269 research outputs found

    Searching for δ\delta Scuti-type pulsation and characterising northern pre-main-sequence field stars

    Full text link
    A photometric variability study of a sample of northern field stars, which previously classified as either PMS or Herbig Ae/Be objects, has been undertaken with the purpose of detecting {\delta} Scuti-type pulsations. Determination of physical parameters for these stars has also been carried out to locate them on the HR diagram and check the instability strip for this type of pulsators. Multichannel photomultiplier and CCD time series photometry in the uvby Str\"omgren and BVI Johnson bands were obtained during four consecutive years from 2007 to 2010. The light curves have been analysed, and a variability criterion has been established. Among the objects classified as variable stars, we have selected those which present periodicities above 4 d^(-1), which was established as the lowest limit for {\delta} Scuti-type pulsations in this investigation. Finally, these variable stars have been placed in a colour-magnitude diagram using the physical parameters derived with the collected uvby{\beta} Str\"omgren-Crawford photometry. Five PMS {\delta} Scuti- and three probable {\beta} Cephei-type stars have been detected. Two additional PMS {\delta} Scuti stars are also confirmed in this work. Moreover, three new {\delta} Scuti- and two {\gamma} Doradus-type stars have been detected among the main-sequence objects used as comparison or check stars.Comment: Accepted for publication in Section 14. Catalogs and data of Astronomy and Astrophysics. The official date of acceptance is 17/06/2014. 12 pages, 4 figures and 8 table

    High-cadence spectroscopy of M-dwarfs – II. Searching for stellar pulsations with HARPS

    Get PDF
    Stellar oscillations appear all across the Hertzsprung–Russell diagram. Recent theoretical studies support their existence also in the atmosphere of M dwarfs. These studies predict for them short periodicities ranging from 20 min to 3 h. Our Cool Tiny Beats (CTB) programme aims at finding these oscillations for the very first time. With this goal, CTB explores the short time domain of M dwarfs using radial velocity data from the High Accuracy Radial velocity Planet Searcher (HARPS)-European Southern Observatory and HARPS-N high-precision spectrographs. Here we present the results for the two most long-term stable targets observed to date with CTB, GJ 588 and GJ 699 (i.e. Barnard's star). In the first part of this work we detail the correction of several instrumental effects. These corrections are especially relevant when searching for subnight signals. Results show no significant signals in the range where M dwarfs pulsations were predicted. However, we estimate that stellar pulsations with amplitudes larger than ∼0.5 m s−1 can be detected with a 90 per cent completeness with our observations. This result, along with the excess of power regions detected in the periodograms, opens the possibility of non-resolved very low amplitude pulsation signals. Next generation more precise instrumentation would be required to detect such oscillations. However, the possibility of detecting pulsating M-dwarf stars with larger amplitudes is feasible due to the short size of the analysed sample. This motivates the need for completeness of the CTB survey

    High-cadence spectroscopy of M dwarfs – I. Analysis of systematic effects in HARPS-N line profile measurements on the bright binary GJ 725A+B

    Get PDF
    Understanding the sources of instrumental systematic noise is a must to improve the design of future spectrographs. In this study, we alternated observations of the well-suited pair of M-stars GJ 725A+B to delve into the sub-night High Accuracy Radial Velocity Planet Searcher for the Northern hemisphere (HARPS-N) response. Besides the possible presence of a low-mass planet orbiting GJ 725B, our observations reveal changes in the spectral energy distribution (SED) correlated with measurements of the width of the instrumental line profile and, to a lower degree, with the Doppler measurements. To study the origin of these effects, we searched for correlations among several quantities defined and measured on the spectra and on the acquisition images. We find that the changes in apparent SED are very likely related to flux losses at the fibre input. Further tests indicate that such flux losses do not seriously affect the shape of the instrumental point spread function of HARPS-N, but identify an inefficient fitting of the continuum as the most likely source of the systematic variability observed in the full width at half-maximum. This index, accounting for the HARPS-N cross-correlation profiles width, is often used to decorrelate Doppler time series. We show that the Doppler measurement obtained by a parametric least-squares fitting of the spectrum accounting for continuum variability is insensitive to changes in the slope of the SED, suggesting that forward modelling techniques to measure moments of the line profile are the optimal way to achieve higher accuracy. Remaining residual variability at ∼1 m s−1 suggests that for M-stars Doppler surveys the current noise floor still has an instrumental origin

    Comprehensive transient-state study for CARMENES-NIR high thermal stability

    Full text link
    CARMENES has been proposed as a next-generation instrument for the 3.5m Calar Alto Telescope. Its objective is finding habitable exoplanets around M dwarfs through radial velocity measurements (m/s level) in the near-infrared. Consequently, the NIR spectrograph is highly constraint regarding thermal/mechanical requirements. As a first approach, the thermal stability has been limited to \pm 0.01K (within year period) over a working temperature of 243K. This can be achieved by means of several temperature-controlled rooms. The options considered to minimise the complexity of the thermal design are here presented, as well as the transient-state thermal analyses realised to make the best choice

    A detailed analysis of the Gl 486 planetary system

    Get PDF
    Context. The Gl 486 system consists of a very nearby, relatively bright, weakly active M3.5 V star at just 8 pc with a warm transiting rocky planet of about 1.3 R-circle plus and 3.0 M-circle plus. It is ideal for both transmission and emission spectroscopy and for testing interior models of telluric planets. Aims. To prepare for future studies, we aim to thoroughly characterise the planetary system with new accurate and precise data collected with state-of-the-art photometers from space and spectrometers and interferometers from the ground. Methods. We collected light curves of seven new transits observed with the CHEOPS space mission and new radial velocities obtained with MAROON-X at the 8.1 m Gemini North telescope and CARMENES at the 3.5 m Calar Alto telescope, together with previously published spectroscopic and photometric data from the two spectrographs and TESS. We also performed near-infrared interferometric observations with the CHARA Array and new photometric monitoring with a suite of smaller telescopes (AstroLAB, LCOGT, OSN, TJO). This extraordinary and rich data set was the input for our comprehensive analysis. Results. From interferometry, we measure a limb-darkened disc angular size of the star Gl 486 at theta(LDD) = 0.390 +/- 0.018 mas. Together with a corrected Gaia EDR3 parallax, we obtain a stellar radius R-* = 0.339 +/- 0.015 R-circle plus. We also measure a stellar rotation period at P-rot = 49.9 +/- 5.5 days, an upper limit to its XUV (5-920 A) flux informed by new Hubble/STIS data, and, for the first time, a variety of element abundances (Fe, Mg, Si, V, Sr, Zr, Rb) and C/O ratio. Moreover, we imposed restrictive constraints on the presence of additional components, either stellar or sub-stellar, in the system. With the input stellar parameters and the radial-velocity and transit data, we determine the radius and mass of the planet Gl 486 b at R-p = 1.343(-0.062)(+0.063) R-circle plus and M-p = 3.00(-0.12)(+0.13) M-circle plus, with relative uncertainties of the planet radius and mass of 4.7% and 4.2%, respectively. From the planet parameters and the stellar element abundances, we infer the most probable models of planet internal structure and composition, which are consistent with a relatively small metallic core with respect to the Earth, a deep silicate mantle, and a thin volatile upper layer. With all these ingredients, we outline prospects for Gl 486 b atmospheric studies, especially with forthcoming James Webb Space Telescope (Webb) observations.The David & Lucile Packard FoundationHeising-Simons FoundationGemini ObservatoryUniversity of ChicagoMax Planck SocietyConsejo Superior de Investigaciones Cientificas (CSIC)Spanish GovernmentEuropean Commission FICTS-2011-02 ICTS-2017-07-CAHA-4 CAHA16-CE-3978German Research Foundation (DFG) FOR2544National Science Foundation (NSF) AST-1636624 AST-2034336 2108465 DGE 1746045European Research Council (ERC) 639889National Aeronautics & Space Administration (NASA) XRP NNX16AD43GNational Science Foundation (NSF) AST 1909165Wise Observatory, Tel-Aviv University, Israel TAU2021A-015Agencia Estatal de Investigacion of the Ministerio de Ciencia, Innovacion y Universidades and the ERDF PID2019-109522GB-C5[1:4] PID2019-107061GBC64 PID2019-110689RB-100 PGC2018-095317-B-C21 PGC2018-102108-BI00Centre of Excellence "Severo Ochoa" CEX2019-000920-SCentre of Excellence "Maria de Maeztu" CEX2019-000920-SInstituto de Astrofisica de Andalucia SEV-2017-0709Centro de Astrobiologia MDM2017-0737German Research Foundation (DFG)European Commission FOR2544 (KU 3625/2-1)Germany's Excellence Strategy to the Excellence Cluster ORIGINS EXC-2094 -390783311European Research Council (ERC)European Commission 639889Bulgarian National Science Fund through VIHREN-2021 KP-06-DB/5Schweizerischer Nationalfonds zur Forderung der wissenschaftlichen Forschung/Fonds national suisse de la recherche scientifique PZ00P2_174028United Kingdom Science Technology and Facilities Council 630008203Princeton UniversityUniversidad La Laguna through the Margarita Salas Fellowship from the Spanish Ministerio de UniversidadesEU Next Generation funds UNI/551/2021Generalitat de Catalunya (CERCA programme

    Seismology of beta Cephei stars: differentially-rotating models for interpreting the oscillation spectrum of nu-Eridani

    Get PDF
    A method for the asteroseismic analysis of beta Cephei stars is presented and applied to the star nu Eridani. The method is based on the analysis of rotational splittings, and their asymmetries using differentially-rotating asteroseismic models. Models with masses around 7.13 M_sun, and ages around 14.9 Myr, were found to fit better 10 of the 14 observed frequencies, which were identified as the fundamental radial mode and the three L=1 triplets g, p, and p. The splittings and aymmetries found for these modes recover those provided in the literature, except for p. For this last mode, all its non-axysimmetric components are predicted by the models. Moreover, opposite signs of the observed and predicted splitting asymmetries are found. If identification is confirmed, this can be a very interesting source of information about the internal rotation profile, in particular in the outer regions of the star. In general, the seismic models which include a description for shellular rotation yield slightly better results as compared with those given by uniformly-rotating models. Furthermore, we show that asymmetries are quite dependent on the overshooting of the convective core, which make the present technique suitable for testing the theories describing the angular momentum redistribution and chemical mixing due to rotationally-induced turbulence.Comment: 11 pages, 9 figures, 8 tables. ApJ (in press

    Proxima Centauri b is not a transiting exoplanet

    Full text link
    We report Spitzer Space Telescope observations during predicted transits of the exoplanet Proxima Centauri b. As the nearest terrestrial habitable-zone planet we will ever discover, any potential transit of Proxima b would place strong constraints on its radius, bulk density, and atmosphere. Subsequent transmission spectroscopy and secondary-eclipse measurements could then probe the atmospheric chemistry, physical processes, and orbit, including a search for biosignatures. However, our photometric results rule out planetary transits at the 200~ppm level at 4.5 μm~{\mu}m, yielding a 3σ\sigma upper radius limit of 0.4~R_\rm{\oplus} (Earth radii). Previous claims of possible transits from optical ground- and space-based photometry were likely correlated noise in the data from Proxima Centauri's frequent flaring. Follow-up observations should focus on planetary radio emission, phase curves, and direct imaging. Our study indicates dramatically reduced stellar activity at near-to-mid infrared wavelengths, compared to the optical. Proxima b is an ideal target for space-based infrared telescopes, if their instruments can be configured to handle Proxima's brightness.Comment: 8 pages, 3 figures, 2 tables, accepted for publication in MNRA

    Age determination of the HR8799 planetary system using asteroseismology

    Full text link
    Discovery of the first planetary system by direct imaging around HR8799 has made the age determination of the host star a very important task. This determination is the key to derive accurate masses of the planets and to study the dynamical stability of the system. The age of this star has been estimated using different procedures. In this work we show that some of these procedures have problems and large uncertainties, and the real age of this star is still unknown, needing more observational constraints. Therefore, we have developed a comprehensive modeling of HR8799, and taking advantage of its gamma Doradus-type pulsations, we have estimated the age of the star using asteroseismology. The accuracy in the age determination depends on the rotation velocity of the star, and therefore an accurate value of the inclination angle is required to solve the problem. Nevertheless, we find that the age estimate for this star previously published in the literature ([30,160] Myr) is unlikely, and a more accurate value might be closer to the Gyr. This determination has deep implications on the value of the mass of the objects orbiting HR8799. An age around ≈\approx 1 Gyr implies that these objects are brown dwarfs.Comment: 5 pages, 3 figures, accepted in MNRAS Letter
    • …
    corecore