373 research outputs found

    Transport Properties of Highly Aligned Polymer Light-Emitting-Diodes

    Full text link
    We investigate hole transport in polymer light-emitting-diodes in which the emissive layer is made of liquid-crystalline polymer chains aligned perpendicular to the direction of transport. Calculations of the current as a function of time via a random-walk model show excellent qualitative agreement with experiments conducted on electroluminescent polyfluorene demonstrating non-dispersive hole transport. The current exhibits a constant plateau as the charge carriers move with a time-independent drift velocity, followed by a long tail when they reach the collecting electrode. Variation of the parameters within the model allows the investigation of the transition from non-dispersive to dispersive transport in highly aligned polymers. It turns out that large inter-chain hopping is required for non-dispersive hole transport and that structural disorder obstructs the propagation of holes through the polymer film.Comment: 4 pages, 5 figure

    Temperature and Field Dependence of the Mobility in Liquid-Crystalline Conjugated Polymer Films

    Full text link
    The transport properties of organic light-emitting diodes in which the emissive layer is composed of conjugated polymers in the liquid-crystalline phase have been investigated. We have performed simulations of the current transient response to an illumination pulse via the Monte Carlo approach, and from the transit times we have extracted the mobility of the charge carriers as a function of both the electric field and the temperature. The transport properties of such films are different from their disordered counterparts, with charge carrier mobilities exhibiting only a weak dependence on both the electric field and temperature. We show that for spatially ordered polymer films, this weak dependence arises for thermal energy being comparable to the energetic disorder, due to the combined effect of the electrostatic and thermal energies. The inclusion of spatial disorder, on the other hand, does not alter the qualitative behaviour of the mobility, but results in decreasing its absolute value.Comment: 9 pages, 8 figures, submitted to Phys. Rev.

    Epiparasitic plants specialized on arbuscular mycorrhizal fungi

    Get PDF
    Over 400 non-photosynthetic species from 10 families of vascular plants obtain their carbon from fungi and are thus defined as myco-heterotrophs. Many of these plants are epiparasitic on green plants from which they obtain carbon by 'cheating' shared mycorrhizal fungi. Epiparasitic plants examined to date depend on ectomycorrhizal fungi for carbon transfer and exhibit exceptional specificity for these fungi, but for most myco-heterotrophs neither the identity of the fungi nor the sources of their carbon are known. Because many myco-heterotrophs grow in forests dominated by plants associated with arbuscular mycorrhizal fungi (AMF; phylum Glomeromycota), we proposed that epiparasitism would occur also between plants linked by AMF. On a global scale AMF form the most widespread mycorrhizae, thus the ability of plants to cheat this symbiosis would be highly significant. We analysed mycorrhizae from three populations of Arachnitis uniflora (Corsiaceae, Monocotyledonae), five Voyria species and one Voyriella species (Gentianaceae, Dicotyledonae), and neighbouring green plants. Here we show that non-photosynthetic plants associate with AMF and can display the characteristic specificity of epiparasites. This suggests that AMF mediate significant inter-plant carbon transfer in nature

    Literacy practices of primary education children in Andalusia (Spain): a family-based perspective

    Get PDF
    Primary school children develop literacy practices in various domains and situations in everyday life. This study focused on the analysis of literacy practices of children aged 8–12 years from the perspec- tive of their families. 1,843 families participated in the non-experimental explanatory study. The children in these families speak Spanish as a first language and are schooled in this language. The instrument used was a self-report questionnaire about children’s home-literacy practices. The data obtained were analysed using categorical principal components analysis (CATPCA) and analysis of variance (ANOVA). The results show the complex relationship between literacy practices developed by children in the domains of home and school and the limited development of a literacy-promoting ‘third space’. In conclusion, the families in our study had limited awareness of their role as literacy- promoting agents and thought of literacy learning as restricted to formal or academic spaces

    Revealing natural relationships among arbuscular mycorrhizal fungi: culture line BEG47 represents Diversispora epigaea, not Glomus versiforme

    Get PDF
    Background: Understanding the mechanisms underlying biological phenomena, such as evolutionarily conservative trait inheritance, is predicated on knowledge of the natural relationships among organisms. However, despite their enormous ecological significance, many of the ubiquitous soil inhabiting and plant symbiotic arbuscular mycorrhizal fungi (AMF, phylum Glomeromycota) are incorrectly classified. Methodology/Principal Findings: Here, we focused on a frequently used model AMF registered as culture BEG47. This fungus is a descendent of the ex-type culture-lineage of Glomus epigaeum, which in 1983 was synonymised with Glomus versiforme. It has since then been used as ‘G. versiforme BEG47’. We show by morphological comparisons, based on type material, collected 1860–61, of G. versiforme and on type material and living ex-type cultures of G. epigaeum, that these two AMF species cannot be conspecific, and by molecular phylogenetics that BEG47 is a member of the genus Diversispora. Conclusions: This study highlights that experimental works published during the last >25 years on an AMF named ‘G. versiforme’ or ‘BEG47’ refer to D. epigaea, a species that is actually evolutionarily separated by hundreds of millions of years from all members of the genera in the Glomerales and thus from most other commonly used AMF ‘laboratory strains’. Detailed redescriptions substantiate the renaming of G. epigaeum (BEG47) as D. epigaea, positioning it systematically in the order Diversisporales, thus enabling an evolutionary understanding of genetical, physiological, and ecological traits, relative to those of other AMF. Diversispora epigaea is widely cultured as a laboratory strain of AMF, whereas G. versiforme appears not to have been cultured nor found in the field since its original description

    Darkness visible: reflections on underground ecology

    Get PDF
    1 Soil science and ecology have developed independently, making it difficult for ecologists to contribute to urgent current debates on the destruction of the global soil resource and its key role in the global carbon cycle. Soils are believed to be exceptionally biodiverse parts of ecosystems, a view confirmed by recent data from the UK Soil Biodiversity Programme at Sourhope, Scotland, where high diversity was a characteristic of small organisms, but not of larger ones. Explaining this difference requires knowledge that we currently lack about the basic biology and biogeography of micro-organisms. 2 It seems inherently plausible that the high levels of biological diversity in soil play some part in determining the ability of soils to undertake ecosystem-level processes, such as carbon and mineral cycling. However, we lack conceptual models to address this issue, and debate about the role of biodiversity in ecosystem processes has centred around the concept of functional redundancy, and has consequently been largely semantic. More precise construction of our experimental questions is needed to advance understanding. 3 These issues are well illustrated by the fungi that form arbuscular mycorrhizas, the Glomeromycota. This ancient symbiosis of plants and fungi is responsible for phosphate uptake in most land plants, and the phylum is generally held to be species-poor and non-specific, with most members readily colonizing any plant species. Molecular techniques have shown both those assumptions to be unsafe, raising questions about what factors have promoted diversification in these fungi. One source of this genetic diversity may be functional diversity. 4 Specificity of the mycorrhizal interaction between plants and fungi would have important ecosystem consequences. One example would be in the control of invasiveness in introduced plant species: surprisingly, naturalized plant species in Britain are disproportionately from mycorrhizal families, suggesting that these fungi may play a role in assisting invasion. 5 What emerges from an attempt to relate biodiversity and ecosystem processes in soil is our extraordinary ignorance about the organisms involved. There are fundamental questions that are now answerable with new techniques and sufficient will, such as how biodiverse are natural soils? Do microbes have biogeography? Are there rare or even endangered microbes

    Molecular diversity of arbuscular mycorrhizal fungi and patterns of host association over time and space in a tropical forest

    Get PDF
    We have used molecular techniques to investigate the diversity and distribution of the arbuscular mycorrhizal (AM) fungi colonizing tree seedling roots in the tropical forest on Barro Colorado Island (BCI), Republic of Panama. In the first year, we sampled newly emergent seedlings of the understory treelet Faramea occidentalis and the canopy emergent Tetragastris panamensis, from mixed seedling carpets at each of two sites. The following year we sampled surviving seedlings from these cohorts. The roots of 48 plants were analysed using AM fungal-specific primers to amplify and clone partial small subunit (SSU) ribosomal RNA gene sequences. Over 1300 clones were screened for random fragment length polymorphism (RFLP) variation and 7% of these were sequenced. Compared with AM fungal communities sampled from temperate habitats using the same method, the overall diversity was high, with a total of 30 AM fungal types identified. Seventeen of these types have not been recorded previously, with the remainder being similar to types reported from temperate habitats. The tropical mycorrhizal population showed significant spatial heterogeneity and nonrandom associations with the different hosts. Moreover there was a strong shift in the mycorrhizal communities over time. AM fungal types that were dominant in the newly germinated seedlings were almost entirely replaced by previously rare types in the surviving seedlings the following year. The high diversity and huge variation detected across time points, sites and hosts, implies that the AM fungal types are ecologically distinct and thus may have the potential to influence recruitment and host composition in tropical forests

    Structure, Photophysics and the Order-Disorder Transition to the Beta Phase in Poly(9,9-(di -n,n-octyl)fluorene)

    Full text link
    X-ray diffraction, UV-vis absorption and photoluminescence (PL) spectroscopy have been used to study the well-known order-disorder transition (ODT) to the beta phase in poly(9,9-(di n,n-octyl)fluorene)) (PF8) thin film samples through combination of time-dependent and temperature-dependent measurements. The ODT is well described by a simple Avrami picture of one-dimensional nucleation and growth but crystallization, on cooling, proceeds only after molecular-level conformational relaxation to the so called beta phase. Rapid thermal quenching is employed for PF8 studies of pure alpha phase samples while extended low-temperature annealing is used for improved beta phase formation. Low temperature PL studies reveal sharp Franck-Condon type emission bands and, in the beta phase, two distinguishable vibronic sub-bands with energies of approximately 199 and 158 meV at 25 K. This improved molecular level structural order leads to a more complete analysis of the higher-order vibronic bands. A net Huang-Rhys coupling parameter of just under 0.7 is typically observed but the relative contributions by the two distinguishable vibronic sub-bands exhibit an anomalous temperature dependence. The PL studies also identify strongly correlated behavior between the relative beta phase 0-0 PL peak position and peak width. This relationship is modeled under the assumption that emission represents excitons in thermodynamic equilibrium from states at the bottom of a quasi-one-dimensional exciton band. The crystalline phase, as observed in annealed thin-film samples, has scattering peaks which are incompatible with a simple hexagonal packing of the PF8 chains.Comment: Submitted to PRB, 12 files; 1 tex, 1 bbl, 10 eps figure

    Facilitating new forms of discourse for learning and teaching: harnessing the power of Web 2.0 practices

    Get PDF
    When asked what they would find most helpful to enable them to use technologies more in their teaching, most teachers say "give me examples, in my subject area" and "point me to relevant people I can discuss these issues with". Web 2.0 technologies - with their emphasis on sharing, networking and user production - seem to offer a potential solution. However uptake and use of web 2.0 sites such as blogs, social networking and wikis by teachers for sharing and discussing practice has being marginal so far. This paper focuses on work we are undertaking as part of the OU Learning Design Initiative (http://ouldi.open.ac.uk) and the Hewlett-funded Olnet initiative (http://olnet.org). A key focus of our work is the development of tools, methods and approaches to support the design of innovative learning activities and Open Educational Resources (OER). In this paper I want to focus on one strand of our work; namely how to leverage technologies to promote better sharing and discussing of learning and teaching ideas and designs
    corecore