1,224 research outputs found

    An off-shell I.R. regularization strategy in the analysis of collinear divergences

    Full text link
    We present a method for the analysis of singularities of Feynman amplitudes based on the Speer sector decomposition of the Schwinger parametric integrals combined with the Mellin-Barnes transform. The sector decomposition method is described in some details. We suggest the idea of applying the method to the analysis of collinear singularities in inclusive QCD cross sections in the mass-less limit regularizing the forward amplitudes by an off-shell choice of the initial particle momenta. It is shown how the suggested strategy works in the well known case of the one loop corrections to Deep Inelastic Scattering.Comment: 25 pages, 3 figure

    Measurement of the Permanent Electric Dipole Moment of the 129^{129}Xe Atom

    Full text link
    We report on a new measurement of the CP-violating permanent Electric Dipole Moment (EDM) of the neutral 129^{129}Xe atom. Our experimental approach is based on the detection of the free precession of co-located nuclear spin-polarized 3^3He and 129^{129}Xe samples. The EDM measurement sensitivity benefits strongly from long spin coherence times of several hours achieved in diluted gases and homogeneous weak magnetic fields of about 400~nT. A finite EDM is indicated by a change in the precession frequency, as an electric field is periodically reversed with respect to the magnetic guiding field. Our result, (−4.7±6.4)⋅10−28\left(-4.7\pm6.4\right)\cdot 10^{-28} ecm, is consistent with zero and is used to place a new upper limit on the 129^{129}Xe EDM: ∣dXe∣<1.5⋅10−27|d_\text{Xe}|<1.5 \cdot 10^{-27} ecm (95% C.L.). We also discuss the implications of this result for various CP-violating observables as they relate to theories of physics beyond the standard model

    Critical boron-doping levels for generation of dislocations in synthetic diamond

    Get PDF
    Defects induced by boron doping in diamond layers were studied by transmission electron microscopy. The existence of a critical boron doping level above which defects are generated is reported. This level is found to be dependent on the CH4 /H2 molar ratios and on growth directions. The critical boron concentration lied in the 6.5–17.0 X 10 20 at/cm3 range in the direction and at 3.2 X 1021 at/cm 3 for the one. Strain related effects induced by the doping are shown not to be responsible. From the location of dislocations and their Burger vectors, a model is proposed, together with their generation mechanism.6 page

    Osmotic and Electroosmotic Fluid Transport across the Retinal Pigment Epithelium: a Mathematical Model

    Get PDF
    The retinal pigment epithelium (RPE) is the outermost cell layer of the retina. It has several important physiological functions, among which is removal of excess fluid from the sub-retinal space by pumping it isotonically towards the choroid. Failure of this pumping leads to fluid accumulation, which is closely associated with several pathological conditions, such as age-related macular degeneration, macular oedema and retinal detachment. In the present work we study mechanisms responsible for fluid transport across the RPE with the aim of understanding how fluid accumulation can be prevented. We focus on two possible mechanisms, osmosis and electroosmosis, and develop a spatially resolved mathematical model that couples fluid and ion transport across the epithelium, accounting for the presence of Na+, K+and Cl 12ions. Our model predicts spatial variability of ion concentrations and the electrical potential along the cleft gap between two adjacent cells, which osmotically drives the flow across the lateral membranes. This flow is directed from the sub-retinal space to the choroid and has a magnitude close to measured values. Electroosmosis is subdominant by three orders of magnitude to osmosis and has an opposite direction, suggesting that local osmosis is the main driving mechanism for water transport across the RPE

    Precise Measurement of Magnetic Field Gradients from Free Spin Precession Signals of 3^{3}He and 129^{129}Xe Magnetometers

    Full text link
    We report on precise measurements of magnetic field gradients extracted from transverse relaxation rates of precessing spin samples. The experimental approach is based on the free precession of gaseous, nuclear spin polarized 3^3He and 129^{129}Xe atoms in a spherical cell inside a magnetic guiding field of about 400 nT using LTC_C SQUIDs as low-noise magnetic flux detectors. The transverse relaxation rates of both spin species are simultaneously monitored as magnetic field gradients are varied. For transverse relaxation times reaching 100 h, the residual longitudinal field gradient across the spin sample could be deduced to be∣∇⃗Bz∣=(5.6±0.4)|\vec{\nabla}B_z|=(5.6 \pm 0.4) pT/cm. The method takes advantage of the high signal-to-noise ratio with which the decaying spin precession signal can be monitored that finally leads to the exceptional accuracy to determine magnetic field gradients at the sub pT/cm scale

    A Mathematical Model of Corneal Metabolism in the Presence of an Iris-Fixated Phakic Intraocular Lens

    Get PDF
    Purpose: Corneal endothelial cell loss is one of the possible complications associated with phakic iris-fixated intraocular lens (PIOL) implantation. We postulate that this might be connected to the alteration of corneal metabolism secondary to the lens implantation. Methods: A mathematical model of transport and consumption/production of metabolic species in the cornea is proposed, coupled with a model of aqueous flow and transport of metabolic species in the anterior chamber. Results: Results are presented both for open and closed eyelids. We showed that, in the presence of a PIOL, glucose availability at the corneal endothelium decreases significantly during sleeping. Conclusions: Implantation of a PIOL significantly affects nutrient transport processes to the corneal endothelium especially during sleep. It must still be verified whether this finding has a clinical relevance

    Gesture based word (re)acquisition with a virtual agent in augmented reality: A preliminary study

    Get PDF
    From an evolutionary perspective, language and gesture belong together as a system, serving communication on both an abstract and a physical level. In aphasia, when language is impaired, patients make use of gestures. Laboratory research has provided evidence that gesture can support aphasia rehabilitation, or more specifically, anomia rehabilitation. Here, we test an anomia gesture-based rehabilitation scenario with a virtual trainer (VT) in augmented reality (AR) as a therapy simulation. Thirty German-speaking participants were trained on 27 biand three-syllabic words of Vimmi, an artificial language. Each Vimmi word was paired to a function word in German. The participants were divided into two Groups of 15 and 15 persons. Group A learned word pairs by observing the gestures performed by the VT and additionally imitating them. Group B learned 27 word-pairs by observing the VT standing still and listening to them. Participants were trained singularly for 3 days, alternating one day of training with one day of rest for memory consolidation. Word retention was assessed immediately after each training session by means of free and cued recall tests administered electronically. Group A and Group B did not differ in word retention. When subdividing participants in high and low performers, interactions showed that high performers benefitted more from gesture-based training than low performers. The data in this preliminary study do not speak in favour of VTs as possible tools in gesture-based AR language rehabilitation. Technology might have, in this case, detrimental effects on word learning
    • 

    corecore