84 research outputs found

    CryoEM of RUVBL1-RUVBL2-ZNHIT2, a complex that interacts with pre-mRNA-processing-splicing factor 8.

    Get PDF
    Biogenesis of the U5 small nuclear ribonucleoprotein (snRNP) is an essential and highly regulated process. In particular, PRPF8, one of U5 snRNP main components, requires HSP90 working in concert with R2TP, a cochaperone complex containing RUVBL1 and RUVBL2 AAA-ATPases, and additional factors that are still poorly characterized. Here, we use biochemistry, interaction mapping, mass spectrometry and cryoEM to study the role of ZNHIT2 in the regulation of the R2TP chaperone during the biogenesis of PRPF8. ZNHIT2 forms a complex with R2TP which depends exclusively on the direct interaction of ZNHIT2 with the RUVBL1-RUVBL2 ATPases. The cryoEM analysis of this complex reveals that ZNHIT2 alters the conformation and nucleotide state of RUVBL1-RUVBL2, affecting its ATPase activity. We characterized the interactions between R2TP, PRPF8, ZNHIT2, ECD and AAR2 proteins. Interestingly, PRPF8 makes a direct interaction with R2TP and this complex can incorporate ZNHIT2 and other proteins involved in the biogenesis of PRPF8 such as ECD and AAR2. Together, these results show that ZNHIT2 participates in the assembly of the U5 snRNP as part of a network of contacts between assembly factors required for PRPF8 biogenesis and the R2TP-HSP90 chaperone, while concomitantly regulating the structure and nucleotide state of R2TP.Agencia Estatal de Investigación (AEI/10.13039/501100011033), Ministerio de Ciencia e Innovación and co-funded by the European Regional Development Fund (ERDF-UE) [SAF2017-82632-P and PID2020-114429RB-I00 to O.L.]; Autonomous Region of Madrid and co-funded by the European Social Fund and the European Regional Development Fund [Y2018/BIO4747 and P2018/NMT4443 to O.L., and which support the contracts of S.C. and A.G-C.]; Funding for open access charge: Agencia Estatal de Investigación (AEI/10.13039/501100011033), Ministerio de Ciencia e Innovación, co-funded by the European Regional Development Fund (ERDF-UE) [SAF2017-82632-P to O.L.]; S.C. contract is funded by the CNIO Friends Program philanthropic initiative since June 2021.S

    High quality optically active and integrable EuOOH films prepared by pulsed laser deposition

    Full text link
    Rare-earth (RE)-Oxygen-Hydrogen compounds are versatile materials whose composition and properties can be significantly varied by changing the relative O and H contents. Among them hydrides and oxyhydrides have been thoroughly investigated due to its photochromic properties. Instead, research of RE-hydroxides and oxyhydroxides (RE-OH and RE-OOH) is scarce although they show promising properties as light emitters. However, their use and integration in solid state devices have been hindered so far because their usual chemical synthesis routes yield materials in bulk or powder configurations. In this work we demonstrate a physical deposition route based on pulsed laser deposition that results in the unprecedented preparation of high-quality Eu oxyhydroxide (EuOOH) thin films. The synthetized EuOOH films show a well-defined monoclinic structure, are optically active and show a robust red emission related to the intra-f transitions of the Eu3+ ions. The excellent quality of these crystalline films has allowed us to obtain relevant properties of the monoclinic EuOOH phase not previously reported such as its refractive index and its Raman spectrum, including the identification of the characteristic phonon modes. These novel EuOOH films have been prepared both on Si and fused silica substrates, and thus are ready for potential integration in solid state optoelectronic components and devicesThis work was funded by the Spanish Research Agency (AEI, Ministry of Research and Innovation) and the European Regional Development Fund (ERDF) under grants RTI2018-096498-B-I00, RTI2018-101020-B-I00, RTI2018-096918-B-C41 and PID2021-123190OB-I00; by the CSIC (PIE-202050E195 and project 2021AEP128IO); by the Regional Government of Madrid through TECHNOFUSION(III)CM ´ (S2018/EMT-4437); and by Comunidad de Madrid (Spain) multiannual agreement with UC3M, “Excelencia para el Profesorado Universitario” (EPUC3M14) - Fifth regional research plan 2016-2020. The work of A. Cano was partially supported by the Autonomous Community of Madrid and the European Social Fund (PEJD-2019-PRE/TIC-16082

    Overview of processing techniques for surface electromyography signals

    Full text link
    Surface electromyography (sEMG) is a technology to assess muscle activation, which is an important component in applications related to diagnosis, treatment, progression assessment, and rehabilitation of specific individuals' conditions. Recently, sEMG potential has been shown, since it can be used in a non-invasive manner; nevertheless, it requires careful signal analysis to support health professionals reliably. This paper briefly described the basic concepts involved in the sEMG, such as the physiology of the muscles, the data acquisition, the signal processing techniques, and classification methods that may be used to identify disorders or signs of abnormalities according to muscular patterns. Specifically, classification methods encompass digital signal processing techniques and machine learning with high potential in the field. We hope that this work serves as an introduction to researchers interested in this field.Comment: 11 pages, 7 figure

    Structural determination of Bi-doped magnetite multifunctional nanoparticles for contrast imaging

    Get PDF
    To determine with precision how Bi atoms are distributed in Bi-doped iron oxide nanoparticles their structural characterization has been carried out by X-ray absorption spectroscopy (XAS) recorded at the K edge of Fe and at the L edge of Bi. The inorganic nanoparticles are nominally hybrid structures integrating an iron oxide core and a bismuth oxide shell. Fe K-edge XAS indicates the formation of a structurally ordered, non-stoichiometric magnetite (FeO) phase for all the nanoparticles. The XAS spectra show that, in the samples synthesized by precipitation in aqueous media and laser pyrolysis, the Bi atoms neither enter into the iron oxide spinel lattice nor form any other mixed Bi-Fe oxides. No modification of the local structure around the Fe atoms induced by the Bi atoms is observed at the Fe K edge. In addition, contrary to expectations, our results indicate that the Bi atoms do not form a well-defined Bi oxide structure. The XAS study at the Bi L edge indicates that the environment around Bi atoms is highly disordered and only a first oxygen coordination shell is observed. Indefinite [BiO(OH)] units (isolated or aggregated forming tiny amorphous clusters) bonded through hydroxyl bridges to the nanoparticle, rather than a well defined BiO shell, surround the nanoparticle. On the other hand, the XAS study indicates that, in the samples synthesized by thermal decomposition, the Bi atoms are embedded in a longer range ordered structure showing the first and second neighbors

    Crisis due to war: anxiety, depression and stress in the population of 13 Latin American countries

    Get PDF
    Sustainability may be at risk in a population that has altered health, according to Sustainable Development Goal 3 (SDG 3): Health and well-being. The ongoing conflict between Russia and Ukraine could jeopardize SDG 3, specifically the mental health of the population. The present study sought to determine the association between severe anxiety, depression and stress in population of 13 Latin American countries according to fear about the war conflict. It was a cross-sectional, analytical and multicenter study. Anxiety, depression and stress were measured with the DASS-21 test (Cronbach’s Alpha: 0.97) and fear due to an armed crisis with a questionnaire already validated in Latin America (Cronbach’s Alpha: 0.92), which was also adjusted for sex, age, education level and country of residence. Descriptive and analytical statistics were obtained. Of the 2,626 respondents, the main fear was that weapons of mass destruction would be used. In the multivariate models, strong associations were found between fear of a possible world-scale armed conflict and having severe or very severe levels of anxiety (aPR: 1.97; 95% CI: 1.64–2.36; value of p <0.001), depression (aPR: 1.91; 95% CI: 1.54–2.36; value of p <0.001) or stress (aPR: 2.05; 95% CI: 1.63–2.57; value of p <0.001). Sustainability linked to SDG 3, specifically mental health, is affected by this type of significant events, given the possible global war crisis that could trigger major events, even more so if added to the deterioration already experienced by COVID-19 in the Latin American region, insecurity and constant political uncertainty

    Have we improved pain control in cancer patients? A multicenter study of ambulatory and hospitalized cancer patients

    Get PDF
    Background: Pain in cancer patients is recognized as a major health problem, yet few studies of both inpatient and outpatient populations have been carried out. Objective: The study objective was to assess the frequency, type, and characteristics of pain in adult cancer patients, including both inpatients and outpatients. Methods: This cross-sectional study involved 1064 adult cancer patients (437 outpatients and 627 inpatients) from 44 hospitals and/or long-term-care centers in Catalonia, Spain. Cancer patients suffering from pain of any etiology for >_2 weeks and/or under analgesic treatment >_2 weeks were enrolled. Demographic and pain data were collected. The Spanish version of the Brief Pain Inventory was used to assess pain. Results: Pain frequency was 55.3%. Pain was less frequent in outpatients than inpatients (41.6% versus 64.7%; p<0.001), although median pain duration was longer in outpatients (20 versus 6 weeks; p<0.001). Pain was assessable in 333 patients, and intensity was similar in both out- and inpatients; however, outpatients reported less improvement, less pain interference with daily life, and less pain related to the cancer per se. In both groups, patients with multiple myeloma (73%), breast (65%), and lung cancer (61%) were most likely to report pain. Conclusions: Pain in cancer patients, both ambulatory and hospitalized, remains a challenge for health care professionals, health administrators, and stakeholders. Our study reveals the high level of pain and distress that cancer patients continue to suffer, a problem that is particularly notable in outpatients due to the intensity and duration of the pain

    Repeatedly Northwards and Upwards: Southern African Grasslands Fuel the Colonization of the African Sky Islands in Helichrysum (Compositae)

    Get PDF
    The Afromontane and Afroalpine areas constitute some of the main biodiversity hotspots of Africa. They are particularly rich in plant endemics, but the biogeographic origins and evolutionary processes leading to this outstanding diversity are poorly understood. We performed phylogenomic and biogeographic analyses of one of the most species-rich plant genera in these mountains, Helichrysum (Compositae-Gnaphalieae). Most previous studies have focused on Afroalpine elements of Eurasian origin, and the southern African origin of Helichrysum provides an interesting counterexample. We obtained a comprehensive nuclear dataset from 304 species (≈50% of the genus) using target-enrichment with the Compositae1061 probe set. Summary-coalescent and concatenation approaches combined with paralog recovery yielded congruent, well-resolved phylogenies. Ancestral range estimations revealed that Helichrysum originated in arid southern Africa, whereas the southern African grasslands were the source of most lineages that dispersed within and outside Africa. Colonization of the tropical Afromontane and Afroalpine areas occurred repeatedly throughout the Miocene-Pliocene. This timing coincides with mountain uplift and the onset of glacial cycles, which together may have facilitated both speciation and intermountain gene flow, contributing to the evolution of the Afroalpine flora.This work received financial support from the Spanish Ministry of Science, Innovation and Universities (PID2019-105583GB-C22/AEI/10.13039/501100011033) and the Catalan government (“Ajuts a grups consolidats” 2021SGR00315 and FI grant to C.B.-G. 2022FI_B 00150). The Ph.D. thesis was carried out under the Ph.D. program “Plant Biology and Biotechnology” of the Autonomous University of Barcelona (UAB). Additional support was provided by the Czech Science Foundation GAČR project no. 20-10878S to R.S. and F.K. and long-term research development project (RVO 67985939) of the Czech Academy of Sciences. Additional funds were obtained from the Norwegian Programme for Development, Research and Higher Education (NUFU; project AFROALP-II, no 2007/1058) and the Research Council of Norway (project SpeciationClock, no 274607) to C.B.Abstract 1. Introduction 2. Materials and Methods 2.1. Taxon Sampling 2.2. DNA Extraction, Library Preparation, Target Capture, and Sequencing 2.3. Molecular Data Processing and Phylogenetic Analyses 2.4. Divergence Time Estimation 2.5. Ancestral Range Estimation 3. Results 3.1. Alignment Processing and Filtering 3.2. Phylogenetic Analyses 3.3. Divergence Time and Ancestral Range Estimation 3.4. Number, Type, and Directionality Estimation of Biogeographical Events 4. Discussion 4.1. Utility of Target-Enrichment Strategies in Reconstructing the Radiation of Helichrysum 4.2. The Early History of Helichrysum and Colonization of Madagascar 4.3. Repeatedly Northwards 4.4. Repeatedly Upwards 5. Conclusions Supplementary Materials Author Contributions Funding Data Availability Statement Acknowledgments Conflicts of Interest Reference

    Controlled sign reversal of electroresistance in oxide tunnel junctions by electrochemical-ferroelectric coupling

    Get PDF
    The persistence of ferroelectricity in ultrathin layers relies critically on screening or compensation of polarization charges which otherwise destabilize the ferroelectric state. At surfaces, charged defects play a crucial role in the screening mechanism triggering novel mixed electrochemical-ferroelectric states. At interfaces, however, the coupling between ferroelectric and electrochemical states has remained unexplored. Here, we make use of the dynamic formation of the oxygen vacancy profile in the nanometerthick barrier of a ferroelectric tunnel junction to demonstrate the interplay between electrochemical and ferroelectric degrees of freedom at an oxide interface. We fabricate ferroelectric tunnel junctions with a La_0.7Sr_0.3MnO_3 bottom electrode and BaTiO_3 ferroelectric barrier. We use poling strategies to promote the generation and transport of oxygen vacancies at the metallic top electrode. Generated oxygen vacancies control the stability of the ferroelectric polarization and modify its coercive fields. The ferroelectric polarization, in turn, controls the ionization of oxygen vacancies well above the limits of thermodynamic equilibrium, triggering the build up of a Schottky barrier at the interface which can be turned on and off with ferroelectric switching. This interplay between electronic and electrochemical degrees of freedom yields very large values of the electroresistance (more than 10^6% at low temperatures) and enables a controlled switching between clockwise and counterclockwise switching modes in the same junction (and consequently, a change of the sign of the electroresistance). The strong coupling found between electrochemical and electronic degrees of freedom sheds light on the growing debate between resistive and ferroelectric switching in ferroelectric tunnel junctions, and moreover, can be the source of novel concepts in memory devices and neuromorphie computing

    Ferroionic inversion of spin polarization in a spin-memristor

    Get PDF
    Magnetoelectric coupling in artificial multiferroic interfaces can be drastically affected by the switching of oxygen vacancies and by the inversion of the ferroelectric polarization. Disentangling both effects is of major importance toward exploiting these effects in practical spintronic or spinorbitronic devices. We report on the independent control of ferroelectric and oxygen vacancy switching in multiferroic tunnel junctions with a La_(0.7)Sr_(0.3)MnO_3 bottom electrode, a BaTiO_3 ferroelectric barrier, and a Ni top electrode. We show that the concurrence of interface oxidation and ferroelectric switching allows for the controlled inversion of the interface spin polarization. Moreover, we show the possibility of a spin-memristor where the controlled oxidation of the interface allows for a continuum of memresistance states in the tunneling magnetoresistance. These results signal interesting new avenues toward neuromorphic devices where, as in practical neurons, the electronic response is controlled by electrochemical degrees of freedom

    The Eighteenth Data Release of the Sloan Digital Sky Surveys: Targeting and First Spectra from SDSS-V

    Full text link
    The eighteenth data release of the Sloan Digital Sky Surveys (SDSS) is the first one for SDSS-V, the fifth generation of the survey. SDSS-V comprises three primary scientific programs, or "Mappers": Milky Way Mapper (MWM), Black Hole Mapper (BHM), and Local Volume Mapper (LVM). This data release contains extensive targeting information for the two multi-object spectroscopy programs (MWM and BHM), including input catalogs and selection functions for their numerous scientific objectives. We describe the production of the targeting databases and their calibration- and scientifically-focused components. DR18 also includes ~25,000 new SDSS spectra and supplemental information for X-ray sources identified by eROSITA in its eFEDS field. We present updates to some of the SDSS software pipelines and preview changes anticipated for DR19. We also describe three value-added catalogs (VACs) based on SDSS-IV data that have been published since DR17, and one VAC based on the SDSS-V data in the eFEDS field.Comment: Accepted to ApJ
    corecore