4,779 research outputs found

    Elemental technetium as a cosmic-ray clock

    Get PDF
    Several radioactive isotopes have been proposed as clocks for the study of the mean cosmic ray confinement time, T sub e. Measurements of Be-10 and Al-26 give a value for T sub e of about 10 Myr when one uses a leaky box cosmic ray propagation model. It is important to obtain additional measurements of T sub e from other radioactive isotopes in order to check whether the confinement is the same throughout the periodic table. The possible use of Tc (Z = 43) as a cosmic clock is investigated. Since all isotopes of Tc are radioactive, one might be able to group these isotopes and use the elemental abundance as a whole. The results of the calculations are somewhat inconclusive for two reasons. First, the beta + decay half lives of two of the Tc isotopes relevant to our calculation are not known. Second, the dependence of the Tc abundance on the mean confinement time is rather weak when one considers the number of events expected in 4 trays of plastic track detectors. However, a future, finite measurement of the Beta + half lives and the possible use of the entire collecting area of the HNC to detect Tc nuclei could make the use of Tc as a cosmic ray clock more attractive

    Lamellar phase separation and dynamic competition in La0.23Ca0.77MnO3

    Full text link
    We report the coexistence of lamellar charge-ordered (CO) and charge-disordered (CD) domains, and their dynamical behavior, in La0.23Ca0.77MnO3. Using high resolution transmission electron microscopy (TEM), we show that below Tcd~170K a CD-monoclinic phase forms within the established CO-orthorhombic matrix. The CD phase has a sheet-like morphology, perpendicular to the q vector of the CO superlattice (a axis of the Pnma structure). For temperatures between 64K and 130K, both the TEM and resistivity experiments show a dynamic competition between the two phases: at constant T, the CD phase slowly advances over the CO one. This slow dynamics appears to be linked to the magnetic transitions occurring in this compound, suggesting important magnetoelastic effects.Comment: 4 pages, 4 figure

    Computer-aided Melody Note Transcription Using the Tony Software: Accuracy and Efficiency

    Get PDF
    accepteddate-added: 2015-05-24 19:18:46 +0000 date-modified: 2017-12-28 10:36:36 +0000 keywords: Tony, melody, note, transcription, open source software bdsk-url-1: https://code.soundsoftware.ac.uk/attachments/download/1423/tony-paper_preprint.pdfdate-added: 2015-05-24 19:18:46 +0000 date-modified: 2017-12-28 10:36:36 +0000 keywords: Tony, melody, note, transcription, open source software bdsk-url-1: https://code.soundsoftware.ac.uk/attachments/download/1423/tony-paper_preprint.pdfWe present Tony, a software tool for the interactive an- notation of melodies from monophonic audio recordings, and evaluate its usability and the accuracy of its note extraction method. The scientific study of acoustic performances of melodies, whether sung or played, requires the accurate transcription of notes and pitches. To achieve the desired transcription accuracy for a particular application, researchers manually correct results obtained by automatic methods. Tony is an interactive tool directly aimed at making this correction task efficient. It provides (a) state-of-the art algorithms for pitch and note estimation, (b) visual and auditory feedback for easy error-spotting, (c) an intelligent graphical user interface through which the user can rapidly correct estimation errors, (d) extensive export functions enabling further processing in other applications. We show that Tony’s built in automatic note transcription method compares favourably with existing tools. We report how long it takes to annotate recordings on a set of 96 solo vocal recordings and study the effect of piece, the number of edits made and the annotator’s increasing mastery of the software. Tony is Open Source software, with source code and compiled binaries for Windows, Mac OS X and Linux available from https://code.soundsoftware.ac.uk/projects/tony/

    Floer Homology and the Heat Flow

    Get PDF
    Abstract.: We study the heat flow in the loop space of a closed Riemannian manifold M as an adiabatic limit of the Floer equations in the cotangent bundle. Our main application is a proof that the Floer homology of the cotangent bundle, for the Hamiltonian function kinetic plus potential energy, is naturally isomorphic to the homology of the loop spac

    New string vacua from twistor spaces

    Full text link
    We find a new family of AdS_4 vacua in IIA string theory. The internal space is topologically either the complex projective space CP^3 or the "flag manifold" SU(3)/(U(1)xU(1)), but the metric is in general neither Einstein nor Kaehler. All known moduli are stabilized by fluxes, without using quantum effects or orientifold planes. The analysis is completely ten--dimensional and does not rely on assumptions about Kaluza--Klein reduction.Comment: 19 pages. v3: published version, further minor correction

    A finite-difference program for stresses in anisotropic, layered plates in bending

    Get PDF
    The interlaminar stresses induced in a layered laminate that is bent into a cylindrical surface are studied. The laminate is modeled as a continuum, and the resulting elasticity equations are solved using the finite difference method. The report sets forth the mathematical framework, presents some preliminary results, and provides a listing and explanation of the computer program. Significant among the results are apparent symmetry relationships that will reduce the numerical size of certain problems and an interlaminar stress behavior having a sharp rise at the free edges

    Nanoscale magnetic structure of ferromagnet/antiferromagnet manganite multilayers

    Full text link
    Polarized Neutron Reflectometry and magnetometry measurements have been used to obtain a comprehensive picture of the magnetic structure of a series of La{2/3}Sr{1/3}MnO{3}/Pr{2/3}Ca{1/3}MnO{3} (LSMO/PCMO) superlattices, with varying thickness of the antiferromagnetic (AFM) PCMO layers (0<=t_A<=7.6 nm). While LSMO presents a few magnetically frustrated monolayers at the interfaces with PCMO, in the latter a magnetic contribution due to FM inclusions within the AFM matrix was found to be maximized at t_A~3 nm. This enhancement of the FM moment occurs at the matching between layer thickness and cluster size, where the FM clusters would find the optimal strain conditions to be accommodated within the "non-FM" material. These results have important implications for tuning phase separation via the explicit control of strain.Comment: 4 pages, submitted to PR

    A 2k2k-Vertex Kernel for Maximum Internal Spanning Tree

    Full text link
    We consider the parameterized version of the maximum internal spanning tree problem, which, given an nn-vertex graph and a parameter kk, asks for a spanning tree with at least kk internal vertices. Fomin et al. [J. Comput. System Sci., 79:1-6] crafted a very ingenious reduction rule, and showed that a simple application of this rule is sufficient to yield a 3k3k-vertex kernel. Here we propose a novel way to use the same reduction rule, resulting in an improved 2k2k-vertex kernel. Our algorithm applies first a greedy procedure consisting of a sequence of local exchange operations, which ends with a local-optimal spanning tree, and then uses this special tree to find a reducible structure. As a corollary of our kernel, we obtain a deterministic algorithm for the problem running in time 4knO(1)4^k \cdot n^{O(1)}
    corecore