24 research outputs found

    Fatty Acid Copper(II) Carboxylates with Nicotinamide - Characterization and Fungicidal Activity. Crystal Structures of Two Heptanoate Forms and Nonanoate

    Get PDF
    Several new compounds of the composition Cu2(OOCCnH2n+1)4 (nia)2 (nia = nicotinamide; n = 6 to 11) were synthesized, characterized and tested for fungicidal activity. Crystal structure determinations revealed dinuclear structures of the copper(II) acetate hydrate type for compounds [Cu2(OOCC6H13)4(nia)2]-A (1A), [Cu2(OOCC6H13)4(nia)2]-B (1B) and [Cu2(OOCC8H17)4(nia)2] (3). Other applied characterization methods indicate dimeric structures for ali synthesized compounds [μeff (298 K) = 1.43-1.50 BM; characteristic band in UV-Vis spectra in the region λ = 350-400 nm]. The same conclusion may also be deduced from the IR (Δ = νasym(COO-) - νsym(COO-) = 183-189 cm-1) and EPR spectra, though some differences were observed for heptanoate modification 1A, probably due to a different hydrogen bonding scheme. Screening for fungicidal activity against the wood-rotting fungus Trametes versicolor (L. ex Fr.) Pilat shows that the compounds dissolved in DMSO completely stop mycelium growth at a concentration of 1.0 × 10-3 mol L-1. Some of them (n = 8, 9, 10) show strong activity also in more diluted Solutions (1.0 × 10-4 mol L-1)

    Fatty Acid Copper(II) Carboxylates with Nicotinamide - Characterization and Fungicidal Activity. Crystal Structures of Two Heptanoate Forms and Nonanoate

    Get PDF
    Several new compounds of the composition Cu2(OOCCnH2n+1)4 (nia)2 (nia = nicotinamide; n = 6 to 11) were synthesized, characterized and tested for fungicidal activity. Crystal structure determinations revealed dinuclear structures of the copper(II) acetate hydrate type for compounds [Cu2(OOCC6H13)4(nia)2]-A (1A), [Cu2(OOCC6H13)4(nia)2]-B (1B) and [Cu2(OOCC8H17)4(nia)2] (3). Other applied characterization methods indicate dimeric structures for ali synthesized compounds [μeff (298 K) = 1.43-1.50 BM; characteristic band in UV-Vis spectra in the region λ = 350-400 nm]. The same conclusion may also be deduced from the IR (Δ = νasym(COO-) - νsym(COO-) = 183-189 cm-1) and EPR spectra, though some differences were observed for heptanoate modification 1A, probably due to a different hydrogen bonding scheme. Screening for fungicidal activity against the wood-rotting fungus Trametes versicolor (L. ex Fr.) Pilat shows that the compounds dissolved in DMSO completely stop mycelium growth at a concentration of 1.0 × 10-3 mol L-1. Some of them (n = 8, 9, 10) show strong activity also in more diluted Solutions (1.0 × 10-4 mol L-1)

    Recent developments in mushrooms as anti-cancer therapeutics: a review

    Get PDF
    From time immemorial, mushrooms have been valued by humankind as a culinary wonder and folk medicine in Oriental practice. The last decade has witnessed the overwhelming interest of western research fraternity in pharmaceutical potential of mushrooms. The chief medicinal uses of mushrooms discovered so far are as anti-oxidant, anti-diabetic, hypocholesterolemic, anti-tumor, anti-cancer, immunomodulatory, anti-allergic, nephroprotective, and anti-microbial agents. The mushrooms credited with success against cancer belong to the genus Phellinus, Pleurotus, Agaricus, Ganoderma, Clitocybe, Antrodia, Trametes, Cordyceps, Xerocomus, Calvatia, Schizophyllum, Flammulina, Suillus, Inonotus, Inocybe, Funlia, Lactarius, Albatrellus, Russula, and Fomes. The anti-cancer compounds play crucial role as reactive oxygen species inducer, mitotic kinase inhibitor, anti-mitotic, angiogenesis inhibitor, topoisomerase inhibitor, leading to apoptosis, and eventually checking cancer proliferation. The present review updates the recent findings on the pharmacologically active compounds, their anti-tumor potential, and underlying mechanism of biological action in order to raise awareness for further investigations to develop cancer therapeutics from mushrooms. The mounting evidences from various research groups across the globe, regarding anti-tumor application of mushroom extracts unarguably make it a fast-track research area worth mass attention

    Plasticity of the β-Trefoil Protein Fold in the Recognition and Control of Invertebrate Predators and Parasites by a Fungal Defence System

    Get PDF
    Discrimination between self and non-self is a prerequisite for any defence mechanism; in innate defence, this discrimination is often mediated by lectins recognizing non-self carbohydrate structures and so relies on an arsenal of host lectins with different specificities towards target organism carbohydrate structures. Recently, cytoplasmic lectins isolated from fungal fruiting bodies have been shown to play a role in the defence of multicellular fungi against predators and parasites. Here, we present a novel fruiting body lectin, CCL2, from the ink cap mushroom Coprinopsis cinerea. We demonstrate the toxicity of the lectin towards Caenorhabditis elegans and Drosophila melanogaster and present its NMR solution structure in complex with the trisaccharide, GlcNAcβ1,4[Fucα1,3]GlcNAc, to which it binds with high specificity and affinity in vitro. The structure reveals that the monomeric CCL2 adopts a β-trefoil fold and recognizes the trisaccharide by a single, topologically novel carbohydrate-binding site. Site-directed mutagenesis of CCL2 and identification of C. elegans mutants resistant to this lectin show that its nematotoxicity is mediated by binding to α1,3-fucosylated N-glycan core structures of nematode glycoproteins; feeding with fluorescently labeled CCL2 demonstrates that these target glycoproteins localize to the C. elegans intestine. Since the identified glycoepitope is characteristic for invertebrates but absent from fungi, our data show that the defence function of fruiting body lectins is based on the specific recognition of non-self carbohydrate structures. The trisaccharide specifically recognized by CCL2 is a key carbohydrate determinant of pollen and insect venom allergens implying this particular glycoepitope is targeted by both fungal defence and mammalian immune systems. In summary, our results demonstrate how the plasticity of a common protein fold can contribute to the recognition and control of antagonists by an innate defence mechanism, whereby the monovalency of the lectin for its ligand implies a novel mechanism of lectin-mediated toxicity

    Caenorhabditis elegans N-glycan Core β-galactoside Confers Sensitivity towards Nematotoxic Fungal Galectin CGL2

    Get PDF
    The physiological role of fungal galectins has remained elusive. Here, we show that feeding of a mushroom galectin, Coprinopsis cinerea CGL2, to Caenorhabditis elegans inhibited development and reproduction and ultimately resulted in killing of this nematode. The lack of toxicity of a carbohydrate-binding defective CGL2 variant and the resistance of a C. elegans mutant defective in GDP-fucose biosynthesis suggested that CGL2-mediated nematotoxicity depends on the interaction between the galectin and a fucose-containing glycoconjugate. A screen for CGL2-resistant worm mutants identified this glycoconjugate as a Galβ1,4Fucα1,6 modification of C. elegans N-glycan cores. Analysis of N-glycan structures in wild type and CGL2-resistant nematodes confirmed this finding and allowed the identification of a novel putative glycosyltransferase required for the biosynthesis of this glycoepitope. The X-ray crystal structure of a complex between CGL2 and the Galβ1,4Fucα1,6GlcNAc trisaccharide at 1.5 Å resolution revealed the biophysical basis for this interaction. Our results suggest that fungal galectins play a role in the defense of fungi against predators by binding to specific glycoconjugates of these organisms

    Ostreolysin enhances fruiting initiation in the oyster mushroom (Pleurotus ostreatus)

    No full text
    Fruiting initiation in mushrooms can be triggered by a variety of environmental and biochemical stimuli, including substances of natural or synthetic origin. In this work ostreolysin, a cytolytic protein specifically expressed during the formation of primordia and fruit bodies of Pleurotus ostreatus, was applied to nutrient media inoculated with mycelium of P. ostreatus, and its effects on mycelial growth and fructification of the mushroom studied. The addition of ostreolysin slightly inhibited the growth of mycelium, but strongly induced the formation of primordia, which appeared 10 d earlier than in control plates supplemented with bovine serum albumin or with the dissolving buffer alone. Moreover, ostreolysin stimulated the subsequent development of primordia into fruit bodies. However, direct involvement of this protein in the sporulation of the mushroom is unlikely, as it was also detected in large amounts in the non-sporulating strain of P. ostreatus
    corecore