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1. Introduction

THE OBJECT of this paper is to solve the linear-quadratic control problem (LQCP)
for retarded functional differential equations (RFDE) with delays in the input and
output variables. This will be done within the general semigroup-theoretic
framework which has been developed in [28].

For retarded systems with undelayed input and output variables the LQCP has
been studied by various authors for about twenty years. We mention the work of
Krasovskii [20], Kushner & Barnea [21], Alekal, Brunovskii, Chyung & Lee [1],
Delfour & Mitter [14], Curtain [6], Manitius [25], Delfour, McCalla & Mitter
[13], Delfour, Lee & Manitius [11], Delfour [8], Banks & Burns [2]. First results
on systems with a single-point delay in the state and control variables can be
found in Koivo & Lee [19] and Kwong [22]. Ichikawa [16] has developed a
comprehensive evolution equation approach for the treatment of the LQCP for
RFDEs with input delays. His idea was to include a past segment of the input
function in the state of the system. A completely different approach to this
problem has been developed by Vinter & Kwong [30] for RFDEs with distributed
input delays. Their approach has been generalized to RFDEs with general delay,
in the state and control variables by Delfour [9, 10] and to neutral systems by
Karrakchu [18] in her recent thesis. The LQCP for neutral systems with output
delays has been studied by Datko [7] and Ito & Tarn [17].

For RFDEs with general delays in state, control, and observation the LQCP
has been an outstanding problem for many years. The only available papers on
this subject seem to be those by Lee [24] and by Fernandez-Berdagler & Lee [15]
which deal only with the finite time problem for a rather special class of systems,
namely those with a single point delay. Furthermore, in [24] the optimal control is
given in open loop form only and the proofs in [15] are rather complicated. In the
present paper we fill this gap and present a general and—as we think—elegant
solution of the LQCP for RFDEs with delays in state, control, and observation.

In Section 2 we develop a state-space approach for this class of system with a
particular emphasis on the duality relationships (Section 2.2). These results are
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very much analogous to those in Delfour & Manitius [12] on retarded, and in
Salamon [29] on neutral, systems. We also extend the concept of structural
operators (Bernier & Manitius [3], Manitius [26], Delfour & Manitius [12], Vinter
& Kwong [30], Delfour [10]) to RFDEs with delays in both input and output
variables (Section 2.3). In Section 3 we then combine the results of Section 2 with
those of [28] in order to solve the LQCP on the finite (Section 3.1) and on the
infinite (Section 3.3) time interval. In Section 3.2 we collect some known and new
results on stabilizability and detectability for retarded systems.

We begin with a brief resumS of the abstract results of [28]. The basic model is

*('o)=*o, (1.1)

y(t) = Cx(t) (1.2)

for to^t^tu where u{»)e\}[to,tx\U], y(»)eL2[t0, tuY), and U and Y are
Hilbert spaces. A is the infinitesimal generator of a strongly continuous
semigroup S(t) on a Hilbert space H and, in order to allow for unboundedness of
the operators B and C, we assume that B e Z(U, V) and 2(W, Y) where W and V
are Hilbert spaces such that

with continuous dense injections. (1.1) is interpreted in the mild form

x(t) = S(t - to)xo + \ S(t - o)Bu(o) do (r0 « /« t , ) .

In order to make sure that the trajectories are well defined in all three spaces W,
H, V we have to assume that S(t) is a strongly continuous semigroup on W and V
and the following hypotheses are satisfied.
(HI) There exists some constant b > 0 such that

Ida =s6 llw(-)llL2i«o.»i;tn for all M(«) eL2[/o, îi ^/]-
II w

(H2) There exists some constant c > 0 such that

(H3) Z = c£)v(A)cW with continuous dense embedding where Z is endowed
with the graph norm of A regarded as an unbounded closed operator on V.

Associated with the control system (1.1)—(1.2) is the performance index

/(«) = <*(*,), Gx{t,))v,v. + f[||Cx(0||2v+ (u(t), Ru(t))a] dt

where G e 2(K, V*) is nonnegative and R e 2((/) satisfies (u, Ru)v^e \\u\\\j for
some £ > 0 and every u e U.

In [28] it is shown that the optimal control is given by
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where P(t) e fi(V, V*) and for every x eZ, the function P(t)x is differentiable
with values in Z* and satisfies the differential Riccati equation

- P(t)x + A*P(t)x + P(t)Ax - P(t)BR-lB*P{t)x + C*Cx = 0, P(f,)x = Gx.
at

In this equation A is regarded as a bounded operator from Z into V.
We also considered the infinite-time problem where

J{u)=[[\\y{t)\\\+{u(t),Ru{t))u\at.
Jo

Under the additional assumption
(H4) for every x0 e V, there exists uXo(») e L2[0, o°; U] such that

we showed that the optimal control was

u(t) = -R~lB*Px(t)

where P e Q(V, V*) satisfies the algebraic Riccati equation

A*Px + PAx-PBR~1B*Px + C*Cx = O. (1.3)

In the above x e Z and the equation holds in Z*. With the following assumption:
(H5) if x0 e V and u(«) e L2[0, °°; U] are such that J{u) < °°, then

x(.)eL2[0,oo;K],

the closed-loop semigroup generated by A-BR~lB*P is exponentially stable
where P is the (unique) nonnegative solution of (1.3).

2. State-space theory for retarded systems with delays in inpnt and output

2.1 Control Systems with Delays

We consider the linear RFDE

x(t) = Lx, + Bu,, y{t) = Cx,, (2.1a, b)

where x(t) e W, u{t) e Rm, y(t) e W, and x, and u, are defined by x,(z) = x{t + T)
and u,(x) = u(t + r) for - H i s O , with 0 < h < °o.

Correspondingly L, B, C are bounded linear functional from C(-/i, 0; R"),
C(-h, 0; Rm), C(-h, 0; R") into R", R", Rp, respectively. These can be
represented by matrix functions A{x), B{z), T(T) in the following way

L<p = f [dA(r) <p(-t)], C4> = f [d^T) <^>(-T)] (<P e C(-h, 0; R")),
Jo Jo

S? = fW(r) §(-T)] (? G C(-h, 0; R"1)).
Jo
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Without loss of generality we assume that the matrix functions A, B, and F are
normalized, i.e. vanish for T ^ O , are constant for T3J/J and left continuous for
0<x<h. A solution of (2.1a) is a function x e L f J - A , <»;R") which is
absolutely continuous with L2 derivative on every compact interval [0, T] (with
7*>0) and satisfies (2.1a) for almost every ( ? 0 . It is well known that (2.1a)
admits a unique solution x(t) = x(t; <p, u) (t^—h) for every input u(»)e
^ o; Rm) and every initial condition

x(0) = <p°, x(x) = <p\z) ( - * « T < 0 ) , (2.2a)

u{x) = <j>\x) ( - A « T < 0 ) , (2.2b)

where <p = (<p°, <p\ </>2)eX = R"x L2(-/i, 0; R") x h\-h, 0; Rm). Moreover,
*(•; <p, u) depends continuously on <p and u on compact intervals, i.e. for any
T > 0 there exists a K > 0 such that

where | |0 | | = (\\(p || + ||<p ||L2 + II<MIL2) for (p e 3£ (see e.g. Borisovic & Turb-
abin [4], Delfour & Manitius [12], Salamon [29]). The corresponding output
_y(«) = y(»; (p, u) is in L,2 .̂ (0, °o; Rp) and depends—in this space—continuously on
<p and u. The fundamental solution of (2.1a) will be denoted by X{t) (t^—h)
and is the nxn matrix-valued solution of (2.1a) which corresponds to u = 0 and
satisfies A^O) = / and X(t) = 0 for —h =£ r < 0. Its Laplace transform is given by
A'1^), where

A(k) = XI - L(ek-) = U-\ [dA(r) e"Ar] (A e C),
Jo

is the characteristic matrix of (2.1a). It is well known that the forced motions of
(2.1a) can be written in the form

x(t; 0, u) = f X(t - s)Bu, ds (t > 0).
Jo

We also consider the transposed RFDE

z(t) = LTz, + CTvt, w(t) = BTz,, (2.3a, b)

with initial data

z(0) = xp°, Z(T) = IP1(Z) ( - / i=er<0) (2-4a)

U(T) = T//2(T) (-h =e T < 0), (2-4b)

where t/; = (xf>°, xp1, xf>2) e 3ET = R" X L\-h, 0; R") x L2(-/t, 0; Rp). The unique
solution of (2.3a) and (2.4) will be denoted by z(t) = z{t; rp, v) (t 3= -h) and the
corresponding output by w(t) = w(t; rp, v) [t > 0).

2.2 State Concepts and Duality

The 'classical' way of introducing the state of a delay system is to specify an
initial function of suitable length which describes the past history of the solution.
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This is due to the existence and uniqueness of the solution to the delay equation
(in our case (2.1)) and its continuous dependence on the initial function (in our
case (2.2)). Correspondingly, we may define the state of system (2.1) at time 1ss 0
to be the triple.

and analogously, the state of the transposed system (2.3) at time /3=0 will be
given by

= (z(t),z,,v,)e3iT.

The idea of including the input segment in the state of the system was first
suggested by Ichikawa [16].

In order to describe the duality relation between the systems (2.1) and (2.3),
we need an alternative state concept. For this we replace the initial functions <pl

and <p2 of the state- and input-variables by additional forcing terms of suitable
length on the right-hand side of both equations in (2.1). These terms completely
determine the future behaviour of the solution and the output. More precisely,
we rewrite system (2.1)-(2.2) as

x(t)=l'[dA(T)x(t-r)]+\'[dB(r)u(t-z)]+f\t), x(0)=/°, (2.5a)
Jo Jo

y(t) = f'[dT(T)*(* - T)] +f(t), (2.5b)

Jo

for 12* 0, where the triple

f=(f,f\f2)eXT* = R"x L2[0, h; W] x L2[0, h; W]
is given by

f=4>°, (2.6a)

fl(t)=\h[dA(T)<p1(t-T)]+f[dB(r)<p2(t-T)] (O«f«A), (2.6b)

ftt) = \ [dT(T) <t>\t - T)] (0«*« h). (2.6c)
Ji

Remarks 2.1
(i) The expressions on the right-hand sides of (2.6b) and (2.6c) are well defined

as square-integrable functions on the interval [0, h) (see e.g. Delfour & Manitius
[12] or Salamon [29]). Each of them can be interpreted as the convolution of a
Borel-measure on the interval [0, h] with an L2 function on the interval [-h, 0].

(ii) The product space 3ET* = W x L2(0, h; R") x L2(0, h; Rp) can be identified
with the dual space of £ T = R" x L2(-h, 0; R") x L2(-/z, 0; Rp) via the duality
pairing

V°7°+ frpn(s)f\s)ds+ f ^(-5)^(5) ds
Jo Jo
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for i/;eST and /eXT*. In the same manner we can identify the product space
3E* = RnxL2(0,/t;R' I)xL2(0>/j;Rm) with the dual space of 3E = R" x L2(-/j,
0; R") x L2(-/i, 0; Rm).

Now it is easy to see that the solution x(t) and the output y(t) of system (2.5)
vanish for 12= 0 if and only if / = 0. This fact motivates the definition of the initial
state of system (2.5) to be the triple / e 3£T*. Correspondingly the state of (2.5) at
time 12= 0 is the triple

where the function components x' eL2(0,/i; R") and / e L 2 ( 0 , h;W) are the

forcing terms of systems (2.5) after a time shift. These are given by
1 [dA(r) x(t + s- r)] + [dB(r) u(t + s- T)] +f\t + s),

(2.7a)

y'(s) = r\dr{r) x(t + s- r)] +ftt + s), (2.7b)

for 0 ass =£h, where f\t) and f2^) are defined to be zero if t ^ [0, h].
The idea of defining the state of a delay equation through the forcing term

rather than the solution segment was first suggested by Miller [27] for Volterra
integrodifferential equations. The corresponding duality relation has been dis-
covered by Bums & Herdman [5]. Further references in this direction can be
found in Salamon [29].

The same ideas as above can be applied to the transposed equation (2.3). For
this we rewrite system (2.3)-(2.4) in the following way.

2(0 = f'[dAT(T) Z(t - Z)] + f'[drT(T) V(t - T)]+g\t), Z(O) =g°,
Jo Jo

(2.8a)

w(t) = f[dBT(r) z(t - T)] + g\t), (2.8b)

for 12* 0, where the triple

8 = iS°, g\ 82) e 2» = R" x L2(0, h; R") x L2(0, h; Rm)

is given by

g°=V°, (2.9a)

g\t) = f [dAT(r) y\t - r)] + f[drT(r) rp\t - x)\, (2.9b)
Ji Jt

r )V 1 ( r - r ) ] , (2.9c)

for 0 =s t «s h. The initial state of system (2.8) is the triple g e 2* and the state at
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time 15= 0 is given by

S(t) = (z(t),z',wt)e3i*

where the function components z' e L\0,h; W) and w' e L2(0, h; Rm) are of the
form

z'(s)=

for 0«ss ^ / i . These expressions can be obtained from equation (2.8) through a
time shift.

Summarizing our situation, we have introduced two different notions of the
state both for the original RFDE (2.1) and for the transposed RFDE (2.3). A
duality relation between these two equations involves both state concepts. The
dual state concept (forcing terms) for the original system (2.1) is dual to the
'classical' state concept (solution segments) for the transposed system (2.3).
More, precisely, we have the following result.

THEOREM 2.2 Let u(») e LJUO,»; Rm) and v(») e 1^(0, °°; W) be given.
(i) Letfe XT* and y e £T. Moreover, suppose that ${t) = (x(t), x', y') e 3ET* is

the corresponding state of (2.5) with output y(t) and that 2 (t) = (z(t), zt, v,) e S T is
the state of (2.3)-(2.4) at time t^O with output w(t). Then

for t s» 0.

(ii) Let (peX and g e 31*. Moreover, suppose that i(t) = {x(t), x,, u,) is the
corresponding state of (2.1)-(2.2) with output y(t) and that 2(t) = (z(r), z', w') e
di* is the state of (2.8) at time t s* 0 with output w{t). Then

',x= fwT(t-s)u(s)ds-fvT(t-s)y(s)ds
Jo Jo

for 12» 0.

Proof. We will give a proof of statement (i) only. For this let us assume that
z(t) (t 2* -h) is the unique solution of (2.3)-(2.4) with output w{t) (t 2* 0) and
that x(t) (f2sO) is the unique solution of (2.5) with output y\t) (t^O).
Moreover, let x' e L2[0, h; W] and y' e V[0,h; W] be given by (2.7) and define
x{t) = 0 and u(t) = 0 for t < 0. Then it is easy to see that

f
Jo

[zT(t - s)Lx, - (LTz,_,)Tx(s)] ds = - { [ rpn(-s)[dA(x) x(t + s- T)] ds
o JfO Jj-0
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and analogous equations hold for B and C. Moreover

1/^(0 - z\t)f = Jf | [z\t - S)X(S)] ds

= i zT(f - s)x(s) ds - f iT(r - s)x(s) dr.
Jo Jo

This implies

= vOTJt(O - zT(0/° + f V " ( - * ) * ' ( * ) <*s
Jo

+ f V^-Oy'^) ds - {z\t - s)f\s) ds - I vT(t - s)f(s) ds
Jo Jo Jo

= \'z\t - s)[Lx, + Bu, +f\s)] ds - I"(L1*,-, + CTv,-,)Tx(s) ds
Jo Jo

+ f tl>ir(-s)f\t + s)ds+ \ f rp1J(-s)[dA(x)x(t + s-x)
JO Jr-0 Jj=O

+ f f rp1J(-s)[dB(T)u(t + s-r)]ds
Jo Jo

o Jo

+ f xp2T(-s)f2(t + s) ds - I zJ(t - s)f\s) ds - f V1T(' ~ s)fl(s) ds
Jo Jo h

- \'v\t - s)f(s) ds-l" ^(t - s)f(s) ds
Jo Jo

= f(8Tz<-,)T"(*)ds- i'v\t-s)[Cx,+f\s)}ds
Jo Jo

= wy{t - s)u(s) ds - vT(t - s)y(s) ds.
Jo Jo

2.3 Semigroups and Structural Operators

Throughout this section we restrict our discussion to the homogeneous systems
(2.1) and (2.5) (respectively (2.3) and (2.8)) which means that u(t) = 0 (respec-
tively v(t) = 0) for 13= 0.

The evolution of the systems (2.1) and (2.3) in terms of the 'classical' state
concept (solution segments) can be described by strongly continuous semigroups:

The semigroup Sf(t) on 36 has first been introduced by Ichikawa [22]. It associated
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with every 0 e £ the state

of (2.1)-(2.2) at time f5*0 which corresponds to the input u(s) = 0 (s>0). Its
infinitesimal generator is given by

= {(f>eX:<ple W1^-/! , 0; R"),

<t>2 e W 1 ^- / . , 0; R"), <f>° = 4>\0), <*>2(0) = 0},

(Salamon [40, Theorem 1.2.6]). The semigroup ^(t) is denned analogously and
generated by the operator

©(.sfi) = { v ; e l T : t / / 1 e Wll2(-A, 0; R"),

• i//2 e W1^-/! , 0; Rp); i//° = Vx(0), V2(0) = 0},

sJTrp = (Z.V + CTi/>2, y\ ip2).

An interpretation of the adjoint semigroups 5^*(r) : ST*-» 3£T* and 5^*(f): £*-•
2* can be given through the dual-state concept (forcing terms) for the systems
(2.1) and (2.3). More precisely, we have the following result which is a direct
consequence of Theorem 2.2.

COROLLARY 2.3

(i) Let f e £T* be given and let $(t) = (x(t), x', y') e 3ET* be the state of system
(2.5) at time 12* 0 corresponding to the input u(») = 0. Then &{t) = yT*(t)f.

(ii) Let g e X* be given and let z(t) = (z(t), z', w') e 2* be the state of system
(2.8) at time 12* 0 corresponding to the input v(») = 0. Then $(t) = Sf*{t)g.

Our next result is an explicit characterization of the infinitesimal generators
siT* and si* of the semigroups 9fT*(t) and 9"(t).

PROPOSITION 2.4

(i) Letf.de £T* be given. Then f e S)(J^T*) and siY*f = d if and only if the
following equations hold h

A{h)f = d°+\ d\s) ds, (2.10a)
Jo

f\t) + [A(t) - A(h)]f = - I d\s) ds (0 « t * h), (2.10b)
Ji

f2(t) + [r(t)-r(h)]f°=-\ d\s)ds (O«r«A). (2.10c)
Ji

(ii) Letg,ke 3E* be given. Then g e S)(.s/*) and si*g = k if and only if

A\h)g° = k°+\ k\s) ds (2. lla)
Jo

g\t) + [A\t) - A\h)]g° = - \ k\s) ds (0 « r « A), (2. lib)

g\t) + [BT(r) - B\h)]g° = - I k2(s) ds (0 « f « A). (2. lie)
Ji
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Proof. Obviously it is enough to prove statement (i). First note t h a t / e '
and sf*f = d if and only if (rp,d) = (strxl>,f) for every t / i e S ) ^ 1 ) . Hence
statement (i) is a consequence of

OT 0 C 1 C 2T
Jo Jo

h \ rh rh

d\s) As At

and

~ f V»2T("0 f d\s) As At

= fv1 T(-r)dA(r)/°+ f%C T(-T) dr(r)/°

Jo

rl>2T(-h)nh)f+ C^T(-s)A(s)fA
Jo

+ f ^(-s)IXs)fds+ f^\-s)f\s)ds+ f V;2T(-
Jo Jo Jo

= ri,lT{0)A(h)f + f VlT(-s)\f\s) + A(s)f° - A(h)f) As
Jo

+ f v"{-s)\f{s) + r(s)f - r(h)f] As. D
Jo

The duality relation between the systems (2.1) and (2.3) can now be described
through the following four semigroups:

The semigroups on the left-hand side correspond to the RFDE (2.1) and those on
the right-hand side to the transposed RFDE (2.3). On each side the upper
semigroup describes the respective equation within the 'classical' state concept
(solution segments) and the semigroup below within the dual state concept
(forcing terms). A diagonal relation is actually given by functional-analytic duality
theory.

The relation between the two state concepts can be described by a so-called
structural operator

which associates with every <p e £ the corresponding triple

S ^ = / e 3 - T ' (/"given by (2.6)).

It is easy to see that this operator maps every state £(t) e H of system (2.1) into
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the corresponding state x(t) e 2£T* of system (2.5) which is given by (2.7) and
(2.6). This fact together with Corollary 2.3 shows that the following diagram
commutes:

Another important fact is that the adjoint operator 9* : £T—>£* plays the same
role for the transposed RFDE (2.3) as the structural operator 9: 3L—>£T* does
for the original RFDE (2.1). These properties are summarized in the theorem
below.

THEOREM 2.5

(i) 9Sf(t) = SfT*{t)9, then 9*9*(t) = SP[t)9*.
(ii) If(f>e S>(rf), then &<p e <£>(siT*) and sf*9<$> = 9si<t>.
(hi) / / > e ©Cstf1), then ?*rp e $>(&*) and rf*&*rp = 9*sFy.
(iv) The adjoint operator ^* : 3£T—>£* maps every ^ e S T into the triple

9*\p=ge3L* which is given by (2.9).

Proof. Statement (i) follows from the above considerations, the statements (ii)
and (iii) are immediate consequences of (i) and statement (iv) can be proved
straightforwardly. •

A structural operator of the above type has first been introduced in Bernier &
Manitius [3], Delfour & Manitus [12] for retarded systems with state delays only
and later on by Vinter & Kwong [30], and Delfour [10] for RFDEs with delays in
the state and control variables. An extension to neutral systems can be found in
Salamon [29].

2.4 Abstract Cauchy Problems

In order to describe the action of the output operators for the RFDEs (2.1) and
(2.3)—each within the two state concepts of Section 2.2—we introduce the
following four subspaces

SB = {<p e X : <p* e W ^ - Z i , 0; R"), <f>° = ^ (

2BT = {v e £T : t//1 e Wli2(-A, 0; W), t//° = rp\O)},

S8Tt = {/e3ETt : 3d2 e L2(0, h; W) s.t. (2.10c) holds},

S3* = {g e 1* : 3k2 e L2(0, h; Rm) s.t. (2.11c) holds}.

These have the following properties.

Remarks 2.6. (i) The subspaces SB, 2BT, S3T*, and 93* are dense in £, 3LT, 3ET*,
and £*, respectively. Moreover, SB and 93T* become Hilbert spaces if they are
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endowed with the norms

R»+ f ||01(r)||^dT+ f ||02(T)||̂ dT (^6SB),

- + f \\f\s)\\hds + f\\£\f(s) + r(s)f}( ds (f e33T*)
Jo Jo II os IIR,

Topologies on 2BT and 93* can be defined analogously.
(ii) The dual spaces 53, 93T, SBT*, and SB* are extensions of 3E, IT, 3ET*, and

3c.*, respectively. Thus we obtain the inclusions

SBc£c93 , 2BTc3-Tc93T, 53T*

with continuous, dense embeddings.
(in) It is easy to see that ^(/i) e 2(2, SB), ^T(/i)eS(XT,SBT), VT*(h) e

fi(3ETt,»T*), and ST*(h) e 2(3E*. «*). By duaUty, we obtain ^(/j) e S(93, £),
^"(/i) e fi(93T, I 1 ) , SfT*(h) e 2(SBT*, 2T*), and <T{h) e 2(SB*, 2*).

Before introducing the input—and output—operators, we prove that the spaces
SB, SBT, 93T*, and 33* are invariant under the semigroups Sf(t), ^{t), SPT*(t),
and !?*(t), respectively. For this we need the following preliminary result.

LEMMA 2.7 Let f e 93T* be given and let d e L2(0, h; W) satisfy

f\s) + [r(s) - r(h)]f = - Cd(a) da (0 « * *s h).

Moreover, let *(•) e Wi;2(0, t; R") be chosen such that x(0) =f° and let y' e
L2(0, h; R") be defined by (2.7b). Then

y'(s) + [r(s)-r(h)]x(t)

Proof. Let us define x(s)=f for sssO and d(o) = 0 for o<£[0, h\. Then the
equation

f [
holds for all t, J 5= 0. This implies

f
fA fA rh-t

[dr(r) i(/ + a - T)] da + d{t + a) d
J, Jo Ji

= ( (dF(T) f x(t + a - T) da) + f d(o) do
J, \ J, ' h+s

= f {dr(r) [x(t) -x(t + s- T)]} -/2(f + 5) - [/
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x(t + s- T)] -f\t + s)

= -y'(s)-[r\s)-nh)]x(t). D

Now we are in the position to prove the desired invariance properties of the
subspaces 28, SBT, 93T*, and 93*.

PROPOSITION 2.8

(i) y(t) is a strongly continuous semigroup on 9B and 93.
(ii) Sfr(t) is a strongly continuous semigroup on SBT and 93T.

(iii) yr*{t) is a strongly continuous semigroup on 93T* and 2BT*.
(iv) !f*(t) is a strongly continuous semigroup on 93* and SB*.
(v) 9 e fi(3B, 93T*) and 9 e 2(93, SBT*).

(vi) 9* e 2(2BT, 93*) and 9* e S(93T, SB*).

Proof. First note that every solution x(t) of (2.5) is absolutely continuous for
/ 2= 0 and that its L2 derivative depends continuously on / e 3ET* [29, Theorem
1.2.3 (i)]. This shows that y(t) is a strongly continuous semigroup on SB.

Now let /e93 T * be given and let x(»)e Wj^(0,<»;R'1) be the corresponding
solution of (2.5) with u(/) = 0. Moreover let y(t) (/3=0) be the output of (2.5)
and let x' and / be given by (2.7). Then SfT*(t)f= (x(t), x', y') (Corollary 2.3)
and hence it follows from Lemma 2.7 that the function t >-+ ¥T*(t)f is continuous
with values in 93T* and depends in this space continuously on/e93T*.

The same considerations^—applied to the transposed system (2.3)—show that
yT(0 is a semigroup on SBT and that 5̂ *(f) is a semigroup on 93*. The remaining
assertations in (i), (ii), (iii), and (iv) follow by duality.

In order to prove (v) and (vi), let <p e SB be given. Then Lemma 2.7 —applied
to / = 0, t = h, and x(s) = <p\s - h) for 0 =£5 =£ h —shows that 9<f> e £T* satisfies
the equation

(!¥<p)\s) + [r(s)-r(h)}(!?<P)0=-\h f [dJX*)0V-T)]da (O^s^h).

Hence &<p is in 93T* and depends in this space continuously on <p e SB. We
conclude that ^e£(9B, 93T*). The remaining assertions of (v) and (vi) follow
from this fact by analogy and duality. •

Now let us introduce the output operators

<g:SB->R", gBT:SBT^Rm, <gT* : 93T*-» W, ®* : 93*^ Rm,

by defining

(«T7=/a(0) (fe93T*),

Then the adjoint operators
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describe the input action for the systems (2.1) and (2.3). More precisely, we have
the following result for the RFDE (2.1). The corresponding statements for the
transposed RFDE (2.3) can be formulated analogously.

THEOREM 2.9 Let w(») e 1^(0, °°; Um) be given.
(i) Let 0 e 2B and let £(t) eX be the corresponding state of (2.1)-(2.2) at time

f > 0. Then £(t) (t^O) is a continuous function with values in 2B and depends in
this space continuously on <p e SB and u(») e L^O, <»; Um). Moreover

f
Jo

- s)9Su(s) ds (t&O) (2.12a)

where the integral is to be understood in the Hilbert space 93. The output y(t) of
(2.1) is given by

() <€() (t&O). (2.12b)

(ii) Let / e 93T* and let ${t) e£T* be the corresponding state of (2.5) at time
t^O. Then t*-*£{t) (t^O) is a continuous function with values in 93T* and
depends in this space continuously onfe 93T* and u(«) e Li2oc(0, °°; Rm). Moreover

£(t) = S^*(t)f + [ V*(f -s)38T*u(s) ds (t&O) (2.13a)

where the integral is to be understood in the Hilbert space 2BT*. The output y{t) of
(2.5) is given by

y{t) = <€T*£{t) (*2*0). (2.13b)

Proof. If u{») = 0, then the statements of the theorem follow immediately from
Proposition 2.8(i), (iii) together with the definition of the operators ^ and C€T*.
So we can restrict ourselves to the case <p = 0 and / = 0.

First of all, the same arguments as in the beginning of the proof of Proposition
2.8 show that i(f) is continuous with values in SB and depends in this space
continuously on u(») e Li2oc(0, °°; Um). Secondly, we establish equation (2.12a).
For this let g e 93* be given, let £(() e 2* be the corresponding state of (2.8) with
u(») = 0 and let w(t) (f^O) be the output of (2.8). Then I(t) = y*{t)g e 93*
(Corollary 2.3 and Proposition 2.8(iv)) and w(t) = 9B*f (t), by definition of the
operator 9B*. Hence it follows from Theorem 2.2(ii) that the following equation
holds for every t ̂  0:

w.*=<g,*(t))x:x

= wT(t - s)u(s) ds
Jo

['
Jo

This proves statement (i).



LINEAR-QUADRATIC CONTROL FOR RETARDED SYSTEMS WITH DELAYS 349

Now recall that i(r) = 9X{t) as long as / = 0 and <f> = 0. Hence it follows from
(i) and Proposition 2.8(v) that £(t) (f >0) is continuous with values in SBT* and
depends in this space continuously on «(•) e 1^(0, °°; Rm). Finally, equation
(2.13a) can be established in an analogous manner as (2.21a). •

The previous theorem shows that the evolution of the state £{t) of the RFDE
(2.1) in terms of the 'classical' state concept can be formally described through
the abstract Cauchy problem

2:

in the Hilbert space SB respectively 93.
Analogously, the state &(t) e 2T* of equation (2.5) in terms of the dual state

concept defines a mild solution of the abstract Cauchy problem.
A

2 T * :
i

in the Hilbert space 93T* respectively SBT*.
If we consider the Cauchy problem 2 (respectively 2T*) in the smaller state

space SB (respectively 93T*), then the output operator <£ (respectively <€T*) will
be bounded and the input operator 9B (respectively 9ST*) unbounded. Neverthe-
less, the solution of 2 (respectively 2T*) in the state space SB (respectively 93T*) is
well defined, since the input operator satisfies the hypothesis (HI) of [28]. More
precisely, the operator 9B (respectively 98T*) has the following property which
follows directly from Theorem 2.9.

Remark 2.10. For every T>0 there exists some constant bT>0 such that the
inequalities

II JO llffl
rT II

hold for every u(«) e L2(0, T; Um).
If we consider the Cauchy problem 2 (respectively 2T*) in the larger space 93

(respectively 9BT*), then the input operator will be bounded and the output
operator unbounded. Nevertheless, the output of the system is well defined as a
locally square-integrable function since the output operator satisfies the hypothe-
sis (H2) [28]. More precisely, the operator *% (respectively <€T*) has the following
property.

Remark 2.11. For every T>0 there exists some constant cT>0 such that the
inequalities

hold for every 0 e SB and every / e 93T*.
This follows by duality from the fact that the adjoint operators <£T and c€* are
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the input operators of the transposed equation (2.3) and hence satisfy analogous
inequalities as those in Remark 2.10.

Now let us apply Theorem 2.9 to the transposed RFDE (2.3). Then we obtain
that the state f (t) e £T of (2.3) in terms of the 'classical' state concept defines a
mild solution of the Cauchy problem

2T: ^ f ( 0 = j

(to be considered in the Hilbert spaces 2BT and 93T) whereas as the state 2 (t) e £*
of (2.8) in terms of the dual state concept defines a mild solution of the Cauchy
problem

2*: ^S(t) = st*S(t) + <e*v(t), 1(0) =g, w(t) =

(to be considered in the Hilbert spaces 93* and 2B*).
Summarizing our situation we have to deal with the four Cauchy problems

2 2 T

2 T * 2 * '

These are related in the same manner as the semigroups Sf(t), ^T(t), ^rr*{t), and
y*(t). More precisely, the Cauchy problems on the left-hand side correspond to
the RFDE (2.1) and those on the right-hand side to the transposed RFDE (2.3).
On each side the upper Cauchy problem describes the respective equation with
the 'classical' state concept (solution segments) and the Cauchy problem below
within the dual state concept (forcing terms). A diagonal relation is actually given
by functional-analytic duality theory.

The vertical relations between the four Cauchy problems above may also be
described through the structural operators 9 and 9*. In particular it follows from
Theorem 2.9 that J?(f) = 9i{t) (t s= 0) defines a mild solution of 2T* if i(f) (t s= 0)
is a mild solution of 2. This fact is also a consequence of Theorem 2.5 together
with the following relations between the various input/output operators by means
of the structural operator 9.

PROPOSITION 2.12

Proof. Let us first consider 9 as an operator from SB into 93T* (Proposition 2.8)
and let <f> e SB. Then 9<p e 93T* and

= f[dr(r) ^ ( -T)] =
Jo

The equation 98T= 98*9* can be established analogously by the use of Theorem
2.5(iv) and the remaining assertions of the proposition follow by duality. D

Finally, note that the Cauchy problems 2, 2T , 2T*, and 2* may also be
understood in a strong sense. In particular, if <£eSB and «(•) e Lf^O, <»;Rm],
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then it can be shown that the corresponding mild solution £ (t) of 2 is in fact a
strong solution. This means that £(t) (f 2=0), is a continuous function with values
in SB, that its derivative exists as a locally square- (Bochner-) integrable function
with values in the larger space 93, and that the first equation in 2 is satisfied in the
Hilbert space 93 for almost every t ss 0 [29, Theorem 1.3.4]. In order to make this
rigorous, we need the fact that si can be interpreted as a bounded operator from
SB to 93. This means that 2B is the domain of si when si is regarded as an
unbounded, closed operator on 93.

PROPOSITION 2.13

3B = ®o(j*), SBT = S W < ^ T ) , 93T* = ® « T - ( ^ T * ) , S?* = S W . s n .

Proof. First note that 3 T : = ©^.stf1) c SBT and hence ®fflT-(5JT*) c
® 8 T - ( ^ T » ) = £T* [28, Remark 2.3]. Now let / e P . Then / e <&fSr(siT*) if and
only if the map

V -• (stTrl>, /)BTggr- (V e SJSKJ* 1 ) )

extends to a bounded linear functional on SBT. But rj> e 2)ffiT{.8/T) if and only if
V1 e W2^-/! , 0; R"), r / » 2 e W u ( - / i , 0 ; r ) , V°=V1(0), V2(0) = 0, and ^ ( 0 ) =
LJxp1 + CTV2; and the following equation holds for every V> e ^

(s4Trp, /)fflTfflT- = (siTrp, fi&jr

= (\"(-T)dV(T)f+ [V(-T)dy(r)/)

Jo Jo

+ f V1T(s)fl(s) ds + I rp2J(-s)f(s) ds
Jo Jo

= f V
Jo

f V
Jo

(compare the proof of Proposition 2.4). The latter expression defines a bounded
linear functional on 9BT= {rp e £ T : \px e W u ( - / i , 0; R"), rp°= ̂ (0)} if and
only if there exists a d e L2(0, h; W) such that the following equation holds for
every V2 e ^/ia(-h, 0; R) satisfying V2(0) = 0

f
= I rp2(-s)d(s) ds = -f y"{-s) \ d(o) do ds.

Jo Jo JJ

This is equivalent t o / e 93T*. We conclude that 93T* = 2)SBT-(.S/T*).

Analogous arguments show that 93* = 3)ffl,(.rf*). The remaining assertion of
Proposition 2.13 follows by duality. D
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3. The linear-qoadratic optimal control problem

3.1 The Finite-time Case

In the previous section we have developed two state-space descriptions for the
RFDE (2.1). Moreover, we have shown that the corresponding Cauchy problems
2 and 2T* both satisfy the hypotheses (HI), (H2), and (H3) of [28] in suitably
chosen Hilbert spaces (Remarks 2.10 and 2.11). This allows us to apply the
results of [28] to the RFDE (2.1) within the state concepts of Sub-section 2.2. For
this sake we consider

M») = fT[\\y(?)\\h + <«('). *«(')>] d* (3.
Jo

associated with the systems (2.1) and (2.5) where R e Rmxm is a positive definite
matrix.

Remarks 3.1. For simplicity, we assume there is no weight on the final state
£(T), respectively $(T), in the cost functional Jr(«)- Such a weight could be
introduced by means of a non-negative operator G : 2BT* —* SBT leading to the
additional term (S(t), Gi(?))fflT-eB in the performance index JT(U). However,
such a term could never be of the form xJ(T)Gox(t) for some nonnegative
definite matrix Goe^nXn since the map f-*f° from 3ET* into R" cannot be
extended to a bounded linear functional on 2BT*.

The following result is now a direct consequence of [28, Theorem 2.7 and
Proposition 2.8].

THEOREM 3.2

(i) There exists a unique, strongly continuous operator family Jl(t) e
2(93, 93*) ( 0 « ( « T ) such that the function Jt(t)<p is continuously differentiable in
SB* for every <p e 2B and satisfies the equation

— Jl(t)(p + sl*JZ(t)(p + Jt(t)si<t> - ^ ( f ) ^ ^ " 1 ^ * ^ ^ ) ^ + « * ^ * = 0,

Jl(T)4> = 0. (3.2)

(ii) There exists a unique strongly continuous operator family &{i) e
2(2BT*, SB1) (0 =s t s£ T) such that the function 9{t)f is continuously differentiable
in 93T for every f e 93T* and satisfies the equation

- 9(t)f + siy9(t)f + 9>(t)dr*f - 9>{t)®T*R-l®r&{t)f + <tfT<gT*/ = 0,

9(T)f=0. (3.3)

(iii) / / JT(0e 2(93, 93*) and &(t) e 2(2BT*, SB1) (O^t^T) are the solution
operators of (3.2) and (3.3), then

n(t) = 9*9(t)& (O^t^T). (3.4)

(iv) There exists a unique optimal control which minimizes the performance index
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(3.1) subject to (2.1) and (2.2). This optimal control is given by the feedback
control law

= -R-l®T9(t)?£(t), (3.5)

where n{t) e 2(93, 93*) and 9>(t) e 2(2BT', 2BT) are given by (3.2) and (3.3). The
optimal cost corresponding to the initial state <p e£ is

= if,
where f=9<pe 3£T* is the initial state of (3.5).

Proof. The statements (i), (ii), and (iv) follow immediately from [28, Theorem
2.7 and Proposition 2.8]. In order to prove (iii), let 9>{t) e2(2BT*, 2BT) be the
unique solution of (3.3) and let Jl(t) e 2(93, 93*) be defined by (3.4). Moreover,
let tf>e2B and / : = 9<p e 93T*. Then, since 9* e 2(93T, SB*), the function
Jl(t)<t> = &*9>{t)f (0«£f «£ T) is continuously differentiable with values in SB* and
satisfies the following equation

()4 + si*Jl(t)(t> + n

at

= 0.

(See Theorem 2.5 and Proposition 2.12.) Now statement (iii) follows from the
uniqueness of the solution of (3.2). •

Note that an analogous relation as (3.4) has been shown in Delfour, Lee &
Manitius [11] and Vinter & Kwong [30] for RFDEs with undelayed input/output
variables.

3.2 Stabilizability and Detectability

In this section we investigate the sufficient conditions (H4) and (H5) of [28] for
the unique solvability of the algebraic Riccati equation in the case of the systems 2
and 2T*. We will not consider these hypotheses in their weakest form but have a
look at the slightly stronger properties of stabilizability and detectability.
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DEFINITION 3.3
(i) System 2 is said to be stabilizable if there exists a feedback operator

2(33, Rm) such that the closed-loop semigroup Sfx{t) e 2(93) defined by

s)<P ds (3.6)

for t 2=0 and $ e 93 is exponentially stable.
(ii) System ST* is said to be stabilizable if there exists a feedback operator

%*• e 2(SBT*; Rm) such that the closed-loop semigroup 9%*(t) e 2(9BT*) denned
by

SfSc\t)f = SfT*(t)f+ fV*(r-5)9BT*9T* #£*(*)/dy, (3.7)
Jo

for 1^0 and / e 3BT*, is exponentially stable.

Remarks 3.4. (i) Note that the integral term in (3.6) is a bounded linear operator
from 93 to SB (Remark 2.10) and hence Sfx(t) is also a strongly continuous
semigroup on £ and 2B.

(ii) It follows from Remark (2.6)(iii) that for every f5=/i,

Sfx(t) £ 2(93,1) n 2(£, SB).

(iii) The stability of the semigroup yx(t) is independent of the choice of the
state space 93, £, or SB. In order to see this, note that the operator
pi- jrf-9834r:SB->93 provides a similarity action between 5^-(r)e2(SB) and
Sfx(t) €2(93) if n > 0 is sufficiently large. Moreover, it follows from (ii) that the
stability of Sfx(t) on the Hilbert space SB implies the stability on 3E and the
stability on 2 implies the stability on 93.

(iv) The same arguments as above show that the closed-loop semigroup
5^*(f) e 2(SBT*) can be restricted to a semigroup on 3ET* or 93T* and that its
stability is independent of the choice of the state space SBT", £T*, or 93T*.

(v) Let 3^* e 2(9BT*, Rm) be given and define

2(93, Um). (3.8)

Then the following equation holds for every 12= 0:

9Sfx{t) = S&{t)9. (3.9)

In fact, it follows from Theorem 2.5 and Proposition 2.12 that for every (j> e 93
the function jf(f) = &Sfx(t)<p e 2BT* (f>0) defines a solution of (3.7) with

(vi) Every JF* e 2(SBT*, Rm) can be represented as

f f+ f K^-syfis) ds + f K2(-s)f2(s) ds
Jo Jo

where K2(») eL2(-h, 0;RmX"), X,(.) e W u ( - / i , 0; Bmx"), and Ko = A:i(0).
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Moreover, let us again suppose that JC = JCT*9 and consider the control law

u{t) = JF'&Xit)

= Kox(t) + f f K^s - T)[dA(r) x(t - s)] ds

+ \ [K2(s-T)[dr(T)x(t-s)]ds
Jo Jo

+ f fTA:i(5-T)[dB(T)u(f-j)]dy (3.10)
Jo Jo

for system (2.1). Then it follows from equation (3.6) and Theorem 2.9 that for
every solution pair, *(•) e LL(-/i , °°; R") n W££(0, <»; R") with «(•) e
LL(0,°°;Rm), of (2.1), (2.2), (3.10), the corresponding state £(t) =
(x(t), x,, u,) e 3E at time t ^ 0 is given by

By (3.9), this implies that x(t) = 9x(t) e ZT* is given by ${i) = 5
(vii) If 3SfeS(93, Rm) is given by (3.8) then the exponential stability of SPx(t)

on 3£ is equivalent to that of S/^c*(t) on ST*. In fact, it follows from equation (3.6)
and Theorem 2.9 that

range 5^*(/i) <= range 9

and hence equation (3.9) shows that the stability of Sfx{i) implies that of Sfx*(t).
The converse implication is a consequence of the fact that !7x(t)<p = (x(t), x,, u,)
and

(t >0) for every solution pair x(t), u{t) (t> -h) of the closed-loop system (2.1),
(2.2), (3.10) with <f>e£.

Having collected the basic properties of the feedback semigroups yx(f) and
^Itit), we are now in the position to prove the following stabilizabUity criterion.

THEOREM 3.5

The following statements are equivalent.
(i) System 2 is stabilizable.
(ii) There exists a feedback operator 3if e£(2B, Rm) such that the closed-loop

semigroup Sfx{t) e 2(2B) defined by (3.6) for t^O and <p eSB is exponen-
tially stable.

(iii) System 2T* is stabilizable.
(iv) There exists a feedback operator 3CT* e fi(93T*, Rm) such that the closed-

loop semigroup &x*{t) e 2(93T*), defined by (3.7) for t>0 and f e 93T* is
exponentially stable.

(v) For every A e C with Re A > 0 rank [4(A), 0(e*')] = n.

Proof. The implications "(iii) => (i) 4> (ii)" and "(iii) => (iv)" follow from Remark
3.4.
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Now we will prove that (v) implies (iii). Note that it has been shown [29,
Theorem 5.2.11 and Corollary 5.3.3] that (v) implies the existence of a stabilizing
control law of the form (3.10) for the system (2.1) where /Cj(») e W l i2[-/i,
0; R"1*"], Ko = Ki(0), and K2(r)=0. This means that every solution pair
x(t), u(t) (t^-h) of (2.1), (2.2), (3.10) with <f>e3L tends to zero with an
exponential decay rate which is independent of <p. This shows that the semigroup
#£*(0 is stable on 3ET* (Remark 3.4(vi)) and hence on SBT* (Remark 3.4(iv)).

It remains to show that (ii) and (iv) imply (v). For this sake assume that there
exists a A e C with Re A =s 0, and a nonzero vector x0 e C , such that *J/4(A) = 0
and xlB(ek') = 0 and define i/» := (x0, eA'x0, 0) e 2BT. Then it is easy to see that
siTxi> = ktp and 9BTi// = 0 and hence si*&*\i> = k&*\p and &*9*\p = 0 (Theorem
2.5 and Proposition 3.12). Now equations (3.7) and (3.6) show that #x(0V =
S^(t)rp = e*V and Sf£(t)?*y = ST*(0* V = e ^ * for every %7* e 2(93T*, Rm)
and every 3Sf e C(2B, Rm). Since ip±0 and y > = f 0, this shows that (ii) and (iv)
are not satisfied. D

The next result is obtained by dualizing Theorem 3.5.

COROLLARY 3.6 The following statements are equivalent.
(i) System 2 is detectable in the sense that there exists an output injection

operator Vt e 2(W, 93) such that the closed-loop semigroup $fx{t) e 2(93)
generated by si + SifS : SB—* 93 is exponentially stable.

(ii) System 2T* is detectable in the sense that there exists an output injection
operator %?* e S(R", 2BT*) such that the closed-loop semi-group S^*(f) e 2(2BT*)
generated by sir* + tf1*^* : 93T*-»SBT* is exponentially stable.

(iii) For every A e C with Re A 3= 0 we have rank _, ... = n. Note thatv ' J LC(eA)J
Sfx{t) e 2(93) satisfies the integral equation

<l> ds

for every t s* 0 and every 0 e SB [29, Theorem 1.3.9] and hence can be restricted to
a semigroup on 36 if 3C' e 2(RP, X). At the end of this section we give a concrete
representation of the output injection semigroup Sfx(t) e 2(3E) by means of a
closed-loop functional differential equation. For this purpose, note that every
"X e 2(RP, 3E) can be represented as

Xy = (Hoy, HMy, H2{*)y) el (v e R")

where / 4 e R " x * , //,(•)ie L\-h,0; RnXp), H2(.) e L\-h, 0; RmXp)- Moreover,
we introduce the abbreviating notation

^ • <p\x) = f H,(T - o)<t>\o) ds (-/z « T « 0)

for i = 1, 2 and <p2 e L2(- / i , 0; I
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THEOREM 3.7
(i) Let *(•) e Uod-h, oo; R") n W^O, °°; R») jflfiy^ t/,e RFDE

i ( 0 = L(x, + tft • y,) + B{u, + tf2 * y,) + J^y (0

iv/ierc u(«) e LJU-/i, °°; Rm) and y(«) e LJU-*. °°; K"). 7^«

je(0 = (x(0,x, + //,*y,,M, + / / 2*y,)6 3E (r^O) (3.11)

w given by the variation-of-constants formula

£(t) = y(f)*(0) + f 5̂ (r - s)3Bu(5) ds + f Sf(t - s)Xy(s) ds.
Jo Jo

(u) Let *(.)6 0«(-A,oo;R-)nW^(0,oo;|R-) and y(.) e Uc(-A, «; R")
satisfy the equations

x{t) = L(x, + Hi • y,) + S(//2 • y,) + H*y{t), y(t) = C(x, + Hx • y,),

(3.12a, b)

for 15= 0, and let £(t) e £ (f s* 0) 6e de/ined Z>y (3.11) with u(t) = 0. 77ien

i ( 0 = ^(f) i (0) . (3.13)

Proof. In order to prove statement (i), let us first assume that y(t) = 0 for f ssO
and define z(f) e R" and u(0 e Rm for t^-h by z(f) = x{t) and u(f) = «(r), for
t>0, and

Z(T) = JC(T) + f fl,(T - a)y(a) da, U(T) = H(T) + f H2(x - a)y(a) da,
Jz Jx

for -/i«T=eO. Then it is easy to see that £{f) = (z{t), z,, v,) for alU3=0 and
hence the following equation holds:

= L(x, + H, •y , ) + S(u, + H2 + y,) + Hoy(t)

= Lz, + Bv, (t > 0).

This implies x(t) = (z(t), z,, v.) = Sf(t)£(O) + f Sf(t - s)3Su(s) ds.
Jo

Secondly, let u(t) = 0 and let x(r) = 0 and y(T) = 0 for -/i « T =e 0. Moreover,
let Z(f)eRnX ' ' with V(t)eMmxp (t^-h) be the unique solution of Z(t) =
LZ, + BV, corresponding to the input V(t) = 0 (t 3> 0) and the initial conditions
Z(0) = M>, Z(T) = tf,(r), and V(T) = / / 2 (T) (-A « T < 0). Then

(Z(0,Z,, V,) = y (0*e f i (R" ,S ) (r&0). (3.14)

Now let us define

z(t)=\'z(t-s)y(s)ds, z(r) = 0,
Jo

z(r, T) = f Z(t - s + r)y(j) ds, u(r, r) = f V(t - s + t)y(s) ds,
Jo Jo
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for t > 0 and -h as x s£ 0. Then we obtain

z(t, •) = z, + Hrky, e C(-h, 0; R"), v(t, •) = H2*y, e L2(-/i, 0; R"1),
(3.15)

and hence

= jT (dA(T) jTz(* - 5 - z)y(s) dj)

+ jT(dfl(T)jT V(r - s - T)y(s) ds) + Z(0M0

= L(2, + //, * y,) + fl(H2 • y,) + Hoy (0

for 13= 0. This implies that x(t) = z(i) for 12= -A. Thus it follows from (3.14) and
(3.15) that

JQ

This proves statement (i).
In order to prove statement (ii), let us assume that x[») e \^x{-h, o°;R")n

W££(0, oo; R") and y(.) e tfj^-h, »; R") satisfy (3.12) and that i(f) e 1 is defined
by (3.11) with u(») = 0. Moreover suppose that tf>=i(0)eS!B. Then y(0 (f>0)
satisfies the Volterra integral equation

= f [dT(i) 0!(r - T)] f[dr(T) *(t - T)]

ff
J o •<»

>0) with forcing term in Wj^(0, oo; R*7). This implies that y(») e W/^O, °°; W)and hence, by (i)

f S?(f - 5)5^(5) dy e SB =
Jo

for every 13= 0. Moreover it follows from a general semigroup-theoretic result that
i(f) is continuously differentiable in 93 and satisfies

- | f (o = si*{t) + «y(0 = (si + *«)je(O (r > o).
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This proves (3.13) for the case f (0) e SB. In general (3.13) follows from the fact
that both sides of this equation depend continuously on the initial functions
(*(0), x0, y0) e £T of (3.12). (For existence and uniqueness results for this type of
equation see Salamon [29, Section 1.2].)

Finally, note that the transposed equation of (3.12) takes the form

i/(0 = Hjz(0 + f fT //T(-*)[dAT(T) z(t + s- T)] ds

+ f f HT
2(-s)[dBr(v) z(t + s- T)] ds

Jo Jo

f f Hj(-s)[drT(T)v(t + S-T)] ds.
Jo

This is nothing more than the transposed RFDE (2.3) with a control law which is
analogous to (3.10).

3.3 The Infinite-time Case

In this subsection we consider the performance index

J(u)=f[\\y(t)\\2 + ur(t)Ru(t)]dt (3.16)

associated with the Cauchy problems 2 and 2T* where R eUmxm is a positive
definite matrix.

Combining the results of [28, Theorem 3.3 and Theorem 3.4] and of the
previous subsection (Theorem 3.5 and Corollary 3.6) we obtain the facts which
are summarized in the theorem below.

THEOREM 3.8

0)//
rank [A(k), B(ek')] = n for allkeC with Re A s* 0, (3.17)

then there exist positive semidefinite operators Jl e fi(S3, 93*) and 9 e 2(2BT*, 2BT)
satisfying the algebraic Riccati equations

l c€*(€<p=0 (#e2B) (3.18)
and

sir&f+&s$T*f-9d&T*R-1&T&f+<eT<€T*f = 0 (feW*), (3.19)

respectively. The minimal solutions Jl of (3.18) and 9 of (3.19) satisfy the relation

(ii) / / (3.17) is satisfied, then there exists a unique optimal control u(») e
L?oc(0, °°; R"1) which minimizes the performance index (3.16) subject to (2.1)-
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(2.2). 77ii? optimal control is given by the feedback law

where Jl {respectively 9) is the minimal solution of (3.18) {respectively (3.19)).
The optimal cost corresponding to the initial state <f> e i is given by

J{u)=(4>,Jl<p) = (f,

where f = 9<p e 3£T* is the initial state of (2.5).
Cm) If

r An\ -i

\ = n forallkeC

then the algebraic Riccati equation (3.18) {respectively (3.19)) has at most one
self-adjoint, nonnegative solution JT e 2(93, 93*) {respectively 9e 2(2BT*,2BT)).
Moreover, if Jl {respectively 9) is such a solution, then the closed-loop semigroup
5^(0 e 2(93), generated by s&-®R-l<$*Jl {respectively Sfl*{t) e 2(2BT*)
generated by s$T* - &T*R-l9lT9>) is exponentially stable.

We have derived the solution to our infinite-time optimal-control problem via
the positive semidefinite solution 9 e 2(2BT*, 2BT) (respectively Jl e 2(93, 93*)) of
the algebraic Riccati equation (3.19) (respectively (3.18)). Therefore it would be
extremely interesting to have a detailed characterization of the structure of the
operators 9 and Jl, which arises from the product-space structure of the state
space. In the case of RFDEs with state delays only, such a characterization has
been given in Kwong [23] and Vinter & Kwong [30] for the operator 9, and in
Delfour, McCalla & Mitter [13] for the operator Jl (note that in this special case
the operators 9 and n may be defined on the state space 2TC2 = W x L2[-/i,
0; R"]). An analogous result for general systems of the type (2.1) seems to be
unknown since the Riccati equations (3.18) and (3.19) are apparently new. The
difference between (3.18) and Ichikawa's result [16] is that (3.18) allows for
output delays, which leads to an unbounded output operator c€.
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