696 research outputs found

    Effect of a unilateral hind limb orthotic lift on upper body movement symmetry in the trotting horse

    Get PDF
    In trotting horses, movement asymmetry is associated with ground reaction force asymmetry. In humans, limb length differences influence contralateral force production. Here we investigate whether horses, in immediate reaction to limb length changes, show movement asymmetry adaptations consistent with reported force differences. Aim of this study was to quantify pelvic and compensatory head and withers movement asymmetry as a function of limb length changes after application of orthotic lifts. In this experimental study movement asymmetry of eleven trotting horses was calculated from vertical displacement of poll, withers, sacrum and left and right tuber coxae with inertial sensors. Horses were assessed in-hand under 5 conditions (all with hind limb boots): without orthotic lifts, and with a 15mm or 30mm orthotic lift applied to the left hind or right hind. A linear mixed model investigated the influence of orthotic lift condition (P<0.05, pairwise posthoc Bonferroni correction). Pelvic movement asymmetry showed increased pelvic downward movement during stance of the shorter limb and increased pelvic upward movement during and after stance of the longer limb (P<0.001) with asymmetry changes of 3-7mm (4-10mm) for 15mm (30mm) lifts. Hip hike (tuber coxae movement asymmetry) was unaffected (P = 0.348). Head and withers movement asymmetry were affected less consistently (2 of 3 respectively 1 of 3 head or withers parameters). The small sample size of the study reduced generalizability, no direct force measurements were conducted and only immediate effects of orthotic lifts were assessed with no re-assessments days or weeks after. Conclusions about mechanical consequences (weight bearing, pushoff) are based on published movement-force associations. Pelvic movement asymmetry with an artificial change in limb length through application of an orthotic lift indicates increased weight support with the shorter limb and increased pushoff with the longer limb. This may be of relevance for the management of horses with different hoof shapes between contralateral limbs, for example some chronically lame horse

    An Extensive Network of Information Flow through the B1b/c Intersubunit Bridge of the Yeast Ribosome

    Get PDF
    Yeast ribosomal proteins L11 and S18 form a dynamic intersubunit interaction called the B1b/c bridge. Recent high resolution images of the ribosome have enabled targeting of specific residues in this bridge to address how distantly separated regions within the large and small subunits of the ribosome communicate with each other. Mutations were generated in the L11 side of the B1b/c bridge with a particular focus on disrupting the opposing charge motifs that have previously been proposed to be involved in subunit ratcheting. Mutants had wide-ranging effects on cellular viability and translational fidelity, with the most pronounced phenotypes corresponding to amino acid changes resulting in alterations of local charge properties. Chemical protection studies of selected mutants revealed rRNA structural changes in both the large and small subunits. In the large subunit rRNA, structural changes mapped to Helices 39, 80, 82, 83, 84, and the peptidyltransferase center. In the small subunit rRNA, structural changes were identified in helices 30 and 42, located between S18 and the decoding center. The rRNA structural changes correlated with charge-specific alterations to the L11 side of the B1b/c bridge. These analyses underscore the importance of the opposing charge mechanism in mediating B1b/c bridge interactions and suggest an extensive network of information exchange between distinct regions of the large and small subunits

    On the orthogonalization of bred vectors

    Get PDF
    The key to the improvement of the quality of ensemble forecasts assessing the inherent flow uncertainties is the choice of the initial ensemble perturbations. To generate such perturbations, the breeding of growing modes approach has been used for the past two decades. Here, the fastest-growing error modes of the initial model state are estimated. However, the resulting bred vectors (BVs) mainly point in the phase space direction of the leading Lyapunov vector and therefore favor one direction of growing errors. To overcome this characteristic and obtain growing modes pointing to Lyapunov vectors different from the leading one, an orthogonalization implemented as a singular value decomposition based on the similarity between the BVs is applied. This transformation is similar to that used in the ensemble transform technique currently in operational use at NCEP but with certain differences in the metric used and in the implementation. In this study, results of this approach us! ing BVs generated in the Ensemble Forecasting System (EFS) based on the global numerical weather prediction model GME of the German Meteorological Service are presented. The gain in forecast performance achieved with the orthogonalized BV initialization is shown by using different probabilistic forecast scores evaluating ensemble reliability, variance, and resolution. For a 3-month period in summer 2007, the results are compared to forecasts generated with simple BV initializations of the same ensemble prediction system as well as operational ensemble forecasts from ECMWF and NCEP. The orthogonalization vastly improves the GME-EFS scores and makes them competitive with the two other centers

    BodyNet: Volumetric Inference of 3D Human Body Shapes

    Get PDF
    Human shape estimation is an important task for video editing, animation and fashion industry. Predicting 3D human body shape from natural images, however, is highly challenging due to factors such as variation in human bodies, clothing and viewpoint. Prior methods addressing this problem typically attempt to fit parametric body models with certain priors on pose and shape. In this work we argue for an alternative representation and propose BodyNet, a neural network for direct inference of volumetric body shape from a single image. BodyNet is an end-to-end trainable network that benefits from (i) a volumetric 3D loss, (ii) a multi-view re-projection loss, and (iii) intermediate supervision of 2D pose, 2D body part segmentation, and 3D pose. Each of them results in performance improvement as demonstrated by our experiments. To evaluate the method, we fit the SMPL model to our network output and show state-of-the-art results on the SURREAL and Unite the People datasets, outperforming recent approaches. Besides achieving state-of-the-art performance, our method also enables volumetric body-part segmentation.Comment: Appears in: European Conference on Computer Vision 2018 (ECCV 2018). 27 page

    Massive, Absorption-selected Galaxies at Intermediate Redshifts

    Full text link
    The nature of absorption-selected galaxies and their connection to the general galaxy population have been open issues for more than three decades, with little information available on their gas properties. Here we show, using detections of carbon monoxide (CO) emission with the Atacama Large Millimeter/submillimeter Array (ALMA), that five of seven high-metallicity, absorption-selected galaxies at intermediate redshifts, z0.50.8z \approx 0.5-0.8, have large molecular gas masses, MMol(0.68.2)×1010MM_{\rm Mol} \approx (0.6 - 8.2) \times 10^{10} \: {\rm M}_\odot and high molecular gas fractions (fMolMMol/(M+MMol)0.290.87)f_{\rm Mol} \equiv \: M_{\rm Mol}/(M_\ast + M_{\rm Mol}) \approx 0.29-0.87). Their modest star formation rates (SFRs), (0.39.5)M\approx (0.3-9.5) \: {\rm M}_\odot yr1^{-1}, then imply long gas depletion timescales, (3120)\approx (3 - 120) Gyr. The high-metallicity absorption-selected galaxies at z0.50.8z \approx 0.5-0.8 appear distinct from populations of star-forming galaxies at both z1.32.5z \approx 1.3-2.5, during the peak of star formation activity in the Universe, and lower redshifts, z0.05z \lesssim 0.05. Their relatively low SFRs, despite the large molecular gas reservoirs, may indicate a transition in the nature of star formation at intermediate redshifts, z0.7z \approx 0.7.Comment: 8 pages, 3 figures; accepted for publication in Astrophysical Journal Letters. Minor changes to match the version in press in ApJ

    Stellar masses, metallicity gradients and suppressed star formation revealed in a new sample of absorption selected galaxies

    Full text link
    Context. Absorbing galaxies are selected via the detection of characteristic absorption lines which their gas-rich media imprint in the spectra of distant light-beacons. The proximity of the typically faint foreground absorbing galaxies to bright background sources makes it challenging to robustly identify these in emission, and hence to characterise their relation to the general galaxy population. Aims. We search for emission to confirm and characterise ten galaxies hosting damped, metal-rich quasar absorbers at redshift z < 1. Methods. We identify the absorbing galaxies by matching spectroscopic absorption -and emission redshifts and from projected separations. Combining emission-line diagnostics with existing absorption spectroscopy and photometry of quasar-fields hosting metal-rich, damped absorbers, we compare our new detections with reference samples and place them on scaling relations. Results. We spectroscopically confirm seven galaxies harbouring damped absorbers (a 70% success-rate). Our results conform to the emerging picture that neutral gas on scales of tens of kpc in galaxies is what causes the characteristic Hi absorption. Our key results are: (I) Absorbing galaxies with log10[M (M)]10\log _{10} [M_\star ~(M_\odot)] \gtrsim 10 have star formation rates that are lower than predicted for the main sequence of star formation. (II) The distribution of impact parameter with Hi column density and with absorption-metallicity for absorbing galaxies at z23z\sim 2-3 extends to z0.7z\sim 0.7 and to lower Hi column densities. (III) A robust mean metallicity gradient of Γ=0.022±0.001 [dex kpc1]\langle \Gamma \rangle = 0.022 \pm 0.001~[dex~kpc^{-1}]. (IV) By correcting absorption metallicities for Γ\langle \Gamma \rangle and imposing a truncation-radius at 12 kpc12~\mathrm{kpc}, absorbing galaxies fall on top of predicted mass-metallicity relations, with a statistically significant decrease in scatter.Comment: 20 pages, 7 figures, accepted for publication in A&A 03/07/201

    Automatic detection of break-over phase onset in horses using hoof-mounted inertial measurement unit sensors

    Get PDF
    A prolonged break-over phase might be an indication of a variety of musculoskeletal disorders and can be measured with optical motion capture (OMC) systems, inertial measurement units (IMUs) and force plates. The aim of this study was to present two algorithms for automatic detection of the break-over phase onset from the acceleration and angular velocity signals measured by hoof-mounted IMUs in walk and trot on a hard surface. The performance of these algorithms was evaluated by internal validation with an OMC system and a force plate separately. Seven Warmblood horses were equipped with two wireless IMUs which were attached to the lateral wall of the right front (RF) and hind (RH) hooves. Horses were walked and trotted over a force plate for internal validation while simultaneously the 3D position of three reflective markers, attached to lateral heel, lateral toe and lateral coronet of each hoof, were measured by six infrared cameras of an OMC system. The performance of the algorithms was evaluated by linear mixed model analysis. The acceleration algorithm was the most accurate with an accuracy between -9 and 23 ms and a precision around 24 ms (against OMC system), and an accuracy between -37 and 20 ms and a precision around 29 ms (against force plate), depending on gait and hoof. This algorithm seems promising for quantification of the break-over phase onset although the applicability for clinical purposes, such as lameness detection and evaluation of trimming and shoeing techniques, should be investigated more in-depth

    Automatic hoof-on and -off detection in horses using hoof-mounted inertial measurement unit sensors

    Get PDF
    For gait classification, hoof-on and hoof-off events are fundamental locomotion characteristics of interest. These events can be measured with inertial measurement units (IMUs) which measure the acceleration and angular velocity in three directions. The aim of this study was to present two algorithms for automatic detection of hoof-events from the acceleration and angular velocity signals measured by hoof-mounted IMUs in walk and trot on a hard surface. Seven Warmblood horses were equipped with two wireless IMUs, which were attached to the lateral wall of the right front (RF) and hind (RH) hooves. Horses were walked and trotted on a lead over a force plate for internal validation. The agreement between the algorithms for the acceleration and angular velocity signals with the force plate was evaluated by Bland Altman analysis and linear mixed model analysis. These analyses were performed for both hoof-on and hoof-off detection and for both algorithms separately. For the hoof-on detection, the angular velocity algorithm was the most accurate with an accuracy between 2.39 and 12.22 ms and a precision of around 13.80 ms, depending on gait and hoof. For hoof-off detection, the acceleration algorithm was the most accurate with an accuracy of 3.20 ms and precision of 6.39 ms, independent of gait and hoof. These algorithms look highly promising for gait classification purposes although the applicability of these algorithms should be investigated under different circumstances, such as different surfaces and different hoof trimming conditions

    Absorption-selected galaxies trace the low-mass, late-type, star-forming population at z23z\sim2-3

    Full text link
    We report on the stellar content, half-light radii and star formation rates of a sample of 10 known high-redshift (z2z\gtrsim 2) galaxies selected on strong neutral hydrogen (HI) absorption (log(N(HI)/cm2)>19^{-2})>19) toward background quasars. We use observations from the {\it Hubble Space Telescope} (HST) Wide Field Camera 3 in three broad-band filters to study the spectral energy distribution(SED) of the galaxies. Using careful quasar point spread function subtraction, we study their galactic environments, and perform the first systematic morphological characterisation of such absorption-selected galaxies at high redshifts. Our analysis reveals complex, irregular hosts with multiple star-forming clumps. At a spatial sampling of 0.067 arcsec per pixel (corresponding to 0.55 kpc at the median redshift of our sample), 40% of our sample requires multiple S\'ersic components for an accurate modelling of the observed light distributions. Placed on the mass-size relation and the `main sequence' of star-forming galaxies, we find that absorption-selected galaxies at high redshift extend known relations determined from deep luminosity-selected surveys to an order of magnitude lower stellar mass, with objects primarily composed of star-forming, late-type galaxies. We measure half-light radii in the range r1/2r_{1/2} \sim 0.4 to 2.6 kpc based on the reddest band (F160W) to trace the oldest stellar populations, and stellar masses in the range log(M/M)\log (\mathrm{M}_{\star}/\mathrm{M}_{\odot}) \sim 8 to 10 derived from fits to the broad-band SED. Spectroscopic and SED-based star formation rates are broadly consistent, and lie in the range log(SFR/M_{\odot} yr1^{-1}) \sim0.0 to 1.7.Comment: 17 pages, Accepted for publication in MNRAS. This revision has minor text change
    corecore