220 research outputs found

    Intercropping drives plant phenotypic plasticity and changes in functional trait space

    Get PDF
    The relevance of intercropping, where two or more crop species are simultaneously grown on the same land space, is growing due to its potential for improving resource use and maintaining stable yields under variable weather conditions. However, the actual growth of intercropped species may differ resulting from the idiosyncratic effect of crop diversity, and with this, the realized benefits from intercrops are found to depend critically on the cultivar, species, management and environmental conditions. This study aimed to apply a trait-based approach, in which ecological niche spaces are defined through n-dimensional hypervolumes, to identify the contribution of species/cultivar, cultivation design (sole crop or intercrop) and management (low or high fertilization) to the trait diversity of four crop species, pea-barley and faba bean-wheat, when grown as sole crops and intercrops. Four traits were used as trait axes for the trait space analysis: canopy height, shoot biomass, tiller/node number, and grain yield. We found that trait spaces differed with crop species and cultivars, and whether they were grown as intercrops or sole crops. Trait spaces differed between high and low fertilization only for the cereals grown in the more productive site (i.e. Denmark). Species grown as intercrops had larger volumes than when grown as sole crops, as a result of trait plasticity. This response to intercropping was apparent in almost all the species grown in Sweden and Denmark, except for wheat in Denmark. The study demonstrated that individual species responded to intercropping compared to sole cropping through the plasticity of traits, which influenced the shape of the hypervolumes to divide up the trait space between the species. The findings are important in illustrating the plastic responses of arable crops, which are relevant for understanding the productivity of species grown in intercrops as compared to sole crops

    Efficient computation of min and max sensor values in multihop networks

    Get PDF
    Consider a wireless sensor network (WSN) where a broadcast from a sensor node does not reach all sensor nodes in the network; such networks are often called multihop networks. Sensor nodes take sensor readings but individual sensor readings are not very important. It is important however to compute aggregated quantities of these sensor readings. The minimum and maximum of all sensor readings at an instant are often interesting because they indicate abnormal behavior, for example if the maximum temperature is very high then it may be that a fire has broken out. We propose an algorithm for computing the min or max of sensor readings in a multihop network. This algorithm has the particularly interesting property of having a time complexity that does not depend on the number of sensor nodes; only the network diameter and the range of the value domain of sensor readings matter

    When the path is never shortest: a reality check on shortest path biocomputation

    Full text link
    Shortest path problems are a touchstone for evaluating the computing performance and functional range of novel computing substrates. Much has been published in recent years regarding the use of biocomputers to solve minimal path problems such as route optimisation and labyrinth navigation, but their outputs are typically difficult to reproduce and somewhat abstract in nature, suggesting that both experimental design and analysis in the field require standardising. This chapter details laboratory experimental data which probe the path finding process in two single-celled protistic model organisms, Physarum polycephalum and Paramecium caudatum, comprising a shortest path problem and labyrinth navigation, respectively. The results presented illustrate several of the key difficulties that are encountered in categorising biological behaviours in the language of computing, including biological variability, non-halting operations and adverse reactions to experimental stimuli. It is concluded that neither organism examined are able to efficiently or reproducibly solve shortest path problems in the specific experimental conditions that were tested. Data presented are contextualised with biological theory and design principles for maximising the usefulness of experimental biocomputer prototypes.Comment: To appear in: Adamatzky, A (Ed.) Shortest path solvers. From software to wetware. Springer, 201

    Stronger diversity effects with increased environmental stress : a study of multitrophic interactions between oak, powdery mildew and ladybirds

    Get PDF
    Recent research has suggested that increasing neighbourhood tree species diversity may mitigate the impact of pests or pathogens by supporting the activities of their natural enemies and/or reducing the density of available hosts. In this study, we attempted to assess these mechanisms in a multitrophic study system of young oak (Quercus), oak powdery mildew (PM, caused by Erysiphe spp.) and a mycophagous ladybird (Psyllobora vigintiduo-punctata). We assessed ladybird mycophagy on oak PM in function of different neighbourhood tree species compositions. We also evaluated whether these species interactions were modulated by environmental conditions as suggested by the Stress Gradient Hypothesis. We adopted a complementary approach of a field experiment where we monitored oak saplings subjected to a reduced rainfall gradient in a young planted forest consisting of different tree species mixtures, as well as a lab experiment where we independently evaluated the effect of different watering treatments on PM infections and ladybird mycophagy. In the field experiment, we found effects of neighbourhood tree species richness on ladybird mycophagy becoming more positive as the target trees received less water. This effect was only found as weather conditions grew drier. In the lab experiment, we found a preference of ladybirds to graze on infected leaves from trees that received less water. We discuss potential mechanisms that might explain this preference, such as emissions of volatile leaf chemicals. Our results are in line with the expectations of the Natural Enemies Hypothesis and support the hypothesis that biodiversity effects become stronger with increased environmental stress

    Grain Yield Stability of Cereal-Legume Intercrops Is Greater Than Sole Crops in More Productive Conditions

    Get PDF
    The intercropping of two or more crop species on the same piece of land at a given time has been hypothesized to enhance crop yield stability. To address this hypothesis, we assessed the grain yield stability of various barley-pea and wheat-faba bean mixtures grown in seven experimental field trials (locations) across Europe during two years with contrasting weather (2017 and 2018). Three different yield stability measures were used, all based on the expected yield variability of the mixture components grown as sole crops, and the corresponding observed yield variability of the same components grown in 50:50 mixtures in a replacement design. Stability indices were calculated as ratios between the expected and observed variabilities, with values > 1 indicating greater stability of the intercrops. Mean grain yields tended to be higher in intercrops than sole crops. However, in contrast to our hypothesis, the observed (intercrop) yield stability was similar or lower than the expected (sole crop) stability in most locations except one. Furthermore, yield stability significantly increased with increasing mean yields when assessed across differentially productive locations. The results are relevant for the designing of intercropping systems as a means to increase yield stability and the resilience of cropping systems.This research was funded by the DIVERSify project, a grant from the European Union’s Horizon 2020 research and innovation programme under grant agreement No. 727284. MR was funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation)—420661662. A.J.K. and A.C.N. are also supported by the strategic research programme funded by the Scottish Government’s Rural and Environment Science and Analytical Services Division.Peer reviewe

    Melanoma cells break down LPA to establish local gradients that drive chemotactic dispersal.

    Get PDF
    The high mortality of melanoma is caused by rapid spread of cancer cells, which occurs unusually early in tumour evolution. Unlike most solid tumours, thickness rather than cytological markers or differentiation is the best guide to metastatic potential. Multiple stimuli that drive melanoma cell migration have been described, but it is not clear which are responsible for invasion, nor if chemotactic gradients exist in real tumours. In a chamber-based assay for melanoma dispersal, we find that cells migrate efficiently away from one another, even in initially homogeneous medium. This dispersal is driven by positive chemotaxis rather than chemorepulsion or contact inhibition. The principal chemoattractant, unexpectedly active across all tumour stages, is the lipid agonist lysophosphatidic acid (LPA) acting through the LPA receptor LPAR1. LPA induces chemotaxis of remarkable accuracy, and is both necessary and sufficient for chemotaxis and invasion in 2-D and 3-D assays. Growth factors, often described as tumour attractants, cause negligible chemotaxis themselves, but potentiate chemotaxis to LPA. Cells rapidly break down LPA present at substantial levels in culture medium and normal skin to generate outward-facing gradients. We measure LPA gradients across the margins of melanomas in vivo, confirming the physiological importance of our results. We conclude that LPA chemotaxis provides a strong drive for melanoma cells to invade outwards. Cells create their own gradients by acting as a sink, breaking down locally present LPA, and thus forming a gradient that is low in the tumour and high in the surrounding areas. The key step is not acquisition of sensitivity to the chemoattractant, but rather the tumour growing to break down enough LPA to form a gradient. Thus the stimulus that drives cell dispersal is not the presence of LPA itself, but the self-generated, outward-directed gradient

    Biodiversity Loss and the Taxonomic Bottleneck: Emerging Biodiversity Science

    Get PDF
    Human domination of the Earth has resulted in dramatic changes to global and local patterns of biodiversity. Biodiversity is critical to human sustainability because it drives the ecosystem services that provide the core of our life-support system. As we, the human species, are the primary factor leading to the decline in biodiversity, we need detailed information about the biodiversity and species composition of specific locations in order to understand how different species contribute to ecosystem services and how humans can sustainably conserve and manage biodiversity. Taxonomy and ecology, two fundamental sciences that generate the knowledge about biodiversity, are associated with a number of limitations that prevent them from providing the information needed to fully understand the relevance of biodiversity in its entirety for human sustainability: (1) biodiversity conservation strategies that tend to be overly focused on research and policy on a global scale with little impact on local biodiversity; (2) the small knowledge base of extant global biodiversity; (3) a lack of much-needed site-specific data on the species composition of communities in human-dominated landscapes, which hinders ecosystem management and biodiversity conservation; (4) biodiversity studies with a lack of taxonomic precision; (5) a lack of taxonomic expertise and trained taxonomists; (6) a taxonomic bottleneck in biodiversity inventory and assessment; and (7) neglect of taxonomic resources and a lack of taxonomic service infrastructure for biodiversity science. These limitations are directly related to contemporary trends in research, conservation strategies, environmental stewardship, environmental education, sustainable development, and local site-specific conservation. Today’s biological knowledge is built on the known global biodiversity, which represents barely 20% of what is currently extant (commonly accepted estimate of 10 million species) on planet Earth. Much remains unexplored and unknown, particularly in hotspots regions of Africa, South Eastern Asia, and South and Central America, including many developing or underdeveloped countries, where localized biodiversity is scarcely studied or described. ‘‘Backyard biodiversity’’, defined as local biodiversity near human habitation, refers to the natural resources and capital for ecosystem services at the grassroots level, which urgently needs to be explored, documented, and conserved as it is the backbone of sustainable economic development in these countries. Beginning with early identification and documentation of local flora and fauna, taxonomy has documented global biodiversity and natural history based on the collection of ‘‘backyard biodiversity’’ specimens worldwide. However, this branch of science suffered a continuous decline in the latter half of the twentieth century, and has now reached a point of potential demise. At present there are very few professional taxonomists and trained local parataxonomists worldwide, while the need for, and demands on, taxonomic services by conservation and resource management communities are rapidly increasing. Systematic collections, the material basis of biodiversity information, have been neglected and abandoned, particularly at institutions of higher learning. Considering the rapid increase in the human population and urbanization, human sustainability requires new conceptual and practical approaches to refocusing and energizing the study of the biodiversity that is the core of natural resources for sustainable development and biotic capital for sustaining our life-support system. In this paper we aim to document and extrapolate the essence of biodiversity, discuss the state and nature of taxonomic demise, the trends of recent biodiversity studies, and suggest reasonable approaches to a biodiversity science to facilitate the expansion of global biodiversity knowledge and to create useful data on backyard biodiversity worldwide towards human sustainability

    Improving insect conservation management through insect monitoring and stakeholder involvement

    Get PDF
    In recent years, the decline of insect biodiversity and the imminent loss of provided ecosystem functions and services has received public attention and raised the demand for political action. The complex, multi-causal contributors to insect decline require a broad interdisciplinary and cross-sectoral approach that addresses ecological and social aspects to find sustainable solutions. The project Diversity of Insects in Nature protected Areas (DINA) assesses insect communities in 21 nature reserves in Germany, and considers interactions with plant diversity, pesticide exposure, spatial and climatic factors. The nature reserves border on agricultural land, to investigate impacts on insect diversity. Part of the project is to obtain scientific data from Malaise traps and their surroundings, while another part involves relevant stakeholders to identify opportunities and obstacles to insect diversity conservation. Our results indicate a positive association between insect richness and biomass. Insect richness was negatively related to the number of stationary pesticides (soil and vegetation), pesticides measured in ethanol, the amount of area in agricultural production, and precipitation. Our qualitative survey along with stakeholder interviews show that there is general support for insect conservation, while at the same time the stakeholders expressed the need for more information and data on insect biodiversity, as well as flexible policy options. We conclude that conservation management for insects in protected areas should consider a wider landscape. Local targets of conservation management will have to integrate different stakeholder perspectives. Scientifically informed stakeholder dialogues can mediate conflicts of interests, knowledge, and values to develop mutual conservation scenarios

    Functional identity versus species richness: herbivory resistance in plant communities

    Get PDF
    The resistance of a plant community against herbivore attack may depend on plant species richness, with monocultures often much more severely affected than mixtures of plant species. Here, we used a plant–herbivore system to study the effects of selective herbivory on consumption resistance and recovery after herbivory in 81 experimental grassland plots. Communities were established from seed in 2002 and contained 1, 2, 4, 8, 16 or 60 plant species of 1, 2, 3 or 4 functional groups. In 2004, pairs of enclosure cages (1 m tall, 0.5 m diameter) were set up on all 81 plots. One randomly selected cage of each pair was stocked with 10 male and 10 female nymphs of the meadow grasshopper, Chorthippus parallelus. The grasshoppers fed for 2 months, and the vegetation was monitored over 1 year. Consumption resistance and recovery of vegetation were calculated as proportional changes in vegetation biomass. Overall, grasshopper herbivory averaged 6.8%. Herbivory resistance and recovery were influenced by plant functional group identity, but independent of plant species richness and number of functional groups. However, herbivory induced shifts in vegetation composition that depended on plant species richness. Grasshopper herbivory led to increases in herb cover at the expense of grasses. Herb cover increased more strongly in species-rich mixtures. We conclude that selective herbivory changes the functional composition of plant communities and that compositional changes due to selective herbivory depend on plant species richness

    Towards a multisensor station for automated biodiversity monitoring

    Get PDF
    Rapid changes of the biosphere observed in recent years are caused by both small and large scale drivers, like shifts in temperature, transformations in land-use, or changes in the energy budget of systems. While the latter processes are easily quantifiable, documentation of the loss of biodiversity and community structure is more difficult. Changes in organismal abundance and diversity are barely documented. Censuses of species are usually fragmentary and inferred by often spatially, temporally and ecologically unsatisfactory simple species lists for individual study sites. Thus, detrimental global processes and their drivers often remain unrevealed. A major impediment to monitoring species diversity is the lack of human taxonomic expertise that is implicitly required for large-scale and fine-grained assessments. Another is the large amount of personnel and associated costs needed to cover large scales, or the inaccessibility of remote but nonetheless affected areas. To overcome these limitations we propose a network of Automated Multisensor stations for Monitoring of species Diversity (AMMODs) to pave the way for a new generation of biodiversity assessment centers. This network combines cutting-edge technologies with biodiversity informatics and expert systems that conserve expert knowledge. Each AMMOD station combines autonomous samplers for insects, pollen and spores, audio recorders for vocalizing animals, sensors for volatile organic compounds emitted by plants (pVOCs) and camera traps for mammals and small invertebrates. AMMODs are largely self-containing and have the ability to pre-process data (e.g. for noise filtering) prior to transmission to receiver stations for storage, integration and analyses. Installation on sites that are difficult to access require a sophisticated and challenging system design with optimum balance between power requirements, bandwidth for data transmission, required service, and operation under all environmental conditions for years. An important prerequisite for automated species identification are databases of DNA barcodes, animal sounds, for pVOCs, and images used as training data for automated species identification. AMMOD stations thus become a key component to advance the field of biodiversity monitoring for research and policy by delivering biodiversity data at an unprecedented spatial and temporal resolution. (C) 2022 Published by Elsevier GmbH on behalf of Gesellschaft fur Okologie
    corecore