9. 

h) Donor contribution to blood of competitively reconstituted mice 4 weeks and 6 weeks after 

transplantation of M-CSF primed or control HSC, expressed as ratio of CD11b+ myeloid cells to 

platelets or CD19+ lymphoid cells. Experimental design, representative FACS profiles and 

quantification of contribution to individual lineages in sup.fig.12.  

***p=0.01, n=10,6, *p=0.07, n=6,4.  

i) Donor contribution to Mac+ myeloid cells in the spleen of sub-lethally irradiated recipients 2 

weeks after transplantation of control or M-CSF primed HSC with control (fl/fl) or deleted 

(∆/∆) PU.1 alleles. **p=0.05, n=6,4,5. 

 
 



Methods 
 

Mice  

CD45.1 and C57Bl/6 mice were obtained from Charles River. PU.1-GFP 31 M-CSFR-/-27 and 

PU.1fl/fl 32 mice have been described. Age- and sex-matched CD45.1 recipients that were reconstituted 

as described3 with CD45.2 foetal liver from wt or M-CSFR-/- embryos27 and PU.1fl/fl or PU.1fl/fl::MxCre 

bone marrow, were used to isolate CD150+ CD34- KSLF HSC not earlier than 8 weeks after 

reconstitution. For in vivo injections the 10µg/mouse M-CSF, 5mg/kg LPS (055:B5 E. coli) or sorted 

cells were injected in 100µl of PBS into the retro-orbital sinus. For HSC transplantation 400 CD150+ 

CD34- KSLF HSC were sorted from CD45.2 mice and mixed with 100.000 Lin+ Sca- CD45.1 carrier cells 

prior to injection into sub-lethally irradiated (4,5 Gy) CD45.1 recipient mice. For competitive 

transplantations, 1300 CD150+,CD34-KSLF HSC were isolated 16h after control or 10µg M-CSF 

injection from actin-GFP CD45.2 mice33, mixed with equal numbers of CD45.2 competitor HSC and 

injected with 300.000 Lin+ Sca- RC-lysed CD45.1 carrier cells into sub-lethally irradiated (4.5 Gy) 

CD45.1 recipients. Contribution to platelets, CD19+ B-cells and CD11b+ myeloid cells was analysed 

after 4 and 6 weeks in the blood from mice with at least 5% GFP+ donor cells. For PU.1 deletion PU.1fl/fl 

or PU.1fl/fl::MxCre reconstituted mice were intra-peritoneallay injected with 5µg/g 

Polyinosinic :polycytidylic acid 7 and 9 days prior to control (PBS) or 10µg M-CSF injection. All mouse 

experiments were performed under specific pathogen-free conditions in accordance with institutional 

guidelines.  

 

FACS analysis 

For FACS sorting and analysis we used described staining protocols3 and published stem and 

progenitor cell definitions34, FACSCanto, LSRII and FACSAriaIII equipment and DIVATM software 

(Becton-Dickinson), analysing only populations with at least 200 events. For HSC analysis we used 

antibodies anti-CD34-FITC (clone RAM34, BD Biosciences), anti-CD135-PE (clone A2F10.1, BD 

Biosciences), anti-CD150-Pe-Cy7 (clone TC15-12F12.2, Biolegend), anti-CD117-APC-H7 (clone 2B8, BD 

Biosciences), anti-Sca-1-Pe-Cy5 (clone D7, Biolegend), anti-CD48-APC (clone HM48-1, Biolegend). 

Diverging from this or in addition we used antibodies anti-CD34 Alexa 700 (clone RAM34, BD 

Biosciences), anti-CD16/32 PE (clone 2.4G2, BD biosciences), anti-CD11b PE-CF594 (clone M1/70, BD 

biosciences), anti-CD19PE-Cy7 (clone 1D3, BD biosciences), anti CD45.2 APC (clone 104, BD 

biosciences) and anti CD45.1 Pacific Blue (clone A20,BD biosciences) for progenitor and blood cell 

analysis. LIVE/DEAD Fixable Violet Dead cell dye (Invitrogen) was used as viability marker.  

 



Intra-spleenic injection of sorted HSC and fluorescence microscopy 

For analysis of HSC in vivo, 1500 to 7000 FACS sorted CD150+ CD34- KSLF HSC were stained 10 min at 

37°C with 3µM CFSE (Invitrogen) in PBS / 0,5% BSA, washed 3x in PBS / 0,5% BSA and injected in 30µl 

PBS (containing or not 1µg of isotype control or AFS98 α-M-CSFR antibody26 or 2µM GW2580, 10µM 

Ly29400, 10µM PD98059 or 2µM SU6656 inhibitors in 0.9% DMSO) into the spleen of anesthetized 

mice. After 24h spleens were embedded in OCT (Tissue-Tek, Sakura) and frozen at -80°C. Cryostat 

sections (5µm) were prepared from the entire organ, dried and fixed 10 min in 4% PFA/PBS at room 

temperature (RT) and every 10th section was further processed. After washes in PBS, slides were 

blocked for 1 hour at RT in PBS / 2%BSA/ 1% Donkey serum / 1% FCS / 0.1% saponin, incubated for 

36h at 4°C with anti-PU.1 polyclonal antibody (Santa Cruz) in PBS / 0.05% saponin (1:50), washed and 

incubated with secondary Alexa 546-donkey-anti-rabbit antibody (Molecular probes) in PBS / 0.05% 

saponin (1:500). All immunofluorescence samples were mounted with ProLong Gold DAPI antifade 

(Molecular probes) and analyzed by multifluorescent microscopy on a Zeiss Axioplan 2. All CFSE+ cells 

were analysed for PU.1 expression up to >30 or > 50 cells as indicated. Cell counts and staining were 

verified by a second trained microscopist blinded to sample identity. High-resolution photographes 

were obtained by confocal microscopy on a Leica SP5X.  

 

In vitro culture of HSC 

CD150+ CD34- KSLF HSC or CD150+ CD34- CD48- KSLF HSC (single cells) were sorted into S-

clone SF-03 medium (Sanko Jyunyaku) with 10% FBS supplemented with 100 U/ml penicillin and 

100mg/ml streptomycin (both Invitrogen) and cultivated in uncoated U-Shape 96 well plates (Greiner) 

in 100 µl SCM, 20 ng/ml rSCF, 50 ng/ml rTPO +/- 100 ng/ml rM-CSF or 100 ng/ml rGM-CSF or 100 

ng/ml rG-CSF. All cytokines were murine and from PeproTech. Cell viability was analyzed by AnnexinV 

and Propidium iodide FACS staining35.  

 

Quantitative real time PCR 

Total RNA was isolated and reverse transcribed with μMACS One-step T7 template kit (Miltenyi Biotec) 

and analysed by quantitative real-time PCR using TaqMan Universal PCR Master Mix and a 7500 Fast 

Real Time PCR System sequence detection system (both Applied Biosystem), following the 

manufacturers’ instructions. 

 

Single cell gene expression profiling  

Single cells were sorted using the autoclone module on an AriaIII sorter (Becton-Dickinson) directly 

into 96 wells plate in the CellsDirect Reaction Mix (Invitrogen). Individual cell lysis, cDNA synthetis 

https://catalog.invitrogen.com/index.cfm?fuseaction=viewCatalog.viewProductDetails&productDescription=9327


and amplification was performed according to Fluidigm Advanced Development Protocol and single 

cell microfluidic real time PCR using Dynamic Array IFCs (BiomarkTM Fluidigm) was performed by a 

technical support specialist of Fluidigm Inc. Preamplified products (22 cycles) were diluted 5-fold 

prior to analysis with Universal PCR Master Mix and inventoried TaqMan gene expression assays (ABI) 

in 96.96 Dynamic Arrays on a BioMarkTM System (Fluidigm). Ct values were calculated from the 

system’s software (BioMarkTM Real-time PCR Analysis; Fluidigm) and filtered according to a set of 

quality control rules outlined below. 

Gene filter: 

(a) For each gene, including controls, data with CtCall = FAILED and CtQuality < threshold were 

removed. 

(b) For each gene, including controls, CtValues > = 32.0 were removed to filter out very low expression 

genes. 

(c) For each gene, including controls, genes with a difference of duplicate CtValues > = 2.0 were 

considered inconsistent and removed. 

Sample filter: 

(a) If the control gene (Gapdh) was not expressed or was removed according to gene filters (a-c), the 

whole sample was removed. 

(b) If the mean of the Ct values of all genes in a row was >= 27.0 the whole sample row was removed. 

 

Time-Lapse imaging and analysis 

Wherever possible our video microscopy protocols followed proposed guidelines 24. In detail, FACS 

sorted CD150+ CD34- KSLF HCS from wt C57/Bl6 or GFP-negative CD150+ CD34- KSLF HSC from 

PU.1-GFP reporter mouse 31 bone marrow were suspended in SCM supplemented with 100 U/ml 

penicillin and 100mg/ml streptomycin, 20 ng/ml rSCF, 50 ng/ml rTPO +/- 100 ng/ml rM-CSF and 

plated in Ibidi μ-slidesVI(0.4) (Biovalley SA, France). Time-lapse microscopy was performed using a 

Cell Observer system (Carl Zeiss Microscopy GmbH, Germany) at 37°C and 5% CO2. Images were 

acquired every 10 minutes using 10x (A-plan 10x/0.45 Ph1) or 40x (Plan-Apochromat 40x/0.95 Korr 

M27) objectives in brightfield and fluorescence (GFP filters: EX BP 470/40; at 350 ms) with a 

CoolSNAPHQ2 monochrome camera (Photometrics) with a 2x2 binning and a metal halide 120W source 

for fluorescence illumination. For image analysis a matrix of 4x4 images was acquired for each time 

point. Images were stitched with AxioVision software (Carl Zeiss Microscopy GmbH, Germany) and 

processed with Fiji software36 using a slight rolling ball subtraction of background and 1 pixel 

Gaussian blur. For background subtraction of brightfield images, the median of z-projection was 

subtracted from the time-lapse stack. Single cell tracking was performed with basic commands of 



ImageJ37 and Fiji36 software and with specific tracking plugin MTrackJ38 in manual mode. Each cell was 

tracked manually frame-by-frame in the bright field channel and cross-controlled by two microscope 

specialists. Cells with non-standard morphology or size were rejected. The fluorescence signal was 

measured as the difference of maximum minus minimum intensity within a defined region of interest 

(ROI) around each cell. Cell properties and behaviour (cell division, cell death, position, fluorescence 

increase) were manually documented to build cumulated curves. R39 and Excel (Microsoft 

Corporation) software was used to manage data and build graphics. 

 

Statistical analysis 

P values were calculated by two-tailed non parametric Mann-Witney test for direct sample 

comparisons or Pearson’s chi2 test for proportions (alpha=0,05). Whisker plots show median (lines), 

upper and lower quartiles (boxes) and extreme outliers (dotted whiskers). 
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0h
Myeloid total Myeloid total Myeloid total

Experiment 1 5 23 5 22 11 24

Experiment 2 3 47 3 40 15 39

Experiment 3 6 41 5 45 13 45
total 14 109 13 107 39 108

- M-CSF + M-CSF

p=0,0001

p=0,0001

Sup.table 1, related to Fig 3a,b,c
Summary of cell numbers with myeloid identity in three independent single cell nano-fluidic real time 
PCR experiments on FluidigmTM array for freshly isolated HSC (0h) or after 16 hour of culture in the 
absence or the presence of M-CSF. HSC were FACS sorted as CD150+CD34-CD48-KSLF 
(experiment 1,3) or CD150+CD34-KSLF (experiment 2). Experiment 3 is shown in Fig.3a and 
sup.Fig.7-9.
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Sup.Fig.1 Effect of LPS on M-CSF release and PU.1 induction in HSC
a) Serum levels of M-CSF after LPS stimulation
Median and individual concentrations of M-CSF in blood serum from five mice 
at the indicated times after 5mg/kg intra-peritoneal LPS injection.
b,c)Representative FACS profiles (b) and quantification (c) of GFP expression 
in MPP and HSC of PU.1-GFP reporter mice before or after 24h of 5mg/kg LPS 
injection. 
** p = 0.03, n = 4,2
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Sup.Fig.2 M-CSFR expression in HSC
Relative expression of M-CSFR normalized to GAPDH 
(R.U.) by qRT-PCR analysis in sorted HSC, KSL 
(c-kit+, sca-1+, lin–) hematopoietic stem and progeni-
tor cells (HS/PC) and CD19+ B-cells from the bone 
marrow, as positive and negative control respectively. 
Error bars show standard error of the mean from dupli-
cates. Error Bars show standard deviation from dupli-
cates.
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Sup.Fig.3 M-CSFR and MafB expression in HSC after M-CSF 
stimulation 
Relative expression of M-CSFR (a) and MafB (b) normalized to 
GAPDH (R.U.) by qRT-PCR analysis in sorted HSC, 16h after 
control (PBS) or M-CSF injection, compared to untreated MPP 
(CD135+ KSL) as control for a population containing myeloid 
committed cells3, with high M-CSFR and low MafB expression, 
respectively. Error bars show standard deviation from duplicates.
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Sup.Fig.4 Distribution of CD150hi HSC in GFP+ HSC.
a) Gating strategy for CD150hi HSC in the KSL compartment following published 
definitions20.
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Sup.Fig.5 Recording of cell division and cell death of HSC in culture by video imaging. 
Cumulative cell divisions (left) and cumulative number of cells that died (right) of CD150hi (a) and 
total (b) HSC for 100 and 360 input cells respectively, over the indicated times in culture with or 
without M-CSF. The vast majority of first cell divisions occurred after 24h and nearly no additional 
cell death occurred after minimal initial sorting and culture stress. No significant differences in 
proliferation or cell death were detected between culture with or without M-CSF. 
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Sup.Fig.6 Analysis of viability of HSC after M-CSF stimu-
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Propidium iodide / Annexin V staining of HSC after 16h in 
culture with or without M-CSF.
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Sup.Fig.7 Blow up of Fig.3a, 
showing single cell gene expres-
sion analysis of HSC before culture.
The genes analyzed are classified and 
colour coded on top according to 
published gene expression analysis of 
early lineage committed 
progenitors40,41. PU.1 is indicated by an 
asterix. Cells are clustered according 
to lineage identity indicated on the 
right.
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Sup.Fig.8 Blow up of Fig.3b, 
showing single cell gene expres-
sion analysis of HSC after 16h 
culture without M-CSF. 
The genes analyzed are classified and 
colour coded on top according to 
published gene expression analysis of 
early lineage committed 
progenitors40,41. PU.1 is indicated by an 
asterix. Cells are clustered according 
to lineage identity indicated on the 
right.
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Sup.Fig.9 Blow up of Fig.3c, 
showing single cell gene expression 
analysis of HSC after 16h culture 
with M-CSF. 
The genes analyzed are classified and 
colour coded on top according to 
published gene expression analysis of 
early lineage committed 
progenitors40,41. PU.1 is indicated by an 
asterix. Cells are clustered according 
to lineage identity indicated on the 
right.
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Sup.Fig.10 Differentiation potential of M-CSF induced PU.1+ cells
a) Experimental design for transplantation of sorted CD45.2 PU.1- HSC before and after 
induction of PU.1+ cells in M-CSF culture into sub-lethally irradiated CD45.1 recipients and 
analysis of progeny cells after 2 weeks in the spleen.
b,c) Quantification of the ratio of donor GMP to MEP progenitors (b) and total GMP (c) 
derived from transplanted PU.1- HSC before or PU.1+ cells after M-CSF culture. **p = 0.02, 
*p = 0.07, n = 6,7.
d) Cells with macrophage morphology phagocytosing fluorescent latex beads after conti-
nued culture of PU.1+ cells in M-CSF for 10 days.
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Sup.Fig.11 Differentiation potential of M-CSF primed HSC
a) Experimental design for transplantation of in vivo M-CSF primed CD45.2 
HSC into sub-lethally irradiated CD45.1 recipients and analysis of progeny 
cells after 2 weeks in the spleen or 4 weeks in the blood.
b) Percentage of GMP and MEP progenitors in total donor cells derived 
from control (PBS) or M-CSF primed HSC in the spleen 2 weeks after trans-
plantation. 
*p = 0.1, **p = 0.04, n = 4,4
c) Quantification of the ratio of donor CD11b+ SSClo monocytes to CD19+ 
B-cells in the blood 4 weeks after transplantation. ***p = 0.009, n = 8,4.
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Sup.Fig.12 Competitive transplantation of M-CSF primed HSC
a) Experimental design for competitive transplantation of FACS sorted in 
vivo M-CSF primed HSC (CD150+CD34-CD135-KSL) from actin-GFP 
CD45.2 mice together with CD45.2 competitor HSC into lethally irradiated 
CD45.1 recipients and analysis of blood cell contribution.
b) Gating strategy for quantification of actin-GFP+ HSC derived myeloid , 
lymphoid blood cells and platelets. 
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Sup.Fig.12 Competitive transplantation of M-CSF primed HSC
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