39 research outputs found

    Differential modulation of the N2 and P3 event-related potentials by response conflict and inhibition

    Get PDF
    Background: Developing reliable and specific neural markers of cognitive processes is essential to improve understanding of healthy and atypical brain function. Despite extensive research there remains uncertainty as to whether two electrophysiological markers of cognitive control, the N2 and P3, are better conceptualised as markers of response inhibition or response conflict. The present study aimed to directly compare the effects of response inhibition and response conflict on the N2 and P3 event-related potentials, within-subjects. Method: A novel hybrid go/no-go flanker task was performed by 19 healthy adults aged 18 to 25 years while EEG data were collected. The response congruence of a central target stimulus and 4 flanking stimuli was manipulated between trials to vary the degree of response conflict. Response inhibition was required on a proportion of trials. N2 amplitude was measured at two frontal electrode sites; P3 amplitude was measured at 4 midline electrode sites. Results: N2 amplitude was greater on incongruent than congruent trials but was not enhanced by response inhibition when the stimulus array was congruent. P3 amplitude was greater on trials requiring response inhibition; this effect was more pronounced at frontal electrodes. P3 amplitude was also enhanced on incongruent compared with congruent trials. Discussion: The findings support a role for N2 amplitude as a marker of response conflict and for the frontal shift of the P3 as a marker of response inhibition. This paradigm could be applied to clinical groups to help clarify the precise nature of impaired action control in disorders such as attention deficit/hyperactivity disorders (ADHD)

    Context specificity of post-error and post-conflict cognitive control adjustments

    Get PDF
    There has been accumulating evidence that cognitive control can be adaptively regulated by monitoring for processing conflict as an index of online control demands. However, it is not yet known whether top-down control mechanisms respond to processing conflict in a manner specific to the operative task context or confer a more generalized benefit. While previous studies have examined the taskset-specificity of conflict adaptation effects, yielding inconsistent results, controlrelated performance adjustments following errors have been largely overlooked. This gap in the literature underscores recent debate as to whether post-error performance represents a strategic, control-mediated mechanism or a nonstrategic consequence of attentional orienting. In the present study, evidence of generalized control following both high conflict correct trials and errors was explored in a task-switching paradigm. Conflict adaptation effects were not found to generalize across tasksets, despite a shared response set. In contrast, post-error slowing effects were found to extend to the inactive taskset and were predictive of enhanced post-error accuracy. In addition, post-error performance adjustments were found to persist for several trials and across multiple task switches, a finding inconsistent with attentional orienting accounts of post-error slowing. These findings indicate that error-related control adjustments confer a generalized performance benefit and suggest dissociable mechanisms of post-conflict and post-error control. © 2014 Forster, Cho

    Uncovering packaging features of co-regulated modules based on human protein interaction and transcriptional regulatory networks

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Network co-regulated modules are believed to have the functionality of packaging multiple biological entities, and can thus be assumed to coordinate many biological functions in their network neighbouring regions.</p> <p>Results</p> <p>Here, we weighted edges of a human protein interaction network and a transcriptional regulatory network to construct an integrated network, and introduce a probabilistic model and a bipartite graph framework to exploit human co-regulated modules and uncover their specific features in packaging different biological entities (genes, protein complexes or metabolic pathways). Finally, we identified 96 human co-regulated modules based on this method, and evaluate its effectiveness by comparing it with four other methods.</p> <p>Conclusions</p> <p>Dysfunctions in co-regulated interactions often occur in the development of cancer. Therefore, we focussed on an example co-regulated module and found that it could integrate a number of cancer-related genes. This was extended to causal dysfunctions of some complexes maintained by several physically interacting proteins, thus coordinating several metabolic pathways that directly underlie cancer.</p

    Transient and sustained incentive effects on electrophysiological indices of cognitive control in younger and older adults

    Get PDF
    Preparing for upcoming events, separating task-relevant from task-irrelevant information and efficiently responding to stimuli all require cognitive control. The adaptive recruitment of cognitive control depends on activity in the dopaminergic reward system as well as the frontoparietal control network. In healthy aging, dopaminergic neuromodulation is reduced, resulting in altered incentive-based recruitment of control mechanisms. In the present study, younger adults (18–28 years) and healthy older adults (66–89 years) completed an incentivized flanker task that included gain, loss, and neutral trials. Event-related potentials (ERPs) were recorded at the time of incentive cue and target presentation. We examined the contingent negative variation (CNV), implicated in stimulus anticipation and response preparation, as well as the P3, which is involved in the evaluation of visual stimuli. Both younger and older adults showed transient incentive-based modulation of CNV. Critically, cue-locked and target-locked P3s were influenced by transient and sustained effects of incentives in younger adults, while such modulation was limited to a sustained effect of gain incentives on cue-P3 in older adults. Overall, these findings are in line with an age-related reduction in the flexible recruitment of preparatory and target-related cognitive control processes in the presence of motivational incentives

    Expression of miRNAs miR-133b and miR-206 in the Il17a/f Locus Is Co-Regulated with IL-17 Production in αβ and γδ T Cells

    Get PDF
    Differentiation of T helper 17 cells (Th17) is a multistep process that involves the cytokines IL-6, TGF-β, and IL-23 as well as IL-1β, IL-21, and TNF-α. Thereby, robust induction of the capacity to produce IL-17 involves epigenetic modifications of the syntenic Il17a/f locus. Using inbred mouse strains, we identified co-regulation of gene transcription at the Il17a/f locus with the nearby microRNAs miR-133b and miR-206 that are clustered approximately 45 kb upstream of Il17a/f. Expression of these microRNAs was specific for Th17 as compared to other CD4+ T cell subsets and this was equally valid for in vitro polarized and ex vivo derived cells. From all factors analyzed, IL-23 was the most important cytokine for the in vitro induction of miR-133b and miR-206 in naive CD4+ T cells of wild type mice. However, analysis of IL-23R deficient mice revealed that IL-23R signaling was not essential for the induction of miR-133b and miR-206. Importantly, we found a similar co-regulation in CCR6+ and other γδ T cell subsets that are predisposed to production of IL-17. Taken together, we discovered a novel feature of T cell differentiation towards an IL-17-producing phenotype that is shared between αβ and γδ T cells. Notably, the specific co-regulation of miR-133b and miR-206 with the Il17a/f locus also extended to human Th17 cells. This qualifies expression of miR-133b and miR-206 in T cells as novel biomarkers for Th17-type immune reactions

    Chromosomal clustering of a human transcriptome reveals regulatory background

    Get PDF
    Background There has been much evidence recently for a link between transcriptional regulation and chromosomal gene order, but the relationship between genomic organization, regulation and gene function in higher eukaryotes remains to be precisely defined. Results Here, we present evidence for organization of a large proportion of a human transcriptome into gene clusters throughout the genome, which are partly regulated by the same transcription factors, share biological functions and are characterized by non-housekeeping genes. This analysis was based on the cardiac transcriptome identified by our genome-wide array analysis of 55 human heart samples. We found 37% of these genes to be arranged mainly in adjacent pairs or triplets. A significant number of pairs of adjacent genes are putatively regulated by common transcription factors (p = 0.02). Furthermore, these gene pairs share a significant number of GO functional classification terms. We show that the human cardiac transcriptome is organized into many small clusters across the whole genome, rather than being concentrated in a few larger clusters. Conclusion Our findings suggest that genes expressed in concert are organized in a linear arrangement for coordinated regulation. Determining the relationship between gene arrangement, regulation and nuclear organization as well as gene function will have broad biological implications

    Genomic organization of transcriptomes in mammals: Coregulation and cofunctionality

    Get PDF
    In studies of their transcriptional activity, genomes have shown a high order of organization. We assessed the question of how genomically neighboring genes are transcriptionally coupled across tissues and what could be the driving force behind their coupling. We focused our analysis on the transcriptome information for 13 tissues of Mus musculus and 79 tissues of Homo sapiens. The analysis of coexpression patterns of genomically adjacent genes across tissues revealed 2619 and 1275 clusters of highly coexpressed genes, respectively. Most of these clusters consist of pairs and triplets of genes. They span a limited genomic length and are phylogenetically conserved between human and mouse. These clusters consist mainly of nonparalogous genes and show a decreased functional and similar regulatory relationship to one another compared to general genomic neighbors. We hypothesize that these clusters trace back to large-scale, qualitative, persistent reorganizations of the transcriptome, while transcription factor regulation is likely to handle fine-tuning of transcription on shorter time scales. Our data point to so far uncharacterized cis-acting units and reject cofunctionality as a driving force
    corecore