15,703 research outputs found

    Temperature stability in the sub-milliHertz band with LISA Pathfinder

    Get PDF
    This article has been accepted for publication in "Monthly notices of the royal astronomical society" published by Oxford University Press.LISA Pathfinder (LPF) was a technology pioneering mission designed to test key technologies required for gravitational wave detection in space. In the low frequency regime (milliHertz and below), where space-based gravitational wave observatories will operate, temperature fluctuations play a crucial role since they can couple into the interferometric measurement and the test masses’ free-fall accuracy in many ways. A dedicated temperature measurement subsystem, with noise levels in 10¿µK¿Hz-1/2 down to 1¿mHz was part of the diagnostics unit onboard LPF. In this paper we report on the temperature measurements throughout mission operations, characterize the thermal environment, estimate transfer functions between different locations, and report temperature stability (and its time evolution) at frequencies as low as 10¿µHz, where typically values around 1¿K¿Hz-1/2 were measured.Peer ReviewedPreprin

    Characteristics and energy dependence of recurrent galactic cosmic-ray flux depressions and of a forbush decrease with LISA Pathfinder

    Get PDF
    The final publication is available at IOS Press through http://dx.doi.org/10.3847/1538-4357/aaa774Galactic cosmic-ray (GCR) energy spectra observed in the inner heliosphere are modulated by the solar activity, the solar polarity and structures of solar and interplanetary origin. A high counting rate particle detector (PD) aboard LISA Pathfinder, meant for subsystems diagnostics, was devoted to the measurement of GCR and solar energetic particle integral fluxes above 70 MeV n-1 up to 6500 counts s-1. PD data were gathered with a sampling time of 15 s. Characteristics and energy dependence of GCR flux recurrent depressions and of a Forbush decrease dated 2016 August 2 are reported here. The capability of interplanetary missions, carrying PDs for instrument performance purposes, in monitoring the passage of interplanetary coronal mass ejections is also discussed.Peer ReviewedPreprin

    LISA pathfinder micronewton cold gas thrusters: in-flight characterization

    Get PDF
    The LISA Pathfinder (LPF) mission has demonstrated the ability to limit and measure the fluctuations in acceleration between two free falling test masses down to sub-femto-g levels. One of the key elements to achieve such a level of residual acceleration is the drag free control. In this scheme the spacecraft is used as a shield against any external disturbances by adjusting its relative position to a reference test mass. The actuators used to move the spacecraft are cold gas micropropulsion thrusters. In this paper, we report in-flight characterization of these thrusters in term of noise and artefacts during science operations using all the metrology capabilities of LISA Pathfinder. Using the LISA Pathfinder test masses as an inertial reference frame, an average thruster noise of ~0.17¿¿µN/Hz is observed and decomposed into a common (coherent) and an uncorrelated component. The very low noise and stability of the onboard metrology system associated with the quietness of the space environment allowed the measurement of the thruster noise down to ~20¿¿µHz, more than an order of magnitude below any ground measurement. Spectral lines were observed around ~1.5¿¿mHz and its harmonics and around 55 and 70 mHz. They are associated with the cold gas system itself and possibly to a clock synchronization issue. The thruster noise-floor exhibits an excess of ~70% compared to characterization that have been made on ground on a single unit and without the feeding system. However this small excess has no impact on the LPF mission performance and is compatible with the noise budget for the upcoming LISA gravitational wave observatory. Over the whole mission, nominal, and extension, the thrusters showed remarkable stability for both the science operations and the different maneuvers necessary to maintain LPF on its orbit around L1. It is therefore concluded that a similar cold gas system would be a viable propulsion system for the future LISA mission.Peer ReviewedPostprint (author's final draft

    Noise characterization of an atomic magnetometer at sub-millihertz frequencies

    Get PDF
    Noise measurements have been carried out in the LISA bandwidth (0.1 mHz to 100 mHz) to characterize an all-optical atomic magnetometer based on nonlinear magneto-optical rotation. This was done in order to assess if the technology can be used for space missions with demanding low-frequency requirements like the LISA concept. Magnetometry for low-frequency applications is usually limited by 1/f1/f noise and thermal drifts, which become the dominant contributions at sub-millihertz frequencies. Magnetic field measurements with atomic magnetometers are not immune to low-frequency fluctuations and significant excess noise may arise due to external elements, such as temperature fluctuations or intrinsic noise in the electronics. In addition, low-frequency drifts in the applied magnetic field have been identified in order to distinguish their noise contribution from that of the sensor. We have found the technology suitable for LISA in terms of sensitivity, although further work must be done to characterize the low-frequency noise in a miniaturized setup suitable for space missions.Comment: 11 pages, 12 figure

    Novel methods to measure the gravitational constant in space

    Get PDF
    We present two novel methods, tested by LISA Pathfinder, to measure the gravitational constant G for the first time in space. Experiment 1 uses electrostatic suspension forces to measure a change in acceleration of a test mass due to a displaced source mass. Experiment 2 measures a change in relative acceleration between two test masses due to a slowly varying fuel tank mass. Experiment 1 gave a value of G=6.71±0.42(×10-11)¿¿m3¿s-2¿kg-1 and experiment 2 gave 6.15±0.35(×10-11)¿¿m3¿s-2¿kg-1, both consistent with each other to 1s and with the CODATA 2014 recommended value of 6.67408±0.00031(×10-11)¿¿m3¿s-2¿kg-1 to 2s. We outline several ideas to improve the results for a future experiment, and we suggest that a measurement in space would isolate many terrestrial issues that could be responsible for the inconsistencies between recent measurements.Peer ReviewedPostprint (published version

    Thermal diagnostic of the Optical Window on board LISA Pathfinder

    Full text link
    Vacuum conditions inside the LTP Gravitational Reference Sensor must comply with rather demanding requirements. The Optical Window (OW) is an interface which seals the vacuum enclosure and, at the same time, lets the laser beam go through for interferometric Metrology with the test masses. The OW is a plane-parallel plate clamped in a Titanium flange, and is considerably sensitive to thermal and stress fluctuations. It is critical for the required precision measurements, hence its temperature will be carefully monitored in flight. This paper reports on the results of a series of OW characterisation laboratory runs, intended to study its response to selected thermal signals, as well as their fit to numerical models, and the meaning of the latter. We find that a single pole ARMA transfer function provides a consistent approximation to the OW response to thermal excitations, and derive a relationship with the physical processes taking place in the OW. We also show how system noise reduction can be accomplished by means of that transfer function.Comment: 20 pages, 14 figures; accepted for publication in Class. Quantum Gra

    Precision charge control for isolated free-falling test masses: LISA pathfinder results

    Get PDF
    The LISA Pathfinder charge management device was responsible for neutralizing the cosmic-ray-induced electric charge that inevitably accumulated on the free-falling test masses at the heart of the experiment. We present measurements made on ground and in flight that quantify the performance of this contactless discharge system which was based on photoemission under UV illumination. In addition, a two-part simulation is described that was developed alongside the hardware. Modeling of the absorbed UV light within the Pathfinder sensor was carried out with the Geant4 software toolkit and a separate Matlab charge transfer model calculated the net photocurrent between the test masses and surrounding housing in the presence of AC and DC electric fields. We confront the results of these models with observations and draw conclusions for the design of discharge systems for future experiments like LISA that will also employ free-falling test masses.Peer ReviewedPostprint (author's final draft

    Charge-induced force noise on free-falling test masses: results from LISA pathfinder

    Get PDF
    We report on electrostatic measurements made on board the European Space Agency mission LISA Pathfinder. Detailed measurements of the charge-induced electrostatic forces exerted on free-falling test masses (TMs) inside the capacitive gravitational reference sensor are the first made in a relevant environment for a space-based gravitational wave detector. Employing a combination of charge control and electric-field compensation, we show that the level of charge-induced acceleration noise on a single TM can be maintained at a level close to 1.0¿¿fm¿s-2¿Hz-1/2 across the 0.1–100 mHz frequency band that is crucial to an observatory such as the Laser Interferometer Space Antenna (LISA). Using dedicated measurements that detect these effects in the differential acceleration between the two test masses, we resolve the stochastic nature of the TM charge buildup due to interplanetary cosmic rays and the TM charge-to-force coupling through stray electric fields in the sensor. All our measurements are in good agreement with predictions based on a relatively simple electrostatic model of the LISA Pathfinder instrument.Peer ReviewedPostprint (published version

    Hepatite C em toxicodependentes: acompanhamento e acesso à terapêutica

    Get PDF
    A hepatite C constitui, actualmente, um grave problema de saúde pública. Estima-se que existam, em todo o mundo, 180 milhões de pessoas com infecção crónica por vírus da hepatite C (VHC) e que a sua prevalência na população portuguesa varie entre 1 e 1,5%. Em Portugal, não existem normas de orientação actualizadas de tratamento, nem recomendações para o diagnóstico e acompanhamento dos doentes com VHC e, em particular, para os UDEVs. O presente artigo reúne informação de consenso relativa à de prática clínica e propõe algumas orientações para o acompanhamento e acessibilidade ao tratamento dos doentes toxicodependentes com infecção crónica por VHC, em Portugal

    LISA and LISA PathFinder, the endeavour to detect low frequency GWs

    Full text link
    This is a review about LISA and its technology demonstrator, LISA PathFinder. We first describe the conceptual problems which need to be overcome in order to set up a working interferometric detector of low frequency Gravitational Waves (GW), then summarise the solutions to them as currently conceived by the LISA mission team. This will show that some of these solutions require new technological abilities which are still under development, and which need proper test before being fully implemented. LISA PathFinder (LPF) is the the testbed for such technologies. The final part of the paper will address the ideas and concepts behind the PathFinder as well as their impact on LISA.Comment: 25 pages, 21 figures, presented at the Spanish Relativity Meeting, Mallorca September 2006. Will be published in Journal of Physics: Conference Series, IOP. To be published in Journal of Physics: Conference Series, IO
    corecore