3,652 research outputs found
Can culture be solely inferred from the absence of genetic or environmental factors ?
Rendell & Whitehead's minimalist definition of culture does not allow for the important gaps between cetaceans and Inimans. A more complete analysis reveals important discontinuities that may be more instnictive
for comparative purposes than the continuities emphasized by the authors
Quantum computation with cold bosonic atoms in an optical lattice
We analyse an implementation of a quantum computer using bosonic atoms in an
optical lattice. We show that, even though the number of atoms per site and the
tunneling rate between neighbouring sites is unknown, one may perform a
universal set of gates by means of adiabatic passage
Topological order in the Haldane model with spin-spin on-site interactions
Ultracold atom experiments allow the study of topological insulators, such as
the noninteracting Haldane model. In this work we study a generalization of the
Haldane model with spin-spin on-site interactions that can be implemented on
such experiments. We focus on measuring the winding number, a topological
invariant, of the ground state, which we compute using a mean-field calculation
that effectively captures long range correlations and a matrix product state
computation in a lattice with 64 sites. Our main result is that we show how the
topological phases present in the noninteracting model survive until the
interactions are comparable to the kinetic energy. We also demonstrate the
accuracy of our mean-field approach in efficiently capturing long-range
correlations. Based on state-of-the-art ultracold atom experiments, we propose
an implementation of our model that can give information about the topological
phases.Comment: 11 pages, 4 figure
Correlated hopping of bosonic atoms induced by optical lattices
In this work we analyze a particular setup with ultracold atoms trapped in
state-dependent lattices. We show that any asymmetry in the contact interaction
translates into one of two classes of correlated hopping. After deriving the
effective lattice Hamiltonian for the atoms, we obtain analytically and
numerically the different phases and quantum phase transitions. We find for
weak correlated hopping both Mott insulators and charge density waves, while
for stronger correlated hopping the system transitions into a pair superfluid.
We demonstrate that this phase exists for a wide range of interaction
asymmetries and has interesting correlation properties that differentiate it
from an ordinary atomic Bose-Einstein condensate.Comment: 24 pages with 9 figures, to appear in New Journal of Physic
Deep Strong Coupling Regime of the Jaynes-Cummings model
We study the quantum dynamics of a two-level system interacting with a
quantized harmonic oscillator in the deep strong coupling regime (DSC) of the
Jaynes-Cummings model, that is, when the coupling strength g is comparable or
larger than the oscillator frequency w (g/w > 1). In this case, the
rotating-wave approximation cannot be applied or treated perturbatively in
general. We propose an intuitive and predictive physical frame to describe the
DSC regime where photon number wavepackets bounce back and forth along parity
chains of the Hilbert space, while producing collapse and revivals of the
initial population. We exemplify our physical frame with numerical and
analytical considerations in the qubit population, photon statistics, and
Wigner phase space.Comment: Published version, note change of title: DSC regime of the JC mode
Full two-photon downconversion of just a single photon
We demonstrate, both numerically and analytically, that it is possible to
generate two photons from one and only one photon. We characterize the output
two photon field and make our calculations close to reality by including
losses. Our proposal relies on real or artificial three-level atoms with a
cyclic transition strongly coupled to a one-dimensional waveguide. We show that
close to perfect downconversion with efficiency over 99% is reachable using
state-of-the-art Waveguide QED architectures such as photonic crystals or
superconducting circuits. In particular, we sketch an implementation in circuit
QED, where the three level atom is a transmon
Detecting ground state qubit self-excitations in circuit QED: slow quantum anti-Zeno effect
In this work we study an ultrastrong coupled qubit-cavity system subjected to
slow repeated measurements. We demonstrate that even under a few imperfect
measurements it is possible to detect transitions of the qubit from its free
ground state to the excited state. The excitation probability grows
exponentially fast in analogy with the quantum anti-Zeno effect. The dynamics
and physics described in this paper is accessible to current superconducting
circuit technology.Comment: 6 pages, 6 figures. v2: extended published versio
- …
