198 research outputs found

    The role of oxygen vacancies on the structure and the density of states of iron doped zirconia

    Full text link
    In this paper we study, both with theoretical and experimental approach, the effect of iron doping in zirconia. Combining density functional theory (DFT) simulations with the experimental characterization of thin films, we show that iron is in the Fe3+ oxidation state and accordingly that the films are rich in oxygen vacancies (VO). VO favor the formation of the tetragonal phase in doped zirconia (ZrO2:Fe) and affect the density of state at the Fermi level as well as the local magnetization of Fe atoms. We also show that the Fe(2p) and Fe(3p) energy levels can be used as a marker for the presence of vacancies in the doped system. In particular the computed position of the Fe(3p) peak is strongly sensitive to the VO to Fe atoms ratio. A comparison of the theoretical and experimental Fe(3p) peak position suggests that in our films this ratio is close to 0.5. Besides the interest in the material by itself, ZrO2:Fe constitutes a test case for the application of DFT on transition metals embedded in oxides. In ZrO2:Fe the inclusion of the Hubbard U correction significantly changes the electronic properties of the system. However the inclusion of this correction, at least for the value U = 3.3 eV chosen in the present work, worsen the agreement with the measured photo-emission valence band spectra.Comment: 24 pages, 8 figure

    High-latitude E Region Ionosphere-thermosphere Coupling: A Comparative Study Using in Situ and Incoherent Scatter Radar Observations

    Get PDF
    We present in situ and ground-based measurements of the ratio k of ion cyclotronangular frequency to ion-neutral momentum transfer collision frequency to investigateionosphere-thermosphere (IT) coupling in the auroral E region. In situ observations were obtained by NASA sounding rocket 36.234, which was launched into the nightsideE region ionosphere at 1229 UT on 19 January 2007 from Poker Flat, AK. The payload carried instrumentation to determine ion drift angle and electric field vectors. Neutral winds were measured by triangulating a chemical tracer released from rocket 41.064 launched two minutes later. k is calculated from the rotation of the ion drift angle relative to the E-cross-B drift direction in a frame co-rotating with the payload. Between the altitudes of 118 km and 130 km k increases exponentially with a scale height of 9.3 +/- 0.7 km, deviating from an exponential above 130 km. k = 1 at an altitude z(sub0) of 119.9 +/- 0.5 km. The ratio was also estimated from Poker Flat Incoherent Scatter Radar (PFISR) measurements using the rotation of ion velocity with altitude. Exponential fits to the PFISR measurements made during the flight of 41.064 yield z(sub0) 115.9 +/- 1.2 km and a scale height of 9.1 +/- 1.0 km. Differences between in situ and ground-based measurements show that the E region atmospheric densities were structured vertically and/or horizontally on scales of 1 km to 10 km. There were no signs of ionospheric structure in ion density or ion temperature below scales of 1 km. The observations demonstrate the accuracy with which the in situ and PFISR data may be used as probes of IT coupling

    Anomalous Aharonov--Bohm gap oscillations in carbon nanotubes

    Full text link
    The gap oscillations caused by a magnetic flux penetrating a carbon nanotube represent one of the most spectacular observation of the Aharonov-Bohm effect at the nano--scale. Our understanding of this effect is, however, based on the assumption that the electrons are strictly confined on the tube surface, on trajectories that are not modified by curvature effects. Using an ab-initio approach based on Density Functional Theory we show that this assumption fails at the nano-scale inducing important corrections to the physics of the Aharonov-Bohm effect. Curvature effects and electronic density spilled out of the nanotube surface are shown to break the periodicity of the gap oscillations. We predict the key phenomenological features of this anomalous Aharonov-Bohm effect in semi-conductive and metallic tubes and the existence of a large metallic phase in the low flux regime of Multi-walled nanotubes, also suggesting possible experiments to validate our results.Comment: 7 figure

    The Energetics of Li Off-Centering in K1x_{1-x}Lix_xTaO3_3; First Principles Calculations

    Full text link
    K1x_{1-x}Lix_{x}TaO3_3 (KLT) solid solutions exhibit a variety of interesting physical phenomena related to large displacements of Li-ions from ideal perovskite A-site positions. First-principles calculations for KLT supercells were used to investigate these phenomena. Lattice dynamics calculations for KLT exhibit a Li off-centering instability. The energetics of Li-displacements for isolated Li-ions and for Li-Li pairs up to 4th neighbors were calculated. Interactions between nearest neighbor Li-ions, in a Li-Li pair, strongly favor ferroelectric alignment along the pair axis. Such Li-Li pairs can be considered "seeds" for polar nanoclusters in KLT. Electrostriction, local oxygen relaxation, coupling to the KT soft-mode, and interactions with neighboring Li-ions all enhance the polarization from Li off-centering. Calculated hopping barriers for isolated Li-ions and for nearest neighbor Li-Li pairs are in good agreement with Arrhenius fits to experimental dielectric data.Comment: 14 pages including 10 figures. To Physical Review B. Replaced after corrections due to referees' remark

    Ispitivanje kompatibilnosti nateglinida s pomoćnim tvarima u razvoju tableta nateglinida za trenutno oslobađanje

    Get PDF
    Experiments were done to assess the compatibility of nateglinide with selected excipients in the development of immediate release tablets of nateglinide by thermal and isothermal stress testing (IST) techniques. To evaluate the drug-excipient compatibility, different techniques such as differential scanning calorimetric (DSC) study, infra-red (IR) spectrophotometric study and isothermal stress testing were adopted. The results of DSC study showed that magnesium stearate exhibited some interaction with nateglinide. However, the results of IR, and IST studies showed that all the excipients used in the formula were compatible with nateglinide. Optimized formulations developed using the compatible excipients were found to be stable over 3 months of accelerated stability studies (40 ± 2 C and 75 ± 5 % RH). Overall, compatibility of excipients with nateglinide was successfully evaluated using a combination of thermal and IST methods and the formulations developed using the compatible excipients were found to be stable.Koristeći termičke metode kao što su diferencijalna pretražna kalorimetrija (DSC) i infra-crvena spektrofotometrija (IR), te izotermička stres-testiranja (IST) ispitana je kompatibilnost nateglinida s izabranim ekscipiensima u razvoju tableta nateglinida za trenutno oslobađanje. Rezultati DSC ispitivanja pokazala su da magnezijev stearat stupa u određenu interakciju s nateglinidom. Međutim, IR i IST ispitivanja pokazuju da su svi upotrijebljeni ekscipiensi kompatibilni s nateglinidom. Optimirana formulacija bila je stabilna preko 3 mjeseca u testovima ubrzanog starenja (40 ± 2 C i 75 ± 5 % RH). Kompatibilnost ekscipiensa s nateglinidom uspješno je evaluirana koristeći kombinaciju termičke i IST metode, a formulacije razvijene koristeći kompatibilne ekscipiense bile su stabilne

    Regulator of G-protein signaling 5 (RGS5) protein: a novel marker of cancer vasculature elicited and sustained by the tumor’s proangiogenic microenvironment

    Get PDF
    We previously identified regulator of G-protein signaling 5 (RGS5) among several genes expressed by tumor-derived endothelial cells (EC). In this study, we provide the first in vivo/ex vivo evidence of RGS5 protein in the vasculature of ovarian carcinoma clinical specimens and its absence in human ovaries. Consistent with this, we show higher amounts of Rgs5 transcript in EC isolated from human cancers (as opposed to normal tissues) and demonstrate that expression is sustained by a milieu of factors typical of the proangiogenic tumor environment, including vascular endothelial growth factor (VEGF) and basic fibroblast growth factor (FGF-2). Supporting these findings, we show elevated levels of Rgs5 mRNA in the stroma from strongly (as opposed to weakly) angiogenic ovarian carcinoma xenografts and accordingly, we also show more of the protein associated to the abnormal vasculature. RGS5 protein predominantly colocalizes with the endothelium expressing platelet/endothelial cell adhesion molecule-1 (PECAM-1/CD31) and to a much lesser extent with perivascular/mural cells expressing platelet-derived growth factor receptor-beta (PDGFR-β) or alpha smooth muscle actin (αSMA). To toughen the relevance of the findings, we demonstrate RGS5 in the blood vessels of other cancer models endowed with a proangiogenic environment, such as human melanoma and renal carcinoma xenografts; to the contrary, it was undetectable in the vasculature of normal mouse tissues. RGS5 expression by the cancer vasculature triggered and retained by the proangiogenic microenvironment supports its exploitation as a novel biomarker and opens the path to explore new possibilities of therapeutic intervention aimed at targeting tumor blood vessels

    Trabectedin and RAdiotherapy in Soft Tissue Sarcoma (TRASTS): Results of a Phase I Study in Myxoid Liposarcoma from Spanish (GEIS), Italian (ISG), French (FSG) Sarcoma Groups

    Get PDF
    Background: Myxoid liposarcoma (ML) exhibits a special sensitivity to trabectedin (T) and radiation therapy (RT). Preclinical data suggest a synergistic effect. We aimed to study safety, feasibility and activity of the administration of pre-operative concurrent T and RT in patients affected by localized resectable ML. Methods: Patients received 3 cycles (C) of T in combination with RT (45 Gy) in 25 fractions (1.8 Gy/fraction). Dose Levels for T were: 12 1 (1.1 mg/m2), 0 (1.3 mg/m2) and 1 (1.5 mg/m2). Primary endpoint was safety; antitumor activity was assessed by RECIST and Choi criteria. This study is registered at ClinicalTrials.gov, number NCT02275286. The phase 1 part of the study is complete and phase 2 is ongoing. Findings: From February 2015 to May 2016, 14 patients (M/F 7/7), median age 36 years (range 24\u201370) and median tumor size 12.5 cm (range 7\u201317 cm), were enrolled. One dose limiting toxicity (G3 transaminitis) occurred at Level 0 and one (sepsis due to catheter infection) at Level 1. All patients completed RT. Five patients achieved PR (36%), 8 SD (57%), 1 distant PD (7%) by RECIST, while 12 achieved PR (86%), 1 SD (7%) and 1 distant PD (7%) by Choi criteria. Twelve patients underwent surgery. Median viable residual tumor was 5% (0\u201360). Interpretation: T in combination with RT showed a favorable safety profile and antitumor activity in localized ML. T dose of 1.5 mg/m2 is the recommended dose for the phase 2 study, which is ongoing. Funding: This study was partially supported by Pharmamar

    Recent Advancements in the LC- and GC-Based Analysis of Malondialdehyde (MDA): A Brief Overview

    Get PDF
    Malondialdehyde (MDA) is an end-product of lipid peroxidation and a side product of thromboxane A2 synthesis. Moreover, it is not only a frequently measured biomarker of oxidative stress, but its high reactivity and toxicity underline the fact that this molecule is more than “just” a biomarker. Additionally, MDA was proven to be a mutagenic substance. Having said this, it is evident that there is a major interest in the highly selective and sensitive analysis of this molecule in various matrices. In this review, we will provide a brief overview of the most recent developments and techniques for the liquid chromatography (LC) and gas chromatography (GC)-based analysis of MDA in different matrices. While the 2-thiobarbituric acid assay still is the most prominent methodology for determining MDA, several advanced techniques have evolved, including GC–MS(MS), LC–MS(MS) as well as several derivatization-based strategies

    Carbon nanotubes as excitonic insulators

    Get PDF
    Fifty years ago Walter Kohn speculated that a zero-gap semiconductor might be unstable against the spontaneous generation of excitons-electron-hole pairs bound together by Coulomb attraction. The reconstructed ground state would then open a gap breaking the symmetry of the underlying lattice, a genuine consequence of electronic correlations. Here we show that this excitonic insulator is realized in zero-gap carbon nanotubes by performing first-principles calculations through many-body perturbation theory as well as quantum Monte Carlo. The excitonic order modulates the charge between the two carbon sublattices opening an experimentally observable gap, which scales as the inverse of the tube radius and weakly depends on the axial magnetic field. Our findings call into question the Luttinger liquid paradigm for nanotubes and provide tests to experimentally discriminate between excitonic and Mott insulators
    corecore