3,298 research outputs found
Meson-Baryon s-wave Resonances with Strangeness -3
Starting from a consistent SU(6) extension of the Weinberg-Tomozawa (WT)
meson-baryon chiral Lagrangian (Phys. Rev. D74 (2006) 034025), we study the
s-wave meson-baryon resonances in the strangeness S=-3 and negative parity
sector. Those resonances are generated by solving the Bethe-Salpeter equation
with the WT interaction used as kernel. The considered mesons are those of the
35-SU(6)-plet, which includes the pseudoscalar (PS) octet of pions and the
vector (V) nonet of the rho meson. For baryons we consider the 56-SU(6)-plet,
made of the 1/2+ octet of the nucleon and the 3/2+ decuplet of the Delta.
Quantum numbers I(J^P)=0(3/2^-) are suggested for the experimental resonances
Omega*(2250)- and Omega*(2380)-. Among other, resonances with I=1 are found,
with minimal quark content sss\bar{l}l', being s the strange quark and l, l'
any of the the light up or down quarks. A clear signal for such a pentaquark
would be a baryonic resonance with strangeness -3 and electric charge of -2 or
0, in proton charge units. We suggest looking for K- Xi- resonances with masses
around 2100 and 2240 MeV in the sector 1(1/2^-), and for pi Omega- and K- Xi*-
resonances with masses around 2260 MeV in the sector 1(3/2^-).Comment: 3 pages, 1 Postscript figure, 7 table
Large Nc Weinberg-Tomozawa interaction and negative parity s--wave baryon resonances
It is shown that in the 70 and 700 SU(6) irreducible spaces, the SU(6)
extension of the Weinberg-Tomozawa (WT) s-wave meson-baryon interaction
incorporating vector mesons ({\it hep-ph/0505233}) scales as ,
instead of the well known behavior for its SU(3)
counterpart. However, the WT interaction behaves as order
within the 56 and 1134 meson-baryon spaces. Explicit expressions for the WT
couplings (eigenvalues) in the irreducible SU(2) spaces, for arbitrary
and , are given. This extended interaction is used as a kernel of
the Bethe-Salpeter equation, to study the large scaling of masses and
widths of the lowest--lying negative parity s-wave baryon resonances.
Analytical expressions are found in the limit, from which it
can be deduced that resonance widths and excitation energies behave
as order , in agreement with model independent arguments, and
moreover they fall in the 70-plet, as expected in constituent quark models for
an orbital excitation. For the 56 and 1134 spaces, excitation energies and
widths grow indicating that such resonances do not
survive in the large limit. The relation of this latter behavior
with the existence of exotic components in these resonances is discussed. The
interaction comes out repulsive in the 700.Comment: 21 pages, 3 figures, requires wick.sty and young.sty. Subsection
added. Conclusions revised. To appear in Physical Review
Non-localities and Fermi motion corrections in atoms
We evaluate the p-wave amplitudes from the chiral Lagrangians and from
there construct the p-wave part of the nucleus optical potential plus a
small s-wave part induced from the elementary p-wave amplitude and the nuclear
Fermi motion. Simultaneously, the momentum and energy dependence of the s-wave
optical potential, previously developed, are taken into account and shown to
generate a small p-wave correction to the optical potential. All the
corrections considered are small compared to the leading s-wave potential, and
lead to changes in the shifts and widths which are smaller than the
experimental errors.
A thorough study of the threshold region and low densities is conducted,
revealing mathematical problems for which a physical solution is given.Comment: revised version, 28 pages, Latex, 8 postscript figures. Submitted to
Nucl. Phys.
Resonances and the Weinberg--Tomozawa 56-baryon --35-meson interaction
Vector meson degrees of freedom are incorporated into the
Weinberg-Tomozawa (WT) meson-baryon chiral Lagrangian by using a scheme which
relies on spin--flavor SU(6) symmetry. The corresponding Bethe-Salpeter
approximation successfully reproduces previous SU(3)--flavor WT results for the
lowest-lying s--wave negative parity baryon resonances, and it also provides
some information on the dynamics of the heavier ones. Moreover, it also
predicts the existence of an isoscalar spin-parity bound
state (strangeness +1) with a mass around 1.7--1.8 GeV, unstable through
decay. Neglecting d-wave KN decays, this state turns out to be quite narrow
( MeV) and it might provide clear signals in reactions like
by looking at the three body
invariant mass.Comment: Talk given at the IVth International Conference on Quarks an Nuclear
Physics, Madrid, June 5th-10th 2006. Minor correction
Quark-mass dependence of baryon resonances
We study the quark-mass dependence of J^P = \frac12^- s-wave and J^P =
\frac32^- d-wave baryon resonances. Parameter-free results are obtained in
terms of the leading order chiral Lagrangian. In the 'heavy' SU(3) limit with
m_\pi =m_K \simeq 500 MeV the s-wave resonances turn into bound states forming
two octets plus a singlet representations of the SU(3) group. Similarly the
d-wave resonances turn into bound states forming an octet and a decuplet in
this limit. A contrasted result is obtained in the 'light' SU(3) limit with
m_\pi =m_K \simeq 140 MeV for which no resonances exist.Comment: 8 pages, three figures, talk presented at HYP200
Large Weinberg-Tomozawa interaction and spin-flavor symmetry
The construction of an extended version of the Weinberg-Tomozawa Lagrangian,
in which baryons and mesons form spin-flavor multiplets, is reviewed and some
of its properties discussed, for an arbitrary number of colors and flavors. The
coefficient tables of spin-flavor irreducible representations related by
crossing between the -, - and -channels are explicitly constructed.Comment: 3 pages, no figures. Presented at the IVth International Conference
on Quarks and Nuclear Physics, Madrid, June 5th-10th 200
Synthesis of Y1BaCu3O(x) superconducting powders by intermediate phase reactions
A procedure for synthesizing Y1Ba2Cu3O(x) by solid state reactions was developed. The method is based on the use of barium compounds, previously synthesized, as intermediate phases for the process. The reaction kinetics of this procedure were established between 860 C and 920 C. The crystal structure and the presence of second phases were studied by means of XRD. The sintering behavior and ceramic parameters were also determined. The orthorhombic type-I structure was obtained on the synthesized bodies after a cooling cycle in an air atmosphere. Superconducting transition took place at 91 K. Sintering densities higher than 95 percent D sub th were attained at temperatures below 940 C
Chiral Symmetry and s-wave Low-Lying Meson-Baryon Resonances
The wave meson-baryon scattering is analyzed for the isospin-strangeness
and sectors, in a Bethe-Salpeter coupled channel
formalism incorporating Chiral Symmetry. For both sectors, four channels have
been considered: , , , and ,
, , , respectively. The needed two particle
irreducible matrix amplitudes are taken from lowest order Chiral Perturbation
Theory in a relativistic formalism. There appear undetermined low energy
constants, as a consequence of the renormalization of the amplitudes, which are
obtained from fits to the available data: elastic phase-shifts, and cross sections and to
mass-spectrum, the elastic and
--matrices and to the
cross section data. The position and residues of the complex poles in the
second Riemann sheet of the scattering amplitude determine masses, widths and
branching ratios of the (1535) and (1650) and
(1405) and (1670) resonances, in reasonable agreement with
experiment. A good overall description of data, from threshold up to around 2
GeV is achieved despite the fact that three-body channels have not been
explicitly included.Comment: 5 Pages, 2 figures, invited contribution to Focus Session on Nature
of Threshold N*, to be published in Proceedings of Nstar 2002, Pittsburgh,
USA, October 9-12, 2002 (World Scientific
Strange and charm mesons at FAIR
We study the properties of strange and charm mesons in hot and dense matter
within a self-consistent coupled-channel approach for the experimental
conditions of density and temperature expected for the CBM experiment at
FAIR/GSI. The in-medium solution at finite temperature accounts for Pauli
blocking effects, mean-field binding of all the baryons involved, and meson
self-energies. We analyze the behaviour in this hot and dense environment of
dynamically-generated baryonic resonances together with the evolution with
density and temperature of the strange and open-charm meson spectral functions.
We test the spectral functions for strange mesons using energy-weighted sum
rules and finally discuss the implications of the properties of charm mesons on
the D_{s0}(2317) and the predicted X(3700) scalar resonances.Comment: 12 pages, 9 figures, invited talk at XXXI Mazurian Lakes Conference
on Physics: Nuclear Physics and the Road to FAIR, August 30-September 6,
2009, Piaski, Polan
- …
