312 research outputs found

    Myomegalin is a novel A-kinase anchoring protein involved in the phosphorylation of cardiac myosin binding protein C

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Cardiac contractility is regulated by dynamic phosphorylation of sarcomeric proteins by kinases such as cAMP-activated protein kinase A (PKA). Efficient phosphorylation requires that PKA be anchored close to its targets by A-kinase anchoring proteins (AKAPs). Cardiac Myosin Binding Protein-C (cMyBPC) and cardiac troponin I (cTNI) are hypertrophic cardiomyopathy (HCM)-causing sarcomeric proteins which regulate contractility in response to PKA phosphorylation.</p> <p>Results</p> <p>During a yeast 2-hybrid (Y2H) library screen using a trisphosphorylation mimic of the C1-C2 region of cMyBPC, we identified isoform 4 of myomegalin (MMGL) as an interactor of this N-terminal cMyBPC region. As MMGL has previously been shown to interact with phosphodiesterase 4D, we speculated that it may be a PKA-anchoring protein (AKAP).</p> <p>To investigate this possibility, we assessed the ability of MMGL isoform 4 to interact with PKA regulatory subunits R1A and R2A using Y2H-based direct protein-protein interaction assays. Additionally, to further elucidate the function of MMGL, we used it as bait to screen a cardiac cDNA library. Other PKA targets, viz. CARP, COMMD4, ENO1, ENO3 and cTNI were identified as putative interactors, with cTNI being the most frequent interactor.</p> <p>We further assessed and confirmed these interactions by fluorescent 3D-co-localization in differentiated H9C2 cells as well as by <it>in vivo </it>co-immunoprecipitation. We also showed that quantitatively more interaction occurs between MMGL and cTNI under β-adrenergic stress. Moreover, siRNA-mediated knockdown of MMGL leads to reduction of cMyBPC levels under conditions of adrenergic stress, indicating that MMGL-assisted phosphorylation is requisite for protection of cMyBPC against proteolytic cleavage.</p> <p>Conclusions</p> <p>This study ascribes a novel function to MMGL isoform 4: it meets all criteria for classification as an AKAP, and we show that is involved in the phosphorylation of cMyBPC as well as cTNI, hence MMGL is an important regulator of cardiac contractility. This has further implications for understanding the patho-aetiology of HCM-causing mutations in the genes encoding cMyBPC and cTNI, and raises the question of whether MMGL might itself be considered a candidate HCM-causing or modifying factor.</p

    Decoupled control for double-T Dc-Dc MMC topology for MT-HVdc/MVdc grids

    Get PDF
    This paper proposes a decoupled control of a dc-dc modular multilevel converter (MMC) based on a double-T topology intended for multi-terminal high voltage direct current (MT-HVdc) transmission systems or emerging distribution systems operating in medium voltage direct current (MVdc). The aim of the proposed control strategy is to obtain an input current with reduced harmonic content and to eliminate the output ac common-mode voltage, which is not allowed in MT-HVdc systems. The control strategy consists of injecting two circulating ac currents and two dc currents that allow the energy balance between the arms of the converter and the general energy balance of the topology. The dc and ac currents are decoupled and allow control over load variations and reference changes in the dc-links. The proposed topology is mathematically modeled and the control method is then derived. Simulation results are presented to validate the proposed system

    Impact of manufacturing tolerances on axial flux permanent magnet machines with ironless rotor core: a statistical approach

    Get PDF
    Axial Flux Permanent Magnet (AFPM) machines with ironless rotors are an attractive and recently studied solution in low-speed applications, due to their potentially high power/weight ratio, high aspect ratio, and high efficiency. Nevertheless, these machines are prone to be affected by manufacturing tolerance during its fabrication process and consequently, the magnets may move freely inside the rotor structure. This work presents a statistical analysis of manufacturing tolerances of an AFPM machine with an ironless rotor, considering several magnet fault types. A computationally efficient superposition method is developed and implemented to obtain both the cogging torque and rated torque considering several tolerance combinations with acceptable accuracy. The results obtained from a statistical analysis of 10,000 designs of a two-stator one rotor tooth coil winding AFPM (TCW-AFPM) machine allowed us to identify the parameters with the most impact on relevant performance indicators and disclosed a substantial increase in cogging and ripple torque when unavoidable combined tolerances are present

    Regulatory role of C5a in LPS-induced IL-6 production by neutrophils during sepsis

    Full text link
    Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/154469/1/fsb2fj030708fje-sup-0001.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/154469/2/fsb2fj030708fje.pd

    A modified multi-winding DC–DC flyback converter for photovoltaic applications

    Get PDF
    DC–DC power converters have generated much interest, as they can be used in a wide range of applications. In micro-inverter applications, flyback topologies are a relevant research topic due to their efficiency and simplicity. On the other hand, solar photovoltaic (PV) systems are one of the fastest growing and most promising renewable energy sources in the world. A power electronic converter (either DC/DC or DC/AC) is needed to interface the PV array with the load/grid. In this paper, a modified interleaved-type step-up DC–DC flyback converter is presented for a PV application. The topology is based on a multi-winding flyback converter with N parallel connected inputs and a single output. Each input is supplied by an independent PV module, and a maximum power point tracking algorithm is implemented in each module to maximize solar energy harvesting. A single flyback transformer is used, and it manages only 1/N of the converter rated power, reducing the size of the magnetic core compared to other similar topologies. The design of the magnetic core is also presented in this work. Moreover, the proposed converter includes active snubber networks to increase the efficiency, consisting of a capacitor connected in series with a power switch, to protect the main switches from damaging dv/dt when returning part of the commutation energy back to the source. In this work, the operating principle of the topology is fully described on a mathematical basis, and an efficiency analysis is also included. The converter is simulated and experimentally validated with a 1 kW prototype considering three PV panels. The experimental results are in agreement with the simulations, verifying the feasibility of the proposal

    Evidence for a functional role of the second C5a receptor C5L2

    Full text link
    During experimental sepsis in rodents after cecal ligation and puncture (CLP), excessive C5a is generated, leading to interactions with C5aR, loss of innate immune functions of neutrophils, and lethality. In the current study, we have analyzed the expression of the second C5a receptor C5L2, the putative â defaultâ or nonsignaling receptor for C5a. Rat C5L2 was cloned, and antibody was developed to C5L2 protein. After CLP, blood neutrophils showed a reduction in C5aR followed by its restoration, while C5L2 levels gradually increased, accompanied by the appearance of mRNA for C5L2. mRNA for C5L2 increased in lung and liver during CLP. Substantially increased C5L2 protein (defined by binding of 125Iâ antiâ C5L2 IgG) occurred in lung, liver, heart, and kidney after CLP. With the use of serum ILâ 6 as a marker for sepsis, infusion of antiâ C5aR dramatically reduced serum ILâ 6 levels, while antiâ C5L2 caused a nearly fourfold increase in ILâ 6 when compared with CLP controls treated with normal IgG. When normal blood neutrophils were stimulated in vitro with LPS and C5a, the antibodies had similar effects on release of ILâ 6. These data provide the first evidence for a role for C5L2 in balancing the biological responses to C5a.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/154410/1/fsb2fj043424fje.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/154410/2/fsb2fj043424fje-sup-0040.pd

    Comparative study of dual PM vernier machines

    Get PDF
    In this paper, two types of dual permanent magnet (PM) machines, i.e., stator slot dual-PM (SSDPM) machine and split-tooth dual-PM (STDPM) machine, are investigated and compared. Both machines have consequent pole structure with Halbach array PMs. Their difference lies in the position of stator PM. The SSDPM machine has Halbach array PMs in the stator slots, while the STDPM machine has PMs between the split teeth. Torque characteristics, i.e., average torques and torque ripples, of different slot/pole number combinations of the two machines are compared. The 24 stator slots/20 rotor slots/4 armature pole pair (24S20R4Pa) SSDPM machine with distributed windings and the 24 stator slots/10 rotor slots/4 armature pole pair (12S20R4Pa) STDPM machine with concentrated windings are compared under both open-circuit and on-load conditions. The results show that the SSDPM machine is more competitive by delivering higher torque density and higher power density

    Beneficial and Detrimental Effects of Plasmin(ogen) during Infection and Sepsis in Mice

    Get PDF
    Plasmin has been proposed to be an important mediator during inflammation/infection. In this study, by using mice lacking genes for plasminogen, tissue-type plasminogen activator (tPA), and urokinase-type PA (uPA), we have investigated the functional roles of active plasmin in infection and sepsis. Two models were used: an infection model by intravenous injection of 1×107 CFU of S. aureus, and a sepsis model by intravenous injection of 1.6×108 CFU of S. aureus. We found that in the infection model, wild-type (WT) mice showed significantly higher survival rates than plasminogen-deficient (plg-/-) mice. However, in the sepsis model, plg-/- or tPA-/-/uPA-/- mice showed the highest survival rate whereas WT and tPA+/-/uPA+/- mice showed the lowest survival rate, and plg+/-, tPA-/-, and uPA-/- mice had an intermediate survival rate. These results indicate that the levels of active plasmin are critical in determining the survival rate in the sepsis, partly through high levels of inflammatory cytokines and enhanced STAT3 activation. We conclude that plasmin is beneficial in infection but promotes the production of inflammatory cytokines in sepsis that may cause tissue destruction, diminished neutrophil function, and an impaired capacity to kill bacteria which eventually causes death of these mice
    corecore