25 research outputs found

    PKD1 and PKD2 mutations in Slovenian families with autosomal dominant polycystic kidney disease

    Get PDF
    BACKGROUND: Autosomal dominant polycystic kidney disease (ADPKD) is a genetically heterogeneous disorder caused by mutations in at least two different loci. Prior to performing mutation screening, if DNA samples of sufficient number of family members are available, it is worthwhile to assign the gene involved in disease progression by the genetic linkage analysis. METHODS: We collected samples from 36 Slovene ADPKD families and performed linkage analysis in 16 of them. Linkage was assessed by the use of microsatellite polymorphic markers, four in the case of PKD1 (KG8, AC2.5, CW3 and CW2) and five for PKD2 (D4S1534, D4S2929, D4S1542, D4S1563 and D4S423). Partial PKD1 mutation screening was undertaken by analysing exons 23 and 31–46 and PKD2 . RESULTS: Lod scores indicated linkage to PKD1 in six families and to PKD2 in two families. One family was linked to none and in seven families linkage to both genes was possible. Partial PKD1 mutation screening was performed in 33 patients (including 20 patients from the families where linkage analysis could not be performed). We analysed PKD2 in 2 patients where lod scores indicated linkage to PKD2 and in 7 families where linkage to both genes was possible. We detected six mutations and eight polymorphisms in PKD1 and one mutation and three polymorphisms in PKD2. CONCLUSION: In our study group of ADPKD patients we detected seven mutations: three frameshift, one missense, two nonsense and one putative splicing mutation. Three have been described previously and 4 are novel. Three newly described framesfift mutations in PKD1 seem to be associated with more severe clinical course of ADPKD. Previously described nonsense mutation in PKD2 seems to be associated with cysts in liver and milder clinical course

    The genetic architecture of membranous nephropathy and its potential to improve non-invasive diagnosis

    Get PDF
    Membranous Nephropathy (MN) is a rare autoimmune cause of kidney failure. Here we report a genome-wide association study (GWAS) for primary MN in 3,782 cases and 9,038 controls of East Asian and European ancestries. We discover two previously unreported loci, NFKB1 (rs230540, OR = 1.25, P = 3.4 × 10-12) and IRF4 (rs9405192, OR = 1.29, P = 1.4 × 10-14), fine-map the PLA2R1 locus (rs17831251, OR = 2.25, P = 4.7 × 10-103) and report ancestry-specific effects of three classical HLA alleles: DRB1*1501 in East Asians (OR = 3.81, P = 2.0 × 10-49), DQA1*0501 in Europeans (OR = 2.88, P = 5.7 × 10-93), and DRB1*0301 in both ethnicities (OR = 3.50, P = 9.2 × 10-23 and OR = 3.39, P = 5.2 × 10-82, respectively). GWAS loci explain 32% of disease risk in East Asians and 25% in Europeans, and correctly re-classify 20-37% of the cases in validation cohorts that are antibody-negative by the serum anti-PLA2R ELISA diagnostic test. Our findings highlight an unusual genetic architecture of MN, with four loci and their interactions accounting for nearly one-third of the disease risk

    The genetic architecture of membranous nephropathy and its potential to improve non-invasive diagnosis

    Get PDF
    Membranous Nephropathy (MN) is a rare autoimmune cause of kidney failure. Here we report a genome-wide association study (GWAS) for primary MN in 3,782 cases and 9,038 controls of East Asian and European ancestries. We discover two previously unreported loci, NFKB1 (rs230540, OR = 1.25, P = 3.4 × 10-12) and IRF4 (rs9405192, OR = 1.29, P = 1.4 × 10-14), fine-map the PLA2R1 locus (rs17831251, OR = 2.25, P = 4.7 × 10-103) and report ancestry-specific effects of three classical HLA alleles: DRB1*1501 in East Asians (OR = 3.81, P = 2.0 × 10-49), DQA1*0501 in Europeans (OR = 2.88, P = 5.7 × 10-93), and DRB1*0301 in both ethnicities (OR = 3.50, P = 9.2 × 10-23 and OR = 3.39, P = 5.2 × 10-82, respectively). GWAS loci explain 32% of disease risk in East Asians and 25% in Europeans, and correctly re-classify 20-37% of the cases in validation cohorts that are antibody-negative by the serum anti-PLA2R ELISA diagnostic test. Our findings highlight an unusual genetic architecture of MN, with four loci and their interactions accounting for nearly one-third of the disease risk

    Validation of distinct pathogenic patterns in a cohort of membranoproliferative glomerulonephritis patients by cluster analysis

    Get PDF
    Background: A novel data-driven cluster analysis identified distinct pathogenic patterns in C3-glomerulopathies and immune complex-mediated membranoproliferative glomerulonephritis. Our aim was to replicate these observations in an independent cohort and elucidate disease pathophysiology with detailed analysis of functional complement markers. ----- Methods: A total of 92 patients with clinical, histological, complement and genetic data were involved in the study, and hierarchical cluster analysis was done by Ward method, where four clusters were generated. ----- Results: High levels of sC5b-9 (soluble membrane attack complex), low serum C3 levels and young age at onset (13 years) were characteristic for Cluster 1 with a high prevalence of likely pathogenic variations (LPVs) and C3 nephritic factor, whereas for Cluster 2-which is not reliable because of the small number of cases-strong immunoglobulin G staining, low C3 levels and high prevalence of nephritic syndrome at disease onset were observed. Low plasma sC5b-9 levels, decreased C3 levels and high prevalence of LPV and sclerotic glomeruli were present in Cluster 3, and patients with late onset of the disease (median: 39.5 years) and near-normal C3 levels in Cluster 4. A significant difference was observed in the incidence of end-stage renal disease during follow-up between the different clusters. Patients in Clusters 3-4 had worse renal survival than patients in Clusters 1-2. ----- Conclusions: Our results confirm the main findings of the original cluster analysis and indicate that the observed, distinct pathogenic patterns are replicated in our cohort. Further investigations are necessary to analyse the distinct biological and pathogenic processes in these patient groups

    C4 nephritic factor in patients with immune-complex-mediated membranoproliferative glomerulonephritis and C3-glomerulopathy

    Get PDF
    L

    NPHS2 homozygous p.R229Q variant: potential modifier instead of causal effect in focal segmental glomerulosclerosis

    No full text
    BACKGROUND: The pathogenicity of the NPHS2 homozygous p.R229Q variant in steroid-resistant nephrotic syndrome (SRNS) is doubtful. While it has been reported in unaffected controls, it is enriched in patients with SRNS, suggesting pathogenicity. CASE-DIAGNOSIS/TREATMENT: A family with three members homozygous for the NPHS2 p.R229Q variant is presented: a 37-year-old patient who was diagnosed with proteinuria at age 7 months, focal segmental glomerulosclerosis (FSGS) at age 20 years, and end-stage renal disease (ESRD) at age 33 years, his 59 year-old father and his 40 year-old brother, both unaffected with no proteinuria. The affected son also harbors a heterozygous de novo, truncating PAX2 mutation (c.76dupG, p.V26Gfs*28), which can explain his chronic renal failure but which is rarely associated with FSGS. CONCLUSIONS: This family provides further evidence that homozygous p.R229Q in itself may not cause FSGS. Nevertheless, the rare association of FSGS to a PAX2 mutation may reflect the modifier effect of p.R229Q in the homozygous state. Such a modifier effect can also explain its enrichment in SRNS patients. Patients with homozygous p.R229Q should be screened for the causative mutation in a second gene
    corecore