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Carbon nanotubes as excitonic insulators
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Elisa Molinari1,4 & Massimo Rontani 1

Fifty years ago Walter Kohn speculated that a zero-gap semiconductor might be unstable

against the spontaneous generation of excitons–electron–hole pairs bound together by

Coulomb attraction. The reconstructed ground state would then open a gap breaking the

symmetry of the underlying lattice, a genuine consequence of electronic correlations. Here

we show that this excitonic insulator is realized in zero-gap carbon nanotubes by performing

first-principles calculations through many-body perturbation theory as well as quantum

Monte Carlo. The excitonic order modulates the charge between the two carbon sublattices

opening an experimentally observable gap, which scales as the inverse of the tube radius and

weakly depends on the axial magnetic field. Our findings call into question the Luttinger liquid

paradigm for nanotubes and provide tests to experimentally discriminate between excitonic

and Mott insulators.
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Long ago Walter Kohn speculated that gray tin—a zero-gap
semiconductor—could be unstable against the tendency of
mutually attracting electrons and holes to form bound pairs,

the excitons1. Being neutral bosoniclike particles, the excitons
would spontaneously occupy the same macroscopic wave func-
tion, resulting in a reconstructed insulating ground state with a
broken symmetry inherited from the exciton character2–5. This
excitonic insulator (EI) would share intriguing similarities with
the Bardeen–Cooper–Schrieffer (BCS) superconductor ground
state4,6–11, the excitons—akin to Cooper pairs—forming only
below a critical temperature and collectively enforcing a quasi-
particle gap. The EI was intensively sought after in systems as
diverse as mixed-valence semiconductors and semimetals12,13,
transition metal chalcogenides14,15, photoexcited semiconductors
at quasi equilibrium16,17, unconventional ferroelectrics18, and,
noticeably, semiconductor bilayers in the presence of a strong
magnetic field that quenches the kinetic energy of electrons19,20.
Other candidates include electron–hole bilayers21,22,
graphene23–26, and related two-dimensional structures27–33,
where the underscreened Coulomb interactions might reach the
critical coupling strength stabilizing the EI. Overall, the obser-
vation of the EI remains elusive.

Carbon nanotubes, which are rolled cylinders of graphene
whose low-energy electrons are massless particles34,35, exhibit
strong excitonic effects, due to ineffective dielectric screening and
enhanced interactions resulting from one dimensionality36–39. As
single tubes can be suspended to suppress the effects of disorder
and screening by the nearby substrate or gates40–42, the field lines
of Coulomb attraction between electron and hole mainly lie
unscreened in the vacuum (Fig. 1a). Consequently, the interaction
is truly long ranged and in principle—even for zero gap—able of
binding electron–hole pairs close to the Dirac point in momen-
tum space (Fig. 1b). If the binding energy is finite, then the
ground state is unstable against the spontaneous generation of
excitons having negative excitation energy, εu< 0. This is the
analog of the Cooper instability that heralds the transition to the
superconducting state—the excitons replacing the Cooper pairs.

Here we focus on the armchair family of zero-gap carbon
nanotubes, because symmetry prevents their gap from opening as
an effect of curvature or bending43. In this paper we show that
armchair tubes are predicted to be EIs by first-principles calcu-
lations. The problem is challenging, because the key quantities
controlling this phenomenon—energy band differences and
exciton binding energies—involve many-body corrections beyond
density functional theory (DFT) that are of the order of a few
meV, which is close to the limits of currently available methods.
In turn, such weak exciton binding reflects in the extreme spatial
extension of the exciton wave function, hence its localization in
reciprocal space requires very high sampling accuracy. To address
these problems, we perform state-of-the-art many-body pertur-
bation theory calculations within the GW and Bethe–Salpeter
schemes44. We find that bound excitons exist in the (3,3) tube
with finite negative excitation energies. We then perform
unbiased quantum Monte Carlo simulations45 to prove that the
reconstructed ground state is the EI, its signature being the
broken symmetry between inequivalent carbon sublattices—
reminescent of the exciton polarization. Finally, to investigate the
trend with the size of the system, which is not yet in reach of first-
principles calculations, we introduce an effective-mass model,
which shows that both EI gap and critical temperature fall in the
meV range and scale with the inverse of the tube radius. Our
findings are in contrast with the widespread belief that electrons
in undoped armchair tubes form a Mott insulator—a strongly
correlated Luttinger liquid46–52. We discuss the physical origin of
this conclusion and propose independent experimental tests to
discriminate between excitonic and Mott insulator.

Results
Exciton binding and instability. For the sake of computational
convenience we focus on the smallest (3,3) armchair tube, which
was investigated several times from first principles53–60. We first
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Fig. 1 Excitonic instability in carbon nanotubes. a Sketch of a suspended
armchair carbon nanotube. The field lines of the Coulomb force between
electron and hole lie mainly in the vacuum, hence screening is heavily
suppressed. b Excitonic instability in the armchair carbon nanotube. The
scheme represents the excitation energy εu of an electron–hole (e–h) pair
relative to the noninteracting ground state, a zero-gap semiconductor. In
the absence of interaction, the excitation energy εu of an e–h pair is positive.
The long-range interaction may bind e–h pairs close to the Dirac point in
momentum space. If an exciton forms, then its excitation energy εu is
negative. This instability leads to the reconstruction of the ground state into
an excitonic insulator
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check whether the structural optimization of the tube might lead
to deviations from the ideal cylindrical shape, affecting the elec-
tronic states. Full geometry relaxation (Methods) yields an
equilibrium structure with negligible corrugation. Thus, contrary
to a previous claim60, corrugation cannot be responsible of gap
opening. We find that the average length of C–C bonds along the
tube axis, 1.431 Å, is shorter than around the circumference,
1.438 Å, in agreement with the literature53.

We use DFT to compute the band structure (solid lines in
Fig. 2a), which provides the expected43 zero gap at the Dirac
point K. In addition, we adopt the G0W0 approximation for the
self-energy operator44 to evaluate many-body corrections to
Kohn–Sham eigenvalues. The highest valence and lowest
conduction bands are shown as dashed lines. The zoom near K
(Fig. 2b) shows that electrons remain massless, with their bands
stretched by ~28% with respect to DFT (farther from K the
stretching is ~13%, as found previously56). Since electrons and
holes in these bands have linear dispersion, they cannot form a
conventional Wannier exciton, whose binding energy is propor-
tional to the effective mass. However, the screened e–h Coulomb
interaction V(z) along the tube axis, projected onto the same
bands, has long range (Fig. 2c)—a remarkable effect of the
topology of the tube holding even for vanishing gap. Conse-
quently, V(q) exhibits a singularity in reciprocal space
at q= 0 (smoothed by numerical discretization in the inset
of Fig. 2c), which eventually binds the exciton. We solve
the Bethe–Salpeter equation (BSE) over an ultradense grid
of 1800 k-points, which is computationally very demanding
but essential for convergence. We find several excitons with
negative excitation energies εu, in the range of 1–10 meV
(Table 1).

The exciton spectral weight is concentrated in a tiny
neighborhood of K and K′ points in reciprocal space (Fig. 3b),
hence the excitons are extremely shallow, spread over microns
along the axis (Fig. 3c). Only e–h pairs with negative k in valley K
and positive k in valley K′ contribute to the exciton wave
function, which is overall symmetric under time reversal but not

under axis reflection within one valley, k → −k, as shown in
Fig. 3b (the axis origin is at Dirac point). On the contrary, the
wave functions of excitons reported so far in nanotubes36,37,56 are
symmetric in k-space. The reason of this unusual behavior
originates from the vanishing energy gap, since then e–h pairs
cannot be backscattered by Coulomb interaction due to the
orthogonality of initial and final states61. In addition, pair
energies are not degenerate for k → −k, as Dirac cones are slightly
asymmetric (Supplementary Discussion and Supplementary
Fig. 10).

The exciton with the lowest negative εu makes the system
unstable against the EI. The transition density,
ϱtrðrÞ ¼ u ϱ̂ðrÞj j0h i, hints at the broken symmetry of the
reconstructed ground state, as it connects the noninteracting
ground state, 0j i, to the exciton state, uj i, through the charge
fluctuation operator ϱ̂ (Fig. 3d). Here we focus on the simpler
charge order (spin singlet excitons) and neglect magnetic
phenomena (spin triplet), as the only relevant effect of spin–orbit
coupling in real tubes62,63 is to effectively mix both symmetries.
Figure 3d may be regarded as a snapshot of the polarization
charge oscillation induced by the exciton, breaking the inversion
symmetry between carbon sublattices A and B. Note that
this originates from the opposite symmetries of 0j i and uj i
under A ↔ B inversion and not from the vanishing gap. This
charge displacement between sublattices is the generic signature
of the EI, as its ground state may be regarded as a BCS-like
condensate of excitons uj i (see the formal demonstration in
Supplementary Note 5).

Broken symmetry of the EI. We use quantum Monte Carlo to
verify the excitonic nature of the many-body ground state, by
defining an order parameter characteristic of the EI, ϱAB. In
addition, we introduce an alternative order parameter, ϱTransl,
peculiar to a dimerized charge density wave (CDW) similar to the
Peierls CDW predicted by some authors57–59 for the smallest
armchair tubes. The EI order parameter measures the uniform
charge displacement between A and B sublattices,
ϱAB ¼ P

i2A ni �
P

i2B ni
� �

=Natom, whereas ϱTransl detects any
deviation from the periodicity of the undistorted structure by
evaluating the charge displacement between adjacent cells,
ϱTransl ¼

P
i nið�1Þiz=Natom (Fig. 4b–e). Here the undistorted

structure is made of a unit cell of 12 C atoms repeated along the z
direction with a period of 2.445 Å and labeled by the integer iz, ni
is the operator counting the electrons within a sphere of radius
1.3 a.u. around the ith atom, and Natom is the total number of
atoms in the cluster. Both order parameters ϱAB and ϱTransl vanish
in the symmetric ground state of the undistorted structure, which
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Fig. 2 Electronic properties from many-body perturbation theory. a GW (dashed lines) and DFT (solid lines) band structure of the armchair carbon
nanotube (3, 3). b Zoom close to the Dirac point K. The momentum q is referenced from K. c Long-range part of electron–hole interaction V(z) along the
tube axis according to: DFT (solid line), effective-mass model (dashed line). Inset: interaction V(q) in momentum space. V is integrated over the mesh of
the q grid and projected onto the conduction and valence bands shown in panel b, with |q| < 0.09(2π)/a. The graphene lattice constant is a=2.46 Å

Table 1 Excitation energies εu of low-lying excitons of the (3,
3) tube obtained from first-principles many-body
perturbation theory in units of meV

Triplet Singlet

Lowest −7.91 −6.10
1st excited −6.40 −5.10
2st excited 6.65 8.82
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is invariant under sublattice-swapping inversion and translation
symmetries.

We then perform variational Monte Carlo (VMC), using a
correlated Jastrow–Slater ansatz that has proved64 to work well in
1D correlated systems (Methods), as well as it is able to recover
the excitonic correlations present in the mean-field EI wave
function2–5 (Supplementary Discussion). We plot VMC order
parameters in Fig. 4a. Spontaneously broken symmetry occurs in
the thermodynamic limit if the square order parameter, either
ϱ2AB or ϱ2Transl, scales as 1/Natom and has a non vanishing limit
value for Natom →∞. This occurs for ϱ2AB (black circles in Fig. 4a),

confirming the prediction of the EI, whereas ϱ2Transl vanishes (red
squares), ruling out the CDW instability (see Supplementary
Discussion as well as the theoretical literature52,57–59 for the
Peierls CDW case). We attribute the simultaneous breaking of
sublattice symmetry and protection of pristine translation
symmetry to the effect of long-range interaction.

The vanishing of ϱTransl validates the ability of our finite-size
scaling analysis to discriminate between kinds of order in
the bulk. Though the value of ϱAB after extrapolation is small,
ϱAB= 0.0165± 0.0007, it is non zero within more than twenty
standard deviations. Besides, the quality of the fit of Fig. 4a
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appears good, because the data for the five largest clusters are
compatible with the linear extrapolations of both ϱ2AB and ϱ2Transl
within an acceptable statistical error. The more accurate diffusion
Monte Carlo (LRDMC) values (obtained with the lattice
regularization), shown in Fig. 4a as blue circles, confirm the
accuracy of the variational calculation. However, as their cost is
on the verge of present supercomputing capabilities, we were
unable to treat clusters larger that Natom=48, hence the statistical
errors are too large to support a meaningful non-zero value in the
thermodynamic limit. Nevertheless, we obtain a non zero
LRDMC value smaller than the one estimated by VMC but
compatible with it within a few standard deviations.

Trends. As the extension of our analysis to systems larger than
the (3,3) tube is beyond reach, we design an effective-mass theory
to draw conclusions about trends in the armchair tube family, in
agreement with first-principles findings. We solve the minimal
BSE for the massless energy bands ε(k)=±γ |k| (Fig. 2b and
Supplementary Note 1) and the long-range Coulomb interaction
V(q), the latter diverging logarithmically in one dimension for
small momentum transfer q, V(q)=(2e2/Aκr)ln(|q|R) (inset of
Fig. 2c and Supplementary Note 2). Here γ is graphene tight-
binding parameter including GW self-energy corrections, k is the
wave vector along the axis, A is the tube length, R is the radius,

and κr accounts for screening beyond the effective-mass
approximation. By fitting the parameters γ=0.5449 eV nm and
κr=10 to our first-principles data, we obtain a numerical solution
of BSE recovering ∼60% of the lowest exciton energy εu reported
in Table 1 (Supplementary Note 3). Moreover, the wave function
agrees with the one obtained from first principles (Fig. 3b, c).
Importantly, εu smoothly converges in an energy range that—for
screened interaction—is significantly smaller than the extension
of the Dirac cone, with no need of ultraviolet cutoff (Supple-
mentary Fig. 9). Therefore, the exciton has an intrinsic length
(binding energy), which scales like R (1/R).

We adopt a mean-field theory of the EI as we expect the long-
range character of excitonic correlations to mitigate the effects of
quantum fluctuations. The EI wave function can be described as

ΨEIj i ¼
Y
σσ0τk

uτk þ χσσ0vτke
iηĉτþk;σ v̂

τ
k;σ0

h i
0j i: ð1Þ

Here 0j i is the zero-gap ground state with all valence states

filled and conduction states empty, the operator ĉτþk;σ v̂τþk;σ
� �

creates an electron in the conduction (valence) band with wave
vector k, spin σ, valley τ=K or K′, η is an arbitrary phase, and the
2 × 2 matrix χσσ′ discriminates between singlet and triplet spin
symmetries of the e–h pair ĉτþk;σ v̂

τ
k;σ0 0j i (Fig. 1b). The positive
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variational quantities uτk and vτk are the population amplitudes of
valence and conduction levels, respectively, with u2τk þ v2τk ¼ 1.
Whereas in the zero-gap state uτk= 1 and vτk= 0, in the EI state
both uτk and vτk are finite and ruled by the EI order parameter
Δ(τk), according to uτkvτk ¼ ΔðτkÞj j=2EðτkÞ, with

EðτkÞ ¼ εðτkÞ2 þ ΔðτkÞj j2� �1=2
. The parameter Δ(τk) obeys the

self-consistent equation

ΔðτkÞj j ¼
X
τ0q

Vττ0 k; kþ qð Þuτ0kþqvτ0kþq; ð2Þ

which is solved numerically by recursive iteration (here V
includes both long- and short-range interactions as well as form
factors, see Supplementary Note 4). As shown in Fig. 5a, in each
valley ΔðτkÞj j is asymmetric around the Dirac point, a
consequence of the peculiar character of the exciton wave
function of Fig. 3b. The electrons or holes added to the neutral
ground state are gapped quasiparticle excitations of the EI, whose
energy bands ± E(τk) are shown in Fig. 5b. The order parameter
at the Dirac point, Δðτ; k ¼ 0Þj j, is half the many-body gap. This
gap is reminescent of the exciton binding energy, since in the
ground state all electrons and holes are bound, so one needs to
ionize an exciton-like collective state to create a free electron–hole
pair. The gap strongly depends on temperature, with a low-
temperature plateau, a steep descent approaching the critical
temperature, and a milder tail (Fig. 5c). The gap approximately
scales as 1/R for different tubes (circles in Fig. 5d): whereas at
large R such scaling is exact (cf. dashed curve), at small R the gap
is enhanced by short-range intervalley interaction (the decay of Δ
will be mitigated if κr is sensitive to R).

In experiments, many-body gaps are observed in undoped,
ultraclean suspended tubes65, whereas Luttinger liquid signatures
emerge in doped tubes35,43. Though it is difficult to compare with
the measured many-body gaps65, as the chiralities of the tubes are
unknown and the radii estimated indirectly, the measured range
of 10–100 meV is at least one order of magnitude larger than our
predictions. By doping the tube, we expect that the enhanced
screening suppresses the EI order, quickly turning the system into
a Luttinger liquid. We are confident that advances in electron
spectroscopies will allow to test our theory.

The broken symmetry associated with the EI ground state
depends on the exciton spin5. For spin singlet (χσσ′= δσσ′) and
order parameter real (η= 0, π), ΨEIj i breaks the charge symmetry
between A and B carbon sublattices. The charge displacement per
electron, Δe/e, at each sublattice site is

Δe
e

¼ ± cos η
a
A

X
τk

ΔðτkÞj j
2EðτkÞ ; ð3Þ

where the positive (negative) sign refers to the A (B) sublattice
(Supplementary Note 6). For the (3,3) tube this amounts to
ϱAB=0.0068, which compares well with Monte Carlo estimates of
0.0067 and 0.0165 from LRDMC and VMC, respectively. Note
that assessing the energy difference between EI and zero-gap
ground states is beyond the current capability of quantum Monte
Carlo: the mean-field estimate of the difference is below 10−6

Hartree per atom, which is less than the noise threshold of the
method (10−5 Hartree per atom).

Effect of magnetic field. The EI is sensitive to the opening of a
noninteracting gap, Eg,0, tuned by the magnetic field parallel
to the tube axis, B. The ratio of the flux piercing the cross section,
ϕ= πR2B, to the flux quantum, ϕ0= ch/e, amounts to an
Aharonov–Bohm phase displacing the position of the Dirac point
along the transverse direction66, k⊥= (ϕ/ϕ0)R−1. Consequently,
Eg,0= 2γ|k⊥| is linear with ϕ/ϕ0 (red line in Fig. 6a, c). Figure 6a

shows the evolution of low-lying singlet (blue lines) and triplet
(black lines) excitons of the (3, 3) tube. In addition, we have
implemented a full first-principles description of B building on a
previous method67. First-principles (circles) and model (solid
lines) calculations show a fair agreement, which validates the
effective-mass theory since all free parameters have been fixed at
zero field. Here we rescale energies by R/γ since we expect the plot
to be universal, except for small corrections due to short-range
interactions. Excitation energies obtained within the effective-
mass model crossover from a low-field region, where εu is almost
constant, to a high-field region, where εu increases linearly with
ϕ/ϕ0. Exciton wave functions are effectively squeezed by the field
in real space (Fig. 6b), whereas in reciprocal space they loose their
asymmetric character: the amplitudes become evenly distributed
around the Dirac points (Supplementary Discussion and Fig. 11)
and similar to those reported in literature36,37,56. At a critical
flux ϕc/ϕ0≈ 0.035 the excitation energy εu becomes positive,
hence the tube exits the EI phase and Δ vanishes in a BCS-like
fashion. We point out that the critical field intensity, Bc≈ 460 T ⋅
(R [Å])−2, is out of reach for the (3, 3) tube but feasible for larger

tubes. The total transport gap, Eg ¼ E2
g;0 þ 4 Δj j2

� �1=2
, first scales

with ϕ/ϕ0 as Eg,0, then its slope decreases up to the critical
threshold ϕc/ϕ0, where the linear dependence on ϕ/ϕ0 is restored
(Fig. 6c). This behavior is qualitatively similar to that observed by
Coulomb blockade spectroscopy in narrow-gap tubes close to the
“Dirac” value of B, which counteracts the effect of Eg,0 on the
transport gap, fully suppressing the noninteracting
contribution65.

Discussion
The observed65 many-body gap of armchair tubes was attributed
to the Mott insulating state. The system was modeled as a
strongly interacting Luttinger liquid with a gap enforced by short-
range interactions46,49, whereas the long tail of the interaction
was cut off at an extrinsic, setup-dependent length47,48,50–52. This
model thus neglects the crucial effect of long-range interaction,
which was highlighted in Fig. 1: were any cutoff length smaller
than the intrinsic exciton length, which is micrometric and scales
with R, excitons could not bind.

Whereas armchair carbon nanotubes are regarded as quintes-
sential realizations of the Luttinger liquid, since their low-energy
properties are mapped into those of two-leg ladders46, we
emphasize that this mapping is exact for short-range interactions
only. Among e–h pair collective modes with total momentum q
= 0, Luttinger liquid theory routinely describes plasmons68 but
not excitons. Contrary to conventional wisdom, armchair tubes
are EIs.

The excitonic and Mott insulators are qualitatively different.
The EI exhibits long-range charge order, which does not affect the
translational symmetry of the zero-gap tube. In the Mott insu-
lator, charge and spin correlations may or may not decay, but
always add a 2π/(2kF) [or 2π/(4kF)] periodicity to the pristine
system, kF being the Fermi wave vector50,51. The EI gap scales like
1/R (Fig. 5d), the Mott gap like 1/R1/(1−g), with predicted47,50–52

values of g pointing to a faster decay, g< 1. The EI order para-
meter is suppressed at high temperature (Fig. 5c) and strong
magnetic field (Fig. 6c); the Mott gap is likely independent of both
fields (the Aharonov–Bohm phase does not affect Hubbard-like
Coulomb integrals). Importantly, the EI gap is very sensitive to
the dielectric environment69, whereas the Mott gap is not. This
could explain the dramatic variation of narrow transport gaps of
suspended tubes submerged in different liquid dielectrics42.

We anticipate that armchair tubes exhibit an optical absorption
spectrum in the THz range dominated by excitons, which
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provides an independent test of the EI phase. Furthermore, we
predict they behave as “chiral electronic ferroelectrics”, displaying
a permanent electric polarization P of purely electronic origin7,
whereas conventional ferroelectricity originates from ionic dis-
placements. In fact, the volume average of P is zero but its cir-
culation along the tube circumference is finite. Therefore, a
suitable time-dependent field excites the ferroelectric resonance7

associated with the oscillation of P. The special symmetry of
armchair tubes61 is expected to protect this collective (Goldstone)
mode of oscillating electric dipoles from phase-locking mechan-
isms. The resulting soft mode—a displacement current along the
tube circumference—is a manifestation of the long-
debated6–11,70,71 exciton superfluidity.

In conclusion, our calculations demonstrated that an isolated
armchair carbon nanotube at charge neutrality is an EI, owing to
the strong e–h binding in quasi-1D, and the almost unscreened
long-range interactions. The emergence of this exotic state of
matter, predicted fifty years ago, does not fit the common picture
of carbon nanotubes as Luttinger liquids. Our first-principles
calculations provide tests to discriminate between the EI and the
Luttinger liquid at strong coupling, the Mott insulator state. We
expect a wide family of narrow-gap carbon nanotubes to be EIs.
Carbon nanotubes are thus invaluable systems for the experi-
mental investigation of this phase of matter.

Methods
Many-body perturbation theory from first principles. The ground-state calcu-
lations for the (3, 3) carbon nanotube were performed by using a DFT approach, as
implemented in the Quantum ESPRESSO package72. The generalized gradient
approximation (GGA) PW91 parametrization73 was adopted together with plane
wave basis set and norm-conserving pseudopotentials to model the electron–ion
interaction. The kinetic energy cutoff for the wave functions was set to 70 Ry. The
Brillouin zone was sampled by using a 200 × 1 × 1 k-point grid. The supercell side
perpendicular to the tube was set to 38 Bohr and checked to be large enough to
avoid spurious interactions with its replica.

Many-body perturbation theory44 calculations were performed using the
Yambo code74. Many-body corrections to the Kohn–Sham eigenvalues were
calculated within the G0W0 approximation to the self-energy operator, where the
dynamic dielectric function was obtained within the plasmon-pole approximation.
The spectrum of excited states was then computed by solving the BSE. The static
screening in the direct term was calculated within the random-phase
approximation with inclusion of local field effects; the Tamm–Dancoff
approximation for the BSE Hamiltonian was employed after having verified that
the correction introduced by coupling the resonant and antiresonant part was
negligible. Converged excitation energies, εu, were obtained considering
respectively three valence and four conduction bands in the BSE matrix. For the
calculations of the GW band structure and the Bethe–Salpeter matrix the Brillouin
zone was sampled with a 1793 × 1 × 1 k-point grid. A kinetic energy cutoff of 55 Ry
was used for the evaluation of the exchange part of the self energy and 4 Ry for the
screening matrix size. Eighty unoccupied bands were used in the integration of the
self-energy.

The effect of the magnetic field parallel to the axis on the electronic structure of
the nanotube ground state (eigenvalues and eigenfunctions) was investigated
following the method by Sangalli and Marini67. For each value of the field, the
eigenvalues and eigenfunctions were considered to build the screening matrix and
the corresponding excitonic Hamiltonian.

To obtain the equilibrium structure, we first considered possible corrugation
effects. We computed the total energy for a set of structures obtained by varying the
relative positions of A and B carbon atoms belonging to different sublattices, so
that they were displaced one from the other along the radial direction by the
corrugation length Δ and formed two cylinders, as in Fig. 1b of Lu et al.60. Then,
we fitted the total energy per carbon atom with an elliptic paraboloid in the two-
dimensional parameter space spanned by Δ and the carbon bond length. In
agreement with Lu et al.60, we find a corrugated structure with a bond length of
1.431 Å and a corrugation parameter Δ 0.018 Å. Eventually, starting from this
structure, we performed a full geometry relaxation of the whole system allowing all
carbon positions to change until the forces acting on all atoms became less than
5 × 10−3 eV Å−1. After relaxation, the final structure presents a negligible
corrugation (Δ< 10−5 Å) and an average length of C–C bonds along the tube axis,
1.431 Å, slightly shorter than the C–C bonds around the tube circumference, 1.438
Å. The average radius and translation vector of the tube are respectively 2.101 and
2.462 Å, in perfect agreement with the literature53. The obtained equilibrium
coordinates of C atoms in the unitary cell are shown in Supplementary
Table 1.

Quantum Monte Carlo method. We have applied the quantum Monte Carlo
method to carbon nanotubes by using standard pseudopotentials for the 1s core
electrons of the carbon atom75. We minimize the total energy expectation value of
the first-principles Hamiltonian, within the Born–Oppheneimer approximation, by
means of a correlated wave function, J SDj i. This is made of a Slater determinant,
SDj i, defined in a localized GTO VDZ basis75 (5s5p1d) contracted into six hybrid
orbitals per carbon atom76, multiplied by a Jastrow term, J. The latter, J = J1J2, is the
product of two factors: a one-electron term, J1 ¼

Q
i exp u1body rið Þ� �

, and a two-
electron correlation factor, J2 ¼

Q
i<j exp u ri; rj

� �� �
. The two-body Jastrow factor J2

depends explicitly on the Ne electronic positions, {ri}, and, parametrically, on the
NC carbon positions, RI, I=1, … NC. The pseudopotential functions, u and u1body,
are written as:

u r; r0ð Þ ¼ uee r� r0j jð Þ þ
X

μ>0;ν>0

uμνχμðrÞχν r0ð Þ; ð4Þ

u1bodyðrÞ ¼
X
μ>0

uμ0χμðrÞ; ð5Þ

where uee=2−1r/(1 + beer) is a simple function, depending on the single variational
parameter bee, which allows to satisfy the electron–electron cusp condition, and uμν
is a symmetric matrix of finite dimension. For non-null indices, μ, ν> 0, the matrix
u describes the variational freedom of J2 in a certain finite atomic basis, χμ(r),
which is localized around the atomic centers RI(μ) and is made of 3s2p GTO
orbitals per atom. Note that the one-body Jastrow term J1 is expanded over the
same atomic basis and its variational freedom is determined by the first column of
the matrix, uμ0.

We use an orthorombic unit cell Lx × Ly × Lz containing twelve atoms with Lx=
Ly = 36 Å and Lz =2.445 Å. This cell is repeated along the z direction for n=1, 2, 3,
4, 5, 6 times, up to 72 carbon atoms in the supercell. Periodic images in the x and y
directions are far enough that their mutual interaction can be safely neglected.
Conversely, in the z direction we apply twisted periodic boundary conditions and
we integrate over that with a number nθ of twists, nθ= 80, 40, 30, 20, 20, 20 for n =
1, 2, 3, 4, 5, 6, respectively, large enough to have converged results for each
supercell.

The initial Slater determinant was taken by performing a standard LDA
calculation. The molecular orbitals, namely their expansion coefficients in the GTO
localized basis set, as well as the matrix u determining the Jastrow factor, were
simultaneously optimized with well established methods developed in recent
years77,78, which allows us to consider up to 3000 independent variational
parameters in a very stable and efficient way. Note that the two-body Jastrow term
J2 can be chosen to explicitly recover the EI mean-field wave function (1), as shown
in Supplementary Discussion. After the stochastic optimization the correlation
functions/order parameters can be computed in a simple way within VMC.

We also employ lattice-regularized diffusion Monte Carlo (LRDMC) within the
fixed-node approximation, using a lattice mesh of amesh= 0.2 and amesh= 0.4 a.u.,
respectively, in order to check the convergence for amesh → 0. The fixed-node
approximation is necessary for fermions for obtaining statistically meaningful
ground-state properties. In this case the correlation functions/order parameters,
depending only on local (i.e., diagonal in the basis) operators, such as the ones
presented in this work, are computed with the forward walking technique79, which
allows the computation of pure expectation values on the fixed-node ground state.

Code availability. Many-body perturbation theory calculations were performed by
means of the codes Yambo (http://www.yambo-code.org/) and Quantum
ESPRESSO (http://www.quantum-espresso.org), which are both open source soft-
ware. Quantum Monte Carlo calculations were based on TurboRVB code (http://
trac.sissa.it/svn/TurboRVB), which is available from S.S. upon reasonable request.

Data availability. The data that support the findings of this study are available
from the corresponding author upon reasonable request.
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