16 research outputs found

    Human cytomegalovirus glycoprotein UL141 targets the TRAIL death receptors to thwart host innate antiviral defenses.

    Get PDF
    Death receptors (DRs) of the TNFR superfamily contribute to antiviral immunity by promoting apoptosis and regulating immune homeostasis during infection, and viral inhibition of DR signaling can alter immune defenses. Here we identify the human cytomegalovirus (HCMV) UL141 glycoprotein as necessary and sufficient to restrict TRAIL DR function. Despite showing no primary sequence homology to TNF family cytokines, UL141 binds the ectodomains of both human TRAIL DRs with affinities comparable to the natural ligand TRAIL. UL141 binding promotes intracellular retention of the DRs, thus protecting virus infected cells from TRAIL and TRAIL-dependent NK cell-mediated killing. The identification of UL141 as a herpesvirus modulator of the TRAIL DRs strongly implicates this pathway as a regulator of host defense to HCMV and highlights UL141 as a pleiotropic inhibitor of NK cell effector function

    Herpesvirus Entry Mediator and Nectin-1 Mediate Herpes Simplex Virus 1 Infection of the Murine Cornea▿

    No full text
    Herpes simplex virus 1 (HSV-1) is a ubiquitous human pathogen that enters cells by the receptor-mediated fusion of the viral envelope with a host cell membrane. The envelope glycoprotein gD of HSV must bind to one of its receptors for entry to take place. Recent studies using knockout (KO) mice demonstrated that the gD receptors herpesvirus entry mediator (HVEM) and nectin-1 are the primary entry receptors for HSV-2 in the mouse vagina and brain. Nectin-1 was most crucial for the neuronal spread of HSV-2, particularly in the brain. HVEM was dispensable for infection in these models, but when both HVEM and nectin-1 were absent, infection was completely prevented. We sought to determine the receptor requirements of HSV-1 in an ocular model of infection using knockout mice. Wild-type, HVEM KO, nectin-1 KO, and HVEM/nectin-1 double-KO mice were infected via corneal scarification and monitored for clinical signs of infection and viral replication in various tissues. We report that either HVEM or nectin-1 must be present for HSV-1 infection of the cornea. Additionally, we observed that the infection was attenuated in both HVEM KO and nectin-1 KO mice. This is in contrast to what was reported for studies of HSV-2 in vagina and brain and suggests that receptor requirements for HSV vary depending on the route of inoculation and/or serotype

    Autonomic activation links CNS oxygen toxicity to acute cardiogenic pulmonary injury

    No full text
    Breathing hyperbaric oxygen (HBO2), particularly at pressures above 3 atmospheres absolute, can cause acute pulmonary injury that is more severe if signs of central nervous system toxicity occur. This is consistent with the activation of an autonomic link between the brain and the lung, leading to acute pulmonary oxygen toxicity. This pulmonary damage is characterized by leakage of fluid, protein, and red blood cells into the alveoli, compatible with hydrostatic injury due to pulmonary hypertension, left atrial hypertension, or both. Until now, however, central hemodynamic parameters and autonomic activity have not been studied concurrently in HBO2, so any hypothetical connections between the two have remained untested. Therefore, we performed experiments using rats in which cerebral blood flow, electroencephalographic activity, cardiopulmonary hemodynamics, and autonomic traffic were measured in HBO2 at 5 and 6 atmospheres absolute. In some animals, autonomic pathways were disrupted pharmacologically or surgically. Our findings indicate that pulmonary damage in HBO2 is caused by an abrupt and significant increase in pulmonary vascular pressure, sufficient to produce barotrauma in capillaries. Specifically, extreme HBO2 exposures produce massive sympathetic outflow from the central nervous system that depresses left ventricular function, resulting in acute left atrial and pulmonary hypertension. We attribute these effects on the heart and on the pulmonary vasculature to HBO2-mediated central sympathetic excitation and catecholamine release that disturbs the normal equilibrium between excitatory and inhibitory activity in the autonomic nervous system
    corecore