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Abstract

For gait classification, hoof-on and hoof-off events are fundamental locomotion characteris-

tics of interest. These events can be measured with inertial measurement units (IMUs)

which measure the acceleration and angular velocity in three directions. The aim of this

study was to present two algorithms for automatic detection of hoof-events from the acceler-

ation and angular velocity signals measured by hoof-mounted IMUs in walk and trot on a

hard surface. Seven Warmblood horses were equipped with two wireless IMUs, which were

attached to the lateral wall of the right front (RF) and hind (RH) hooves. Horses were walked

and trotted on a lead over a force plate for internal validation. The agreement between the

algorithms for the acceleration and angular velocity signals with the force plate was evalu-

ated by Bland Altman analysis and linear mixed model analysis. These analyses were per-

formed for both hoof-on and hoof-off detection and for both algorithms separately. For the

hoof-on detection, the angular velocity algorithm was the most accurate with an accuracy

between 2.39 and 12.22 ms and a precision of around 13.80 ms, depending on gait and

hoof. For hoof-off detection, the acceleration algorithm was the most accurate with an accu-

racy of 3.20 ms and precision of 6.39 ms, independent of gait and hoof. These algorithms

look highly promising for gait classification purposes although the applicability of these algo-

rithms should be investigated under different circumstances, such as different surfaces and

different hoof trimming conditions.

Introduction

Gait analysis is an important element for the understanding of equestrian sport and can be

performed by examining gait characteristics and body segment positions of the horse while

moving. Gaits can be distinguished by their foot-fall pattern in addition to knowledge about

the duration of the support phase compared to the whole stride duration of one leg [1]. For
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gait classification, the fundamental locomotion characteristic is the timing of hoof placement,

i.e. hoof-on and hoof-off events from all limbs. These events can be examined visually but due

to the limitations of the temporal resolution of the human eye [2] there are limitations to how

well these events can be distinguished. Instead, objective measurement tools such as force

plates, optical motion capture (OMC) systems and inertial measurement units (IMUs) are

used [3].

In general, the force plate is considered the gold standard for kinetic gait analysis. With this

method, hoof impacts can be registered from the vertical force signal by applying a threshold

which is subjective. Furthermore, data collection is time consuming [4] and this method can

only be used in a laboratory settings. In addition, multiple consecutive strides can only be mea-

sured with a force measuring treadmill and by force measuring shoes [3], which can alter the

kinematics [5, 6]. OMC systems and IMUs can also be used to measure consecutive strides

and OMC systems are considered the gold standard for kinematic gait analysis. However,

these systems are expensive and not easy to relocate due to the significant number of cameras

and infrastructure needed. Therefore, OMC systems have limited usefulness in field conditions

[7]. IMUs can easily be used in field conditions because they are portable, wireless and are

becoming relatively cheap. Consequently, IMUs improve the possibilities for gait analysis in

field conditions.

Previous studies investigated the accuracy and precision of IMUs compared with the force

plate [8, 9] and OMC systems [7, 10–12] and showed the potential of IMUs for gait analysis

and classification. However, analysis of the data and extraction of hoof-events was performed

manually or semi-manually which is time consuming and subjective. Time reduction and

objectivity can be gained by developing an algorithm for automatic detection of hoof-on and

hoof-off events from the output of the IMUs [3]. The output of the IMUs consists of tri-axial

acceleration and angular velocity signals. Recently, one study was performed to evaluate multi-

ple algorithms for hoof-event detection and validation against the force plate [13]. In this

study, distal limb mounted IMUs were used and the best performing algorithm of this study

showed an accuracy between -19.7 and 17.6 ms and a precision between 7.5 and 31.0 ms,

depending on gait, limb and hoof-event [13]. The accuracy found in that study was sufficient

for gait classification, although the precision was less satisfactory. The performance of this

algorithm might be improved by attaching the IMUs closer to the location of impact, i.e. the

hoof of the horse, hence limiting the attenuation of the vibrations through the limb [14, 15].

During this study, two algorithms for automatic hoof- events detection based on the accel-

eration and angular velocity signals measured by hoof-mounted IMUs in walk and trot on a

hard surface were developed. For gait classification, the needed accuracy and precision for

hoof-event detection are not yet investigated. However, estimations of stance and swing dura-

tions in addition to knowledge about the timing of lateral and diagonal hoof placement are

essential. We therefore aim for accuracies and precisions similar or better compared with the

study of BraganBa et al. (2017) [13].

Materials and methods

At the start of this study, force plate and IMU data were visually examined. The IMU data

showed distinctive peaks coinciding with the hoof-on and hoof-off times measured with the

force plates, as previous described by Olsen et al. [9] and depicted in Fig 1. During the current

study, we developed two algorithms to detect these distinctive peaks from the IMU data and

applied a more advanced method to determine the hoof-on and hoof-off times from the force

plate. These contact times of the force plate were used for the internal validation of the

algorithms.
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Data collection

For the current study, we used data that was collected for a previous study [13]. Measurements

were performed on seven Warmblood horses (Equus ferus caballus; for further details see S1

Appendix) in the Equine Clinic of Utrecht University at the Department Clinical Sciences.

Fig 1. Generic illustration of the movement of the hoof (A), modified from Witte et al. [8], and the signals of the acceleration (B), angular velocity (C) and

vertical force (D). The hoof-on and hoof-off events are depicted with the vertical dashed lines and the dots show the detected hoof-on and hoof-off events from

the different signals. These hoof-events occur at the start and end of the stance phase, shown as the period not underlined by a dark beam. The horizontal dashed

line in D shows the threshold used to detect the hoof-events from the force signal.

https://doi.org/10.1371/journal.pone.0233266.g001
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All horses were equipped with ProMove-mini wireless IMUs (Inertia-Technology B.V.,

Enschede, The Netherlands; for further details see S1 Appendix) which measured the accelera-

tion, low-g acceleration with a range of ±16 g and high-g acceleration with a range of ±400 g,

and angular velocity, with a range of ±2000˚/s, and sampling frequency of 200 Hz. Two IMUs

were attached to the lateral wall of the right front (RF) and hind (RH) hooves with double

sided and normal tape as can be seen in Fig 2.

All horses were walked and trotted over a force plate (Z4852C, Kistler, Winterthur, Switzer-

land; for further details see S1 Appendix) to collect at least five valid force plate impacts for

both front and hind hooves; each valid impact will be considered a trial in the further analysis.

An impact was considered valid if two criteria were met: 1) only one entire hoof was placed on

the force plate and 2) the horse was led in a straight line with a constant speed of 0.8 to 1.4 m/s

for walk and 1.7 to 2.7 m/s for trot.

Three reflective markers of the OMC system (Qualisys AB, Motion Capture System, Göte-

borg, Sweden; for further details see S1 Appendix) were glued to lateral heel, lateral toe and lat-

eral coronet of each hoof as can be seen in Fig 2. The collected OMC data were used in another

study for break-over detection [16] but was needed for time synchronization in the current

study.

The force plate and OMC system were time synchronized by a hardware connection ([13];

for further details see S1 Appendix). Time synchronization of the OMC system and the IMUs

was accomplished by calculation of a cross-correlation between the angular velocity signal of

the IMUs and the position signal of the reflective markers of the OMC system ([7, 13]; for fur-

ther details see S1 Appendix).

The original horse measurements were performed in compliance with the Dutch Act on

Animal Experimentation and approved by the local ethics committee of Utrecht University.

All horses were present for teaching purposes and these measurements were not considered

additional animal experiments within the Dutch law at that time. Therefore, no specific experi-

ment number is available.

Data analysis

Force plate data. The collected force plate data were preprocessed by Inertia Technology

B.V.. The valid impacts were selected and cut into different trials; each trial consisted of at least

one valid impact and sometimes two for consecutive impacts of the RF and RH hoof.

In Fig 1D, the vertical force signal of one valid impact can be seen. The dotted lines show

the hoof-on and hoof-off time points, for the detection of which a threshold was used. This

threshold value was calculated from the signal mean (x) and signal standard deviation (s) of

the baseline, i.e. the period before the valid impact happened. To distinguish the impacts from

Fig 2. Location of inertial measurement units (IMUs) on the hoof. The location of the IMUs is indicated with red

arrows, on the lateral quarter of the right front and hind hoof with reflective markers on both sides (lateral heel, lateral

toe and lateral coronet) used for another study [13].

https://doi.org/10.1371/journal.pone.0233266.g002
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the baseline, the average of the force signal was calculated with a moving mean window with a

length of 130 ms and the baseline was determined for average values below 100 N. For every

trial, a threshold value (T) was determined by:

T ¼ xþ 2:58� s

The standard deviation was multiplied by 2.58 resulting in detection of the upper 0.5% of a

normally distributed signal, to ensure that only high impacts are detected.

Hoof-on was determined as the first time point that the vertical force exceeded the thresh-

old value. Hoof-off was determined as the first time point that the vertical force dropped below

the threshold value.

IMU data. The collected IMU data were preprocessed by Inertia Technology B.V. and cut

into different trials corresponding with the force plate trials. The collected IMU data consisted

of two tri-axial acceleration signals, a low g acceleration signal and a high g acceleration signal,

and one tri-axial angular velocity signal. The two acceleration signals were fused into one tri-

axial acceleration signal that was used during the current study [7]. Further data analysis was

performed in MATLAB (version R2017a, The MathWorks Inc., Natick, Massachusetts, USA).

The preprocessed tri-axial acceleration and angular velocity signals were further prepared

for analysis in two steps: 1) offset drift was removed from the acceleration signal, and 2) the

root of the sum of squares, Euclidean norm, was calculated of the tri-axial acceleration and

angular velocity signals resulting in a one-directional acceleration and angular velocity signal.

The Euclidean norm was used to reduce the calculation time in contrast to calculating a horse

specific rotation matrix [11] and to cancel out artefacts due to wrong alignment of the sensor

on the hoof. This will make the algorithms better applicable in field setting.

The preprocessed signal is shown in Fig 3A. To distinguish consecutive steps from each

other, the stance phase and the swing phase of a limb were estimated by calculating the vari-

ance of the acceleration and angular velocity signals. The variance was calculated by applying a

moving variance function over the two signals with window length of 130 ms. The variance of

the angular velocity was higher than the variance of the acceleration signal and to accommo-

date for this we downscaled the variance of the angular velocity with a factor of twenty-five.

The stance phase was determined when both signals had a variance below five, the remaining

time points were allocated to the swing phase. The window length, downscale factor and vari-

ance threshold were kept the same for all horses and trials. These values were chosen to ensure

that: 1) all time points of the swing phase were allocated to the estimated swing phase, and 2)

every swing phase was succeeded by a stance phase. This procedure resulted in an estimated

swing phase longer than the real swing phase to make sure that hoof-on and hoof-off events

were included in the roughly estimated swing phase. The estimated swing phase is indicated

by the box in Fig 3B.

Next, we determined the hoof-on and hoof-off from the acceleration and angular velocity

signal separately by developing two algorithms.

The algorithm for the angular velocity signal assessed every swing phase separately. Peaks

were detected, indicated by the dots in Fig 3B, and the mean peak height and mean peak prom-

inence were calculated from these peaks. The peak prominence depicted how much the peak

stands out due to its intrinsic height and location relative to the other peaks. Peaks were

selected if the peak was higher than the mean peak height or the prominence was bigger than

the mean prominence, or both. These selected peaks are indicated by the dots in Fig 3C. Hoof-

off was determined as the time point corresponding with the peak closest to the start of the

estimated swing phase. For hoof-on detection, only the detected peaks of the second half of the

swing phase were assessed. Again, the mean peak height and mean peak prominence were
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calculated. Peaks were selected if the peak was higher than the mean peak height or the promi-

nence was bigger than the mean prominence, or both. Hoof-on was determined as the time

point corresponding with the peak closest to the end of the estimated swing phase. The peaks

selected as hoof-off and hoof-on are indicated with dots in Fig 3D.

The algorithm for the acceleration signal assessed the signal in a similar manner as

described above. However, only the peaks detected in the first half of the swing phase were

assessed for hoof-off detection and the peaks detected in the second half of the swing phase

Fig 3. Generic illustration of an IMU signal and the steps performed by both algorithms. The preprocessed signal

is indicated in A. The estimated swing phase is indicated with the box in B. For the angular velocity signal, the peaks

within one estimated swing phase are detected (B). From these peaks, peaks were selected if the peak height or

prominence was bigger than the mean peak height or prominence, or both (C). Thereafter, the peak closest to the start

of the estimated swing phase was selected as the hoof-off time point and the peak closest to the end of the estimated

swing phase was selected as the hoof-on time point (D). For the acceleration signal, these steps were performed for the

first and second half of the estimated swing phase, indicated with the dotted boxes in B.

https://doi.org/10.1371/journal.pone.0233266.g003
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were assessed for hoof-on. The first and second half of the swing phase are indicated by the

dotted boxes in Fig 3B. After this step, peaks were detected, indicated by the dots in Fig 3B,

and the mean peak height and mean peak prominence were calculated from these peaks. Peaks

were selected if the peak was higher than the mean peak height or the prominence was bigger

than the mean prominence, or both. These selected peaks are indicated by the dots in Fig 3C.

Hoof-off was determined as the time point corresponding with the peak closest to the start of

the estimated swing phase. Hoof-on was determined as the time point corresponding with the

peak closest to the end of the estimated swing phase. The peaks selected as hoof-off and hoof-

on are indicated with dots in Fig 3D.

Stride parameter estimation. With the determined hoof-on and hoof-off time points the

following stride parameters were determined:

• Stance duration–time between hoof-on and hoof-off of the same hoof

• Hoof-on time difference–time difference between the hoof-on detection of both algorithms

were assessed with the force plate hoof-on detection separately for a given hoof

• Hoof-off time difference–time difference between the hoof-off detection of both algorithms

were assessed with the force plate hoof-off detection separately for a given hoof

Performance evaluation

The normality of the stride parameters was visually checked by examining the QQ plot and

histogram in R (version 1.1.414, RStudio Inc, Boston, Massachusetts, USA). Thereafter, the

distribution of the hoof-on and hoof-off time differences was evaluated to interpret the results

and the performance of both algorithms was evaluated by Bland Altman and linear mixed

model analysis.

Bland Altman. The agreement between the acceleration algorithm and the force plate

and the angular velocity algorithm and the force plate was evaluated for the stance duration.

This evaluation compared two different methods to measure the stance duration and therefore

a Bland Altman analysis was performed with the “BlandAltmanLeh” package [17].

The results of this analysis showed the mean difference in stance duration between the algo-

rithms and the force plate and the standard deviation (SD) of these differences. These results

were deemed better if closer to zero since this indicates a small and consistent difference

between the algorithms and force plate, i.e. a good accuracy and precision. A positive mean

indicates a shorter stance duration measured with the force plate and a negative mean indi-

cates a longer stance duration measured with the force plate compared with the algorithms. In

addition, the upper and lower confidence interval limits were used to calculate the width of the

confidence interval. The width of the confidence interval was preferred to be small which

means that the differences between the algorithms and the force plate were consistent.

Linear mixed model analysis. A linear mixed model analysis was performed to estimate

the effect of horse, hoof, gait and trial on the performance of the algorithms for all stride

parameters. This analysis was performed with the “lme4” package [18]. The independent vari-

ables of this analysis were the effect of hoof, gait, number of analyzed trials and interaction

term between hoof and gait. The model is described by:

Yijkl � mþ hoof i þ gaitj þ trialk þ ðhoof x gaitÞij þ ð1jhorseÞ þ εijkl

where Yijkl is the predicted value of the ijkl-th record, μ is the overall mean, hoofi is the effect

of hoof (i can be RF or RH hoof), gaitj is the effect of gait (j can be walk or trot), trialk is the

effect of trial (k can be 1 until 9 depending on the number of trials collected for a horse), (hoof
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x gait)ij is the effect of the interaction between hoofi and gaitj and εijkl is the residual error term

associated with the ijkl-th record. A random intercept for every horse was included in the

model.

Model reduction was applied with the Akaike’s information criterion and the model with

the lowest Akaike’s information criterion values was selected according to Occam’s Razor

principle. The residuals of each selected model were visually inspected and checked for any

deviations of normality and homoscedasticity. The predicted value of the stance duration and

the time difference between the algorithms and the force plate (Y) were calculated for every

combination of hoofi and gaitj (“emmeans” package [19]). In addition, the lower and upper

limits were calculated of the 95% confidence interval (“MASS” package [20]).

The performance of these algorithms was evaluated based on the predicted values and

width of the confidence intervals. For the stance durations, the predicted values of both algo-

rithms were deemed better if closer to the predicted value of the force plate and the width of

the confidence interval was preferred to be small, which indicates a good precision. For the

hoof-on and hoof-off time differences between the algorithms and the force plate, the pre-

dicted value was deemed better if closer to zero since this indicates a small difference between

the algorithms and force plate, i.e. a good accuracy. A positive predicted value indicates a

delayed detection by the algorithms and a negative predicted value indicates a too early detec-

tion by the algorithms compared with the force plate measurement. The width of the 95% con-

fidence interval was preferred to be small, which means that the differences between the

algorithms and the force plate were consistent, i.e. a good precision. Schematic representations

of these predicted values were used to evaluate the accuracy and precision of the algorithms.

Results

A total of 147 trials were analyzed: 75 trials of the right front (RF) hoof (36 in walk and 39 in

trot) and 72 trials of the right hind (RH) hoof (34 in walk and 38 in trot). In Table 1 an over-

view is given of the number of the analyzed trials and hoof and gait characteristics. Prepro-

cessed data of one measurement in trot can be seen in S1 Fig. Stance durations were calculated

and can be found in S1 Table. The stride parameters were normally distributed.

The distributions of the time differences for hoof-on detection are illustrated in Fig 4A for

the acceleration algorithm and in Fig 4B for the angular velocity algorithm. The distribution in

both figures show higher values for the RH hoof in walk and lower values for the RF hoof in

trot. The distribution in Fig 4A has a mean around 7 ms in contrast to the distribution in Fig

4B which has a mean of 16.5 ms. Furthermore, in Fig 4A there are no outliers in contrast to Fig

4B in which the distribution has outliers around -75 and 50 ms.

The distributions of the time differences for hoof-off detection are illustrated in Fig 4C for

the acceleration algorithm and in Fig 4D for the angular velocity algorithm. The distribution

in Fig 4C has a lower mean, around 0.78 ms, compared to the distribution in Fig 4D which has

a mean of 3.2 ms. In Fig 4C, the distribution has outliers around -57.5, 55 and 150 ms in

Table 1. Number of analyzed trials collected per horse, gait and hoof.

horse ID 1 2 3 4 5 6 7 total

Walk RF 5 5 5 5 5 6 5 36

RH 5 5 5 4 5 5 5 34

Trot RF 5 5 6 5 8 5 5 39

RH 7 5 5 5 5 6 5 38

22 20 21 19 23 22 20 147

https://doi.org/10.1371/journal.pone.0233266.t001
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contrast to the distribution in Fig 4D which has outliers around -50 and 50 ms. For both mod-

els, no clear distinction could be made between the different hoof/gait combinations.

Bland Altman analysis

The results in Table 2 show that the mean difference and SD were closer to zero for the angular

velocity algorithm, except for the SD of the RF hoof in trot, which was higher compared to the

acceleration algorithm. Also, the confidence intervals were smaller for the angular velocity

algorithm, except for the RF hoof in trot which is caused by a higher SD. These results indicate

that the agreement with the force plate was, in general, better for the angular velocity algorithm

for the stance duration. Furthermore, the mean difference was negative for all groups, except

for the RF hoof in trot, which means that shorter stance durations were measured with both

algorithms compared to the force plate.

Linear mixed model analysis

The residuals of all selected linear mixed models were normally distributed and did not show

homoscedasticity.

Fig 4. Distributions of time differences between both algorithms and the force plate for hoof-on and hoof-off detection. Time differences for hoof-on detection are

depicted in the upper row and time differences for hoof-off are depicted in the bottom row. The different hoof/gait combinations are depicted with their own color.

https://doi.org/10.1371/journal.pone.0233266.g004
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Hoof-on detection. The results presented in Table 3 are the models with the lowest AIC

values. The predicted values of the time differences between the acceleration algorithm and the

force plate (model 1) were best explained with hoof, gait, trial and interaction term as fixed

effect and horse as random effect. For this model, the predicted values and lower and upper

confidence interval limits were averaged over the number of analyzed trials. For the time dif-

ferences between the angular velocity and the force plate (model 2), hoof and gait were needed

as fixed effects and horse as random effect to explain the data best.

The results in Table 3 show that the predicted values of the time differences were smaller

for the angular velocity algorithm (model 2) compared with the acceleration algorithm (model

1). All predicted values were positive which indicates a delayed detection by both algorithms

compared with the force plate. Also, the confidence intervals were smaller for the angular

velocity algorithm.

In Fig 5A, the predicted values and their confidence intervals of model 1 are shown for

every hoof/gait combination because this model needs an interaction term to explain the data.

In Fig 5B, the predicted values and their confidence intervals of model 2 are shown for walk

Table 2. Bland Altman results for stance duration.

Stance duration

mean (ms) SD (ms) lower CI (ms) upper CI (ms)

acceleration walk RF -2.67 3.76 -10.05 4.71

RH -4.18 3.52 -11.08 2.72

trot RF -1.64 3.84 -9.17 5.89

RH -2.39 6.18 -14.52 9.73

angular velocity walk RF -1.33 3.20 -7.60 4.94

RH -2.88 2.86 -8.48 2.72

trot RF 0.74 4.98 -9.01 10.50

RH -1.66 4.52 -10.52 7.20

The mean differences in stance duration between the algorithms and force plate in milliseconds (ms) and the standard deviation (SD) of this mean difference in ms are

deemed better if closer to zero. The 95% confidence interval was preferred to be small.

https://doi.org/10.1371/journal.pone.0233266.t002

Table 3. Linear mixed model results for the time differences in hoof-on and hoof-off detection.

Hoof-on time differences

predicted value (ms) lower CI (ms) upper CI (ms)

Model 1: acceleration walk RF 17.93 9.33 26.52

RH 23.96 15.35 32.57

trot RF 13.77 5.20 22.34

RH 14.84 6.27 23.41

Model 2: angular velocity walk 11.06 4.13 17.99

trot 3.55 -3.35 10.45

RF 2.39 -4.52 9.30

RH 12.22 5.29 19.14

Hoof-off time differences

predicted value (ms) lower CI (ms) upper CI (ms)

Model 3: acceleration 3.20 0.05 6.34

Model 4: angular velocity 0.75 -3.83 5.32

The predicted values of the time difference between both algorithms relative to the force plate are determined in milliseconds (ms) and are deemed better if closer to

zero. The 95% confidence interval was preferred to be small.

https://doi.org/10.1371/journal.pone.0233266.t003
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Fig 5. Schematic representation of the predicted values of the time differences and their 95% confidence intervals. The dots indicate the predicted value for a certain

hoof/gait combination and the 95% confidence intervals are shown by the whiskers. The dashed line indicates a predicted time difference of 0 ms.

https://doi.org/10.1371/journal.pone.0233266.g005

PLOS ONE Automatic hoof-on and -off detection in horses

PLOS ONE | https://doi.org/10.1371/journal.pone.0233266 June 3, 2020 11 / 16

https://doi.org/10.1371/journal.pone.0233266.g005
https://doi.org/10.1371/journal.pone.0233266


versus trot and RF versus RH hoof because this model did not need an interaction term to

explain the data. The predicted values are located closer to zero for model 2 and their confi-

dence intervals are smaller.

These results indicate that the agreement with the force plate was, in general, better for the

angular velocity algorithm with an accuracy between 2.39 and 12.22 ms depending on the gait

and hoof and a precision of around 13.83 ms for the hoof-on detection.

Hoof-off detection. The predicted values of the time differences between the acceleration

algorithm and the force plate (model 3) were best explained with an empty model with no ran-

dom effect. For the time differences between the angular velocity algorithm and the force plate

(model 4), an empty model with random effect for horse was needed to explain the data best.

The results in Table 3 show that the predicted value was smaller for the angular velocity

algorithm (model 4) compared with the acceleration algorithm (model 3). Both predicted val-

ues are positive which indicates a delayed detection by both algorithms compared with the

force plate. The confidence interval was smaller for the acceleration algorithm. In Fig 5C, a

schematic representation of these findings is shown.

These results indicate that the agreement with the force plate was better for the acceleration

algorithm with an accuracy of 3.20 ms and precision of 6.39 ms for hoof-off detection.

Stance duration. For all three models, the predicted values for the stance duration were

best explained when hoof, gait and interaction term were included as fixed effect and horse as

random effect in the model. The results in Table 4 show that the predicted values of both algo-

rithms are smaller compared with the force plate, except for the RF hoof in trot of the angular

velocity algorithm. The predicted values determined with the acceleration algorithm are the

lowest. Also, the width of the confidence intervals of both algorithms were smaller than the

intervals of the force plate, except for the RF hoof in trot of the angular velocity algorithm.

These results agree with the results of the Bland Altman analysis.

Discussion

Two algorithms are presented to automatically detect hoof-events from the acceleration and

angular velocity signals measured with hoof-mounted IMUs in horses walking and trotting on

Table 4. Linear mixed model results for stance duration.

Stance duration

predicted value (ms) lower CI (ms) upper CI (ms)

acceleration walk RF 779.71 759.13 800.28

RH 777.97 757.18 798.76

trot RF 337.06 316.73 357.39

RH 302.57 282.17 322.97

angular velocity walk RF 786.53 763.98 809.08

RH 784.63 761.94 807.32

trot RF 349.01 326.61 371.41

RH 306.32 283.88 328.76

force plate walk RF 793.34 771.89 814.80

RH 799.19 777.60 820.78

trot RF 345.32 324.02 366.61

RH 314.96 293.62 336.30

The predicted value for the stance duration is determined in milliseconds (ms) for both algorithms and the force plate. The 95% confidence interval was preferred to be

small.

https://doi.org/10.1371/journal.pone.0233266.t004
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hard ground. Results of internal validation with the force plate showed that, for the hoof-on

detection, the angular velocity algorithm was the most accurate with an accuracy between 2.39

and 12.22 ms and a precision of around 13.80 ms, depending on gait and hoof. For hoof-off

detection, the acceleration algorithm was the most accurate with an accuracy of 3.20 and preci-

sion of 6.39 ms, independent of gait and hoof.

From the results we can conclude that hoof-on is better detected by the angular velocity

algorithm which might be explained by the fact that the hoof will slide forward after vertical

impact on a hard surface. The forward slide results in a silent angular velocity signal while the

acceleration is not silent. Also, a difference in accuracy between the RF hoof (2.39 ms) and RH

hoof (12.22 ms) was found which can be explained by the fact that horses place their front and

hind hooves differently on the ground. In previous studies, also different landing and braking

characteristics are found for hind, front, leading and trailing limbs [21–23]. Furthermore, the

front hooves bounce more at impact in contrast to the hind hooves, which slide more at impact

[24]. For the hoof-off detection, the acceleration algorithm performed better which might be

explained by the gradual hoof rotation prior to hoof-off. This gradual rotation results in an

increase in the angular velocity signal while the acceleration signal is more strongly increased

at the actual hoof-off moment. These phenomena could be different and variable on surfaces

with other properties. Less firm surface material, such as sand would allow penetration of the

hoof into the substrate. If the surface offers shear resistance the hoof would slide less forward

[25]. This could alter the appearance of the angular velocity versus the acceleration signal. Tho-

mason and Peterson (2008) described a more evident forward push when the surface is smooth

and firm [26]. Since these algorithms are only tested on data measured on a hard surface, more

extensive studies should be performed in to validate it for other surfaces.

In a previous study by BraganBa et al. (2017), accuracy and precision for hoof-on were

slightly better for the RH hoof and similar for the RF hoof. For hoof-off detection, the accuracy

and precision found in this study were better [13]. It was expected to find a better algorithm

performance during this study due to the use of hoof-mounted IMUs. However, this expecta-

tion was only met for the hind hoof and not for the front hoof.

In another study, algorithms were developed to detect gait events from OMC data. Valida-

tion with the force plate showed an accuracy between -13.6 and 21.5 ms and a precision

between 5.8 and 32.9 ms, depending on limb and gait [27], which is almost similar to the IMU

algorithms of BraganBa et al. (2017) [13]. So, no clear distinction in performance could be

made between algorithms developed for OMC data and IMU data. However, both studies vali-

dated these algorithms against the force plate.

In previous studies, reservations about the use of the force plate as gold standard for lame-

ness detection are described [28, 29]. They reported that some parameters measured with the

force plate should be considered less reliable than others [28, 29]. Furthermore, detection of

stance duration was performed by using a threshold for the force plate signal. The use of a

threshold value is arbitrary; therefore a trial specific threshold was calculated in the study of

Clayton et al. (1999) [30] to eliminate the horse-specific aspects, such as walking speed and

weight of the horse, and the effect of noise on the signal. Stance durations determined with the

IMUs were shorter than the durations determined with the force plate which is probably

caused by the threshold level used for the force plate signal since stance and swing phases are

estimated from the IMU signals by calculating the variance of the signals. Also, other studies

described differences in stance duration according to the threshold levels used for the force

plate signal [4]. The reason that we chose to use the force plate as gold standard is that this sys-

tem is used in most research facilities.

The OMC system used guarantees a relative precision of 1.9 mm [7] measuring the kine-

matics of the hoof and introduces different definitions of hoof-on and hoof-off such as toe-on,
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heel-on, toe-off and heel-off timings. Therefore, the OMC system might be a more appropriate

technique to study the hoof movement and break-over phase more in detail. During this

study, the break-over phase was also included in the analysis but is described elsewhere [16].

The needed accuracy and precision for gait classification are not yet determined. Stance

duration are measured in different gaits at different speeds and the shortest stance duration

reported was 103 ms in pace [31]. Therefore, an algorithm with an accuracy and precision

smaller than 100 ms might be sufficient to detected foot-fall pattern and thus gait classification.

For lameness detection however, a more accurate and precise algorithm is needed since the

stance duration increases with 1% in both the affected and contralateral limbs for mild lame-

ness. [32, 33].

Conclusion

Two algorithms are presented to automatically detect hoof-on and hoof-off from acceleration

and angular velocity data measured with hoof-mounted IMUs in walk and trot on a hard sur-

face. Internal validation against the force plate was performed. The results showed that for the

hoof-on detection, the angular velocity algorithm was the most accurate with an accuracy

between 2.39 and 12.22 ms and a precision of around 13.80 ms, depending on gait and hoof.

For hoof-off detection, the acceleration algorithm was the most accurate with an accuracy of

3.20 ms and precision of 6.39 ms, independent of gait and hoof. These algorithms seem prom-

ising for gait classification, although a more extensive validation process should be performed.

Also, the applicability of these algorithms should be investigated under different circum-

stances, such as different ground surfaces, gaits, speed and different hoof trimming conditions.
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