110 research outputs found

    Estandarización del Test Magallanes de Vocabulario de Conceptos Básicos en escolares de ámbitos urbanos de la provincia de Mendoza, Argentina

    Get PDF
    El presente proyecto tuvo como objetivo estandarizar el Test Magallanes de Vocabulario deConceptos Básicos: T.M.V.C.B., en escolares de 4 a 7 años de edad que asistían aestablecimientos educativos de ámbito urbano de la provincia de Mendoza. Este instrumentopermite valorar la adquisición de vocabulario en niños escolarizados, determinando el grado enque ha adquirido el dominio de distintos conceptos (espaciales, cuantitativos, temporales,cualitativos, de tamaño y forma) y la palabra que los designa, identificando la amplitud de sucampo semántico. La adquisición del vocabulario es considerada una de las habilidadeslingüísticas fundamentales para el aprendizaje lingüístico inicial alcanzado por un escolar entrelos 4 y 7 años. Una de las exigencias del currículo escolar durante los primeros años deescolarización consiste en la adquisición de un vocabulario suficientemente amplio y precisoque les permita a los escolares, por una parte, comunicarse con los iguales y, por otra,comprender y asimilar los conocimientos que le transmiten los docentes

    Young Stellar Clusters Containing Massive Young Stellar Objects in the VVV Survey

    Get PDF
    This is an author-created, un-copyedited version of an article published in The Astronomical Journal. IOP Publishing is not responsible for any errors or omissions in this version of the manuscript or any version derived from it. The Version of Record is available online at: at doi: https://doi.org/10.3847/0004-6256/152/3/74. © 2016. The American Astronomical Society. All rights reserved. IOPScience PublishingThe purpose of this research is to study the connection of global properties of eight young stellar clusters projected in the Vista Variables in the Via Lactea (VVV) ESO Large Public Survey disk area and their young stellar object population. The analysis in based on the combination of spectroscopic parallax-based reddening and distance determinations with main sequence and pre-main sequence ishochrone fitting to determine the basic parameters (reddening, age, distance) of the sample clusters. The lower mass limit estimations show that all clusters are low or intermediate mass (between 110 and 1800 Mo), the slope Gamma of the obtained present-day mass functions of the clusters is close to the Kroupa initial mass function. On the other hand, the young stellar objects in the surrounding cluster's fields are classified by low resolution spectra, spectral energy distribution fit with theoretical predictions, and variability, taking advantage of multi-epoch VVV observations. All spectroscopically confirmed young stellar objects (except one) are found to be massive (more than 8 Mo). Using VVV and GLIMPSE color-color cuts we have selected a large number of new young stellar object candidates, which are checked for variability and 57% are found to show at least low-amplitude variations. In few cases it was possible to distinguish between YSO and AGB classification on the basis of the light curves.Peer reviewedFinal Accepted Versio

    Polymorphism of viral dsRNA in Xanthophyllomyces dendrorhous strains isolated from different geographic areas

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Strains of the astaxanthin producing yeast <it>Xanthophyllomyces dendrorhous </it>have been isolated from different cold regions around the earth, and the presence of double stranded RNA (dsRNA) elements was described in some isolates. This kind of viruses is widely distributed among yeasts and filamentous fungi and, although generally are cryptic in function, their studies have been a key factor in the knowledge of important fungi. In this work, the characterization and genetic relationships among dsRNA elements were determined in strains representatives of almost all regions of the earth where <it>X. dendrorhous </it>have been isolated.</p> <p>Results</p> <p>Almost all strains of <it>X. dendrorhous </it>analyzed carry one, two or four dsRNA elements, of molecular sizes in the range from 0.8 to 5.0 kb. Different dsRNA-patterns were observed in strains with different geographic origin, being L1 (5.0 kb) the common dsRNA element. By hybridization assays a high genomic polymorphism was observed among L1 dsRNAs of different <it>X. dendrorhous </it>strains. Contrary, hybridization was observed between L1 and L2 dsRNAs of strains from same or different regions, while the dsRNA elements of minor sizes (M, S1, and S2) present in several strains did not show hybridization with neither L1 or L2 dsRNAs. Along the growth curve of UCD 67-385 (harboring four dsRNAs) an increase of L2 relative to L1 dsRNA was observed, whiles the S1/L1 ratio remains constant, as well as the M/L1 ratio of Patagonian strain. Strains cured of S2 dsRNA were obtained by treatment with anisomycin, and comparison of its dsRNA contents with uncured strain, revealed an increase of L1 dsRNA while the L2 and S1 dsRNA remain unaltered.</p> <p>Conclusion</p> <p>The dsRNA elements of <it>X. dendrorhous </it>are highly variable in size and sequence, and the dsRNA pattern is specific to the geographic region of isolation. Each L1 and L2 dsRNA are viral elements able to self replicate and to coexist into a cell, and L1 and S2 dsRNAs elements could be part of a helper/satellite virus system in <it>X. dendrorhous</it>.</p

    Cytotoxic T cells expressing the co-stimulatory receptor NKG2 D are increased in cigarette smoking and COPD

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>A suggested role for T cells in COPD pathogenesis is based on associations between increased lung cytotoxic T lymphocyte (CD8<sup>+</sup>) numbers and airflow limitation. CD69 is an early T cell activation marker. Natural Killer cell group 2 D (NKG2D) receptors are co-stimulatory molecules induced on CD8<sup>+ </sup>T cells upon activation. The activating function of NKG2 D is triggered by binding to MHC class 1 chain-related (MIC) molecules A and B, expressed on surface of stressed epithelial cells. The aim of this study was to evaluate the expression of MIC A and B in the bronchial epithelium and NKG2 D and CD69 on BAL lymphocytes in subjects with COPD, compared to smokers with normal lung function and healthy never-smokers.</p> <p>Methods</p> <p>Bronchoscopy with airway lavages and endobronchial mucosal biopsy sampling was performed in 35 patients with COPD, 21 healthy never-smokers and 16 smokers with normal lung function. Biopsies were immunohistochemically stained and BAL lymphocyte subsets were determined using flow cytometry.</p> <p>Results</p> <p>Epithelial CD3<sup>+ </sup>lymphocytes in bronchial biopsies were increased in both smokers with normal lung function and in COPD patients, compared to never-smokers. Epithelial CD8<sup>+ </sup>lymphocyte numbers were higher in the COPD group compared to never-smoking controls. Among gated CD3<sup>+</sup>cells in BAL, the percentage of CD8<sup>+ </sup>NKG2D<sup>+ </sup>cells was enhanced in patients with COPD and smokers with normal lung function, compared to never-smokers. The percentage of CD8<sup>+ </sup>CD69<sup>+ </sup>cells and cell surface expression of CD69 were enhanced in patients with COPD and smokers with normal lung function, compared to never-smokers. No changes in the expression of MIC A or MIC B in the airway epithelium could be detected between the groups, whereas significantly decreased soluble MICB was detected in bronchial wash from smokers with normal lung function, compared to never-smokers.</p> <p>Conclusions</p> <p>In COPD, we found increased numbers of cytotoxic T cells in both bronchial epithelium and airway lumen. Further, the proportions of CD69- and NKG2D-expressing cytotoxic T cells in BAL fluid were enhanced in both subjects with COPD and smokers with normal lung function and increased expression of CD69 was found on CD8<sup>+ </sup>cells, indicating the cigarette smoke exposure-induced expansion of activated cytotoxic T cells, which potentially can respond to stressed epithelial cells.</p

    Hepatocyte and keratinocyte growth factors and their receptors in human lung emphysema

    Get PDF
    BACKGROUND: Hepatocyte and keratinocyte growth factors are key growth factors in the process of alveolar repair. We hypothesized that excessive alveolar destruction observed in lung emphysema involves impaired expression of hepatocyte and keratinocyte growth factors or their respective receptors, c-met and keratinocyte growth factor receptor. The aim of our study was to compare the expression of hepatocyte and keratinocyte growth factors and their receptors in lung samples from 3 groups of patients: emphysema; smokers without emphysema and non-smokers without emphysema. METHODS: Hepatocyte and keratinocyte growth factor proteins were analysed by immunoassay and western blot; mRNA expression was measured by real time quantitative polymerase chain reaction. RESULTS: Hepatocyte and keratinocyte growth factors, c-met and keratinocyte growth factor receptor mRNA levels were similar in emphysema and non-emphysema patients. Hepatocyte growth factor mRNA correlated negatively with FEV1 and the FEV1/FVC ratio both in emphysema patients and in smokers with or without emphysema. Hepatocyte and keratinocyte growth factor protein concentrations were similar in all patients' groups. CONCLUSION: The expression of hepatocyte and keratinocyte growth factors and their receptors is preserved in patients with lung emphysema as compared to patients without emphysema. Hepatocyte growth factor mRNA correlates with the severity of airflow obstruction in smokers

    Role of the tachykinin NK1 receptor in a murine model of cigarette smoke-induced pulmonary inflammation

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The tachykinins, substance P and neurokinin A, present in sensory nerves and inflammatory cells such as macrophages and dendritic cells, are considered as pro-inflammatory agents. Inflammation of the airways and lung parenchyma plays a major role in the pathogenesis of chronic obstructive pulmonary disease (COPD) and increased tachykinin levels are recovered from the airways of COPD patients. The aim of our study was to clarify the involvement of the tachykinin NK<sub>1 </sub>receptor, the preferential receptor for substance P, in cigarette smoke (CS)-induced pulmonary inflammation and emphysema in a mouse model of COPD.</p> <p>Methods</p> <p>Tachykinin NK<sub>1 </sub>receptor knockout (NK<sub>1</sub>-R<sup>-/-</sup>) mice and their wild type controls (all in a mixed 129/sv-C57BL/6 background) were subjected to sub acute (4 weeks) or chronic (24 weeks) exposure to air or CS. 24 hours after the last exposure, pulmonary inflammation and development of emphysema were evaluated.</p> <p>Results</p> <p>Sub acute and chronic exposure to CS resulted in a substantial accumulation of inflammatory cells in the airways of both WT and NK<sub>1</sub>-R<sup>-/- </sup>mice. However, the CS-induced increase in macrophages and dendritic cells was significantly impaired in NK<sub>1</sub>-R<sup>-/- </sup>mice, compared to WT controls, and correlated with an attenuated release of MIP-3α/CCL20 and TGF-β1. Chronic exposure to CS resulted in development of pulmonary emphysema in WT mice. NK<sub>1</sub>-R<sup>-/- </sup>mice showed already enlarged airspaces upon air-exposure. Upon CS-exposure, the NK<sub>1</sub>-R<sup>-/- </sup>mice did not develop additional destruction of the lung parenchyma. Moreover, an impaired production of MMP-12 by alveolar macrophages upon CS-exposure was observed in these KO mice. In a pharmacological validation experiment using the NK<sub>1 </sub>receptor antagonist RP 67580, we confirmed the protective effect of absence of the NK<sub>1 </sub>receptor on CS-induced pulmonary inflammation.</p> <p>Conclusion</p> <p>These data suggest that the tachykinin NK<sub>1 </sub>receptor is involved in the accumulation of macrophages and dendritic cells in the airways upon CS-exposure and in the development of smoking-induced emphysema. As both inflammation of the airways and parenchymal destruction are important characteristics of COPD, these findings may have implications in the future treatment of this devastating disease.</p

    Models of chronic obstructive pulmonary disease

    Get PDF
    Chronic obstructive pulmonary disease (COPD) is a major global health problem and is predicted to become the third most common cause of death by 2020. Apart from the important preventive steps of smoking cessation, there are no other specific treatments for COPD that are as effective in reversing the condition, and therefore there is a need to understand the pathophysiological mechanisms that could lead to new therapeutic strategies. The development of experimental models will help to dissect these mechanisms at the cellular and molecular level. COPD is a disease characterized by progressive airflow obstruction of the peripheral airways, associated with lung inflammation, emphysema and mucus hypersecretion. Different approaches to mimic COPD have been developed but are limited in comparison to models of allergic asthma. COPD models usually do not mimic the major features of human COPD and are commonly based on the induction of COPD-like lesions in the lungs and airways using noxious inhalants such as tobacco smoke, nitrogen dioxide, or sulfur dioxide. Depending on the duration and intensity of exposure, these noxious stimuli induce signs of chronic inflammation and airway remodelling. Emphysema can be achieved by combining such exposure with instillation of tissue-degrading enzymes. Other approaches are based on genetically-targeted mice which develop COPD-like lesions with emphysema, and such mice provide deep insights into pathophysiological mechanisms. Future approaches should aim to mimic irreversible airflow obstruction, associated with cough and sputum production, with the possibility of inducing exacerbations
    corecore