1,338 research outputs found

    Stirling material technology

    Get PDF
    The Stirling engine is an external combustion engine that offers the advantage of high fuel economy, low emissions, low noise, and low vibrations compared to current internal combustion automotive engines. The most critical component from a materials viewpoint is the heater head consisting of the cylinders, heating tubes, and regenerator housing. Materials requirements for the heater head include compatibility with hydrogen, resistance to hydrogen permeation, high temperature oxidation/corrosion resistance, and high temperature creep-rupture and fatigue properties. A materials research and technology program identified the wrought alloys CG-27 and 12RN72 and the cast alloys XF-818, NASAUT 4G-A1, and NASACC-1 as candidate replacements for the cobalt containing alloys used in current prototype engines. It is concluded that manufacture of the engine is feasible from low cost iron-base alloys rather than the cobalt alloys used in prototype engines. Results of research that lead to this conclusion are presented

    Template Matching on Vector Fields using Clifford Algebra

    Get PDF
    Due to the amount of flow simulation and measurement data, automatic detection, classification and visualization of features is necessary for an inspection. Therefore, many automated feature detection methods have been developed in recent years. However, one feature class is visualized afterwards in most cases, and many algorithms have problems in the presence of noise or superposition effects. In contrast, image processing and computer vision have robust methods for feature extraction and computation of derivatives of scalar fields. Furthermore, interpolation and other filter can be analyzed in detail. An application of these methods to vector fields would provide a solid theoretical basis for feature extraction. The authors suggest Clifford algebra as a mathematical framework for this task. Clifford algebra provides a unified notation for scalars and vectors as well as a multiplication of all basis elements. The Clifford product of two vectors provides the complete geometric information of the relative positions of these vectors. Integration of this product results in Clifford correlation and convolution which can be used for template matching on vector fields. Furthermore, for frequency analysis of vector fields and the behavior of vector-valued filters, a Clifford Fourier transform has been derived for 2 and 3 dimensions. Convolution and other theorems have been proved, and fast algorithms for the computation of the Clifford Fourier transform exist. Therefore the computation of Clifford convolution can be accelerated by computing it in Clifford Fourier domain. Clifford convolution and Fourier transform can be used for a thorough analysis and subsequent visualization of vector field

    The 10 Tesla muSR instrument: detector solutions

    Get PDF
    Solutions to the detector system of the High-Field muSR instrument at the Paul Scherrer Institut (PSI) in Switzerland are presented. The strict technical requirements are fulfilled through the application of Geiger-mode Avalanche Photodiodes.Comment: 6 pages, 4 figure

    Internal erosion of granular materials – Identification of erodible fine particles as a basis for numerical calculations

    Get PDF
    In geohydromechanics internal erosion is a process which is still hardly to be quantified both spatially as well as temporally. The transport of fine particles, which is caused by increased hydraulic gradients, is influenced by the pore structure of the coarse grained fabric. The microstructural information of the pore constriction size distribution (CSD) of the solid skeleton has therefore to be taken into account when internal erosion is analyzed either analytically or numerically. The CSD geometrically defines the amount of fine particles, which potentially can be eroded away for a given hydraulic force. The contribution introduces experimental and numerical calculations which aim at the quantification of the amount of erodible fines. Based on this approach a multiphase continuum-based numerical model is used to back calculate the process of internal erosion for one material of the well-known experimental investigation of Skempton & Brogan (1994)[1]

    Fatigue failure of regenerator screens in a high frequency Stirling engine

    Get PDF
    Failure of Stirling Space Power Demonstrator Engine (SPDE) regenerator screens was investigated. After several hours of operation the SPDE was shut down for inspection and on removing the regenerator screens, debris of unknown origin was discovered along with considerable cracking of the screens in localized areas. Metallurgical analysis of the debris determined it to be cracked-off-deformed pieces of the 41 micron thickness Type 304 stainless steel wire screen. Scanning electron microscopy of the cracked screens revealed failures occurring at wire crossovers and fatigue striations on the fracture surface of the wires. Thus, the screen failure can be characterized as a fatigue failure of the wires. The crossovers were determined to contain a 30 percent reduction in wire thickness and a highly worked microstructure occurring from the manufacturing process of the wire screens. Later it was found that reduction in wire thickness occurred because the screen fabricator had subjected it to a light cold-roll process after weaving. Installation of this screen left a clearance in the regenerator allowing the screens to move. The combined effects of the reduction in wire thickness, stress concentration (caused by screen movement), and highly worked microstructure at the wire crossovers led to the fatigue failure of the screens

    A monoclonal antibody prevents aggregation of the NBD1 domain of the cystic fibrosis transmembrane conductance regulator

    Get PDF
    The homozygous deletion of the phenylalanine at position 508 (ΔPhe508) in the first nucleotide-binding domain (NBD1) of the cystic fibrosis transmembrane conductance regulator (CFTR) is the most common CF-causing genetic defect. It has been proposed that the propensity of NBD1 to aggregate may lead to a lower display of the CFTR chloride channel to the cell membrane and to the disease, thus opening an avenue for the pharmacological development of CFTR folding correctors. Here, we show that a human monoclonal antibody fragment specific to the folded conformation of NBD1 inhibits the aggregation of NBD1 in vitro. However, in contrast to the previously published observations, we proved experimentally that NBD1 of wild-type and ΔPhe508 version of CFTR display comparable propensities to aggregate in vitro and that the corresponding full-length CFTR protein reaches the cell membrane with comparable efficiency in mammalian cell expression systems. On the basis of our results, the ‘folding defect' hypothesis seems unlikely to represent the causal mechanism for the pathogenesis of CF. A solid understanding of how the ΔPhe508 deletion leads to the disease represents an absolute requirement for the development of effective drugs against C

    Energy Efficient and Reliable ARQ Scheme (ER-ACK) for Mission Critical M2M/IoT Services

    Get PDF
    Wireless sensor networks (WSNs) are the main infrastructure for machine to machine (M2M) and Internet of thing (IoT). Since various sophisticated M2M/IoT services have their own quality-of-service (QoS) requirements, reliable data transmission in WSNs is becoming more important. However, WSNs have strict constraints on resources due to the crowded wireless frequency, which results in high collision probability. Therefore a more efficient data delivering scheme that minimizes both the transmission delay and energy consumption is required. This paper proposes energy efficient and reliable data transmission ARQ scheme, called energy efficient and reliable ACK (ER-ACK), to minimize transmission delay and energy consumption at the same time. The proposed scheme has three aspects of advantages compared to the legacy ARQ schemes such as ACK, NACK and implicit-ACK (I-ACK). It consumes smaller energy than ACK, has smaller transmission delay than NACK, and prevents the duplicated retransmission problem of I-ACK. In addition, resource considered reliability (RCR) is suggested to quantify the improvement of the proposed scheme, and mathematical analysis of the transmission delay and energy consumption are also presented. The simulation results show that the ER-ACK scheme achieves high RCR by significantly reducing transmission delay and energy consumption
    corecore