50 research outputs found
Measuring access: how accurate are patient-reported waiting times?
Introduction: A national audit of waiting times in England’s genitourinary medicine clinics measures patient access. Data are collected by patient questionnaires, which rely upon patients’ recollection of first contact with health services, often several days previously. The aim of this study was to assess the accuracy of patient-reported waiting times.
Methods: Data on true waiting times were collected at the time of patient booking over a three-week period and compared with patient-reported data collected upon clinic attendance. Factors contributing to patient inaccuracy were explored.
Results: Of 341 patients providing initial data, 255 attended; 207 as appointments and 48 ‘walk-in’. The accuracy of patient-reported waiting times overall was 52% (133/255). 85% of patients (216/255) correctly identified themselves as seen within or outside of 48 hours. 17% of patients (17/103) seen within 48 hours reported a longer waiting period, whereas 20% of patients (22/108) reporting waits under 48 hours were seen outside that period. Men were more likely to overestimate their waiting time (10.4% versus 3.1% p<0.02). The sensitivity of patient-completed questionnaires as a tool for assessing waiting times of less than 48 hours was 83.5%. The specificity and positive predictive value were 85.5% and 79.6%, respectively.
Conclusion: The overall accuracy of patient reported waiting times was poor. Although nearly one in six patients misclassified themselves as being seen within or outside of 48 hours, given the under and overreporting rates observed, the overall impact on Health Protection Agency waiting time data is likely to be limited
Calculating flux to predict future cave radon concentrations
Cave radon concentration measurements reflect the outcome of a perpetual competition which pitches flux against ventilation and radioactive decay. The mass balance equations used to model changes in radon concentration through time routinely treat flux as a constant. This mathematical simplification is acceptable as a first order approximation despite the fact that it sidesteps an intrinsic geological problem: the majority of radon entering a cavity is exhaled as a result of advection along crustal discontinuities whose motions are inhomogeneous in both time and space. In this paper the dynamic nature of flux is investigated and the results are used to predict cave radon concentration for successive iterations. The first part of our numerical modelling procedure focuses on calculating cave air flow velocity while the second part isolates flux in a mass balance equation to simulate real time dependence among the variables. It is then possible to use this information to deliver an expression for computing cave radon concentration for successive iterations. The dynamic variables in the numerical model are represented by the outer temperature, the inner temperature, and the radon concentration while the static variables are represented by the radioactive decay constant and a range of parameters related to geometry of the cavity. Input data were recorded at Driny Cave in the Little Carpathians Mountains of western Slovakia. Here the cave passages have developed along splays of the NE–SW striking Smolenice Fault and a series of transverse faults striking NW–SE. Independent experimental observations of fault slip are provided by three permanently installed mechanical extensometers. Our numerical modelling has revealed four important flux anomalies between January 2010 and August 2011. Each of these flux anomalies was preceded by conspicuous fault slip anomalies. The mathematical procedure outlined in this paper will help to improve our understanding of radon migration along crustal discontinuities and its subsequent exhalation into the atmosphere. Furthermore, as it is possible to supply the model with continuous data, future research will focus on establishing a series of underground monitoring sites with the aim of generating the first real time global radon flux maps.The authors would like to thank Peter Zvonár, Sara Argerich-Bergada, Amanda Keen-Zebert, Lenka Thinová, and Petr Otáhal as well as the reviewers whose constructive comments have helped to improve the clarity of the manuscript. This study was conducted with support from the long term conceptual development research organisation RVO: 67985891. It is published in the framework of CzechGeo-EPOS “Distributed system of permanent observatory measurements and temporary monitoring of geophysical fields in the Czech Republic” (MŠMT Project: LM2010008).Peer reviewe
Ebookness
Since the mid-2000s, the ebook has stabilized into an ontologically distinct form, separate from PDFs and other representations of the book on the screen. The current article delineates the ebook from other emerging digital genres with recourse to the methodologies of platform studies and book history. The ebook is modelled as three concentric circles representing its technological, textual and service infrastructure innovations. This analysis reveals two distinct properties of the ebook: a simulation of the services of the book trade and an emphasis on user textual manipulation. The proposed model is tested with reference to comparative studies of several ebooks published since 2007 and defended against common claims of ebookness about other digital textual genres
Recommended from our members
Perturbed myoepithelial cell differentiation in BRCA mutation carriers and in ductal carcinoma in situ.
Myoepithelial cells play key roles in normal mammary gland development and in limiting pre-invasive to invasive breast tumor progression, yet their differentiation and perturbation in ductal carcinoma in situ (DCIS) are poorly understood. Here, we investigated myoepithelial cells in normal breast tissues of BRCA1 and BRCA2 germline mutation carriers and in non-carrier controls, and in sporadic DCIS. We found that in the normal breast of non-carriers, myoepithelial cells frequently co-express the p63 and TCF7 transcription factors and that p63 and TCF7 show overlapping chromatin peaks associated with differentiated myoepithelium-specific genes. In contrast, in normal breast tissues of BRCA1 mutation carriers the frequency of p63+TCF7+ myoepithelial cells is significantly decreased and p63 and TCF7 chromatin peaks do not overlap. These myoepithelial perturbations in normal breast tissues of BRCA1 germline mutation carriers may play a role in their higher risk of breast cancer. The fraction of p63+TCF7+ myoepithelial cells is also significantly decreased in DCIS, which may be associated with invasive progression