97 research outputs found

    A catalogue of low-mass X-ray binaries in the Galaxy, LMC, and SMC (Fourth edition)

    Full text link
    We present a new edition of the catalogue of the low-mass X-ray binaries in the Galaxy and the Magellanic Clouds. The catalogue contains source name(s), coordinates, finding chart, X-ray luminosity, system parameters, and stellar parameters of the components and other characteristic properties of 187 low-mass X-ray binaries, together with a comprehensive selection of the relevant literature. The aim of this catalogue is to provide the reader with some basic information on the X-ray sources and their counterparts in other wavelength ranges (Îł\gamma-rays, UV, optical, IR, and radio). Some sources, however, are only tentatively identified as low-mass X-ray binaries on the basis of their X-ray properties similar to the known low-mass X-ray binaries. Further identification in other wavelength bands is needed to finally determine the nature of these sources. In cases where there is some doubt about the low-mass nature of the X-ray binary this is mentioned. Literature published before 1 October 2006 has, as far as possible, been taken into account.Comment: 45 pages, catalogue include

    Evolution of Neutron-Star, Carbon-Oxygen White-Dwarf Binaries

    Get PDF
    At least one, but more likely two or more, eccentric neutron-star, carbon-oxygen white-dwarf binaries with an unrecycled pulsar have been observed. According to the standard scenario for evolving neutron stars which are recycled in common envelope evolution we expect to observe \gsim 50 such circular neutron star-carbon oxygen white dwarf binaries, since their formation rate is roughly equal to that of the eccentric binaries and the time over which they can be observed is two orders of magnitude longer, as we shall outline. We observe at most one or two such circular binaries and from that we conclude that the standard scenario must be revised. Introducing hypercritical accretion into common envelope evolution removes the discrepancy by converting the neutron star into a black hole which does not emit radio waves, and therefore would not be observed.Comment: 25 pages, 1 figure, accepted in Ap

    A superburst from 4U 1254-690

    Full text link
    We report the detection with the BeppoSAX Wide Field Cameras of a superburst from 4U 1254-690. The superburst is preceded by a normal type-I X-ray burst, has a decay time that is the longest of all eight superbursts detected so far and a peak luminosity that is the lowest. Like for the other seven superbursts, the origin is a well-known type-I X-ray burster with a persistent luminosity level close to one tenth of the Eddington limit. Based on WFC data of all persistently bright X-ray bursters, the average rate of superbursts is 0.51+/-0.25 per year per persistently bright X-ray burster. Some systems may have higher superburst rates. For all superbursters, we present evidence for a pure helium layer which is burnt in an unstable as well as a stable manner.Comment: Accepted by A&A Letter

    The mass of the neutron star in Cyg X-2 (V1341 Cyg)

    Get PDF
    Cygnus X-2 is one of the brightest and longest known X-ray sources. We present high resolution optical spectroscopy of Cyg X-2 obtained over 4 years which gives an improved mass function of 0.69 +/- 0.03 Msun (1 sigma error). In addition, we resolve the rotationally broadened absorption features of the secondary star for the first time, deriving a rotation speed of vsin(i) = 34.2 +/- 2.5 km per s (1 sigma error) which leads to a mass ratio of q = M_c/M_x = 0.34 +/- 0.04 (1 sigma error), assuming a tidally-locked and Roche lobe-filling secondary). Hence with the lack of X-ray eclipses (i.e. i <~ 73 degrees) we can set firm 95% confidence lower limits to the neutron star mass of M_x > 1.27 Msun and to the companion star mass of M_c > 0.39 Msun. However, by additionally requiring that the companion must exceed 0.75 Msun (as required theoretically to produce a steady low-mass X-ray binary), then M_x > 1.88 Msun and i < 61 degrees (95% confidence lower and upper limit, respectively), thereby making Cyg X-2 the highest mass neutron star measured to date. If confirmed this would set significant constraints on the equation of state of nuclear matter.Comment: 16 pages, 4 figures, ApJ Letters, accepted, LaTeX, aasms4.st

    GRB990712: First Indication of Polarization Variability in a Gamma-ray Burst Afterglow

    Get PDF
    We report the detection of significant polarization in the optical afterglow of GRB990712 on three instances 0.44, 0.70 and 1.45 days after the gamma-ray burst, with (P, theta) being (2.9% +- 0.4%, 121.1 degr +- 3.5 degr), (1.2% +- 0.4%, 116.2 degr +- 10.1 degr) and (2.2% +- 0.7%, 139.2 degr +- 10.4 degr) respectively. The polarization is intrinsic to the afterglow. The degree of polarization is not constant, and smallest at the second measurement. The polarization angle does not vary significantly during these observations. We find that none of the existing models predict such polarization variations at constant polarization angle, and suggest ways in which these models might be modified to accommodate the observed behavior of this afterglow.Comment: 10 pages including 6 figures, accepted by ApJ. Uses aastex 5.

    The Discovery of an Anomalous X-ray Pulsar in the Supernova Remnant Kes 73

    Get PDF
    We report the discovery of pulsed X-ray emission from the compact source 1E 1841-045, using data obtained with the Advanced Satellite for Cosmology and Astrophysics. The X-ray source is located in the center of the small-diameter supernova remnant (SNR) Kes 73 and is very likely to be the compact stellar-remnant of the supernova which formed Kes 73. The X-rays are pulsed with a period of ~ 11.8 s, and a sinusoidal modulation of roughly 30 %. We interpret this modulation to be the rotation period of an embedded neutron star, and as such would be the longest spin period for an isolated neutron star to-date. This is especially remarkable since the surrounding SNR is very young, at ~ 2000 yr old. We suggest that the observed characteristics of this object are best understood within the framework of a neutron star with an enormous dipolar magnetic field, B ~ 8x10^14 G

    The eclipsing X-ray pulsar X-7 in M33

    Get PDF
    Using our extensive ROSAT X-ray observations of M33, we confirm a 3.45 day eclipse period for the Einstein source X-7 (Larson & Schulman, 1997) and discover evidence for a 0.31-s pulse period. The orbital period, pulse period and observed X-ray luminosity are remarkably similar to SMC X-1. We therefore suggest M33 X-7 is a neutron star high mass X-ray binary with a 15-40 Msol O/B companion and a binary separation of 25-33 Rsol if the companion is almost filling its Roche lobe.Comment: accepted for publication in MNRA

    The Faint Sky Variability Survey I: Goals and data reduction process

    Get PDF
    The Faint Sky Variability Survey is aimed at finding photometric and/or astrometric variable objects in the brightness range between 16<V<24 on timescales between tens of minutes and years with photometric precisions ranging from 3 millimagnitudes for the brightest to 0.2 magnitudes for the faintest objects. An area of ~23 square degrees, located at mid and high Galactic latitudes, has been covered using the Wide Field Camera on the 2.5m Isaac Newton Telescope on La Palma. Here we describe the main goals of the Faint Sky Variability Survey and the data reduction process.Comment: Accepted by MNRAS, 8 pages, 6 figure + 3 as JPEG

    Gravity Waves from Rotating Neutron Stars and Evaluation of Fast Chirp Transform Techniques

    Get PDF
    X-ray observations suggest that neutron stars in low mass X-ray binaries (LMXB) are rotating with frequencies from 300 - 600 Hz. These spin rates are significantly less than the break-up rates for essentially all realistic neutron star equations of state, suggesting that some process may limit the spin frequencies of accreting neutron stars to this range. If the accretion induced spin up torque is in equilibrium with gravitational radiation losses, these objects could be interesting sources of gravity waves. I present a brief summary of current measurements of neutron star spins in LMXBs based on the observations of high-Q oscillations during thermonuclear bursts (so called ``burst oscillations''). Further measurements of neutron star spins will be important in exploring the gravitational radiation hypothesis in more detail. To this end I also present a study of fast chirp transform (FCT) techniques as described by Jenet & Prince (2000) in the context of searching for the chirping signals observed during X-ray bursts.Comment: 6 pages, 3 figures, Amaldi4 Conference Proceedings; submitted to Classical and Quantum Gravit

    On the nature of XTE J0421+560/CI Cam

    Get PDF
    We present the results of the analysis of RXTE, BATSE and optical/infrared data of the 1998 outburst of the X-ray transient system XTE J0421+560 (CI Cam). The X-ray outburst shows a very fast decay (initial e-folding time ~0.5 days, slowing down to ~2.3 days). The X-ray spectrum in the 2-25 keV band is complex, softening considerably during decay and with strongly variable intrinsic absorption. A strong iron emission line is observed. No fast time variability is detected (<0.5 % rms in the 1-4096 Hz band at the outburst peak). The analysis of the optical/IR data suggests that the secondary is a B[e] star surrounded by cool dust and places the system at a distance of >~ 2 kpc. At this distance the peak 2-25 keV luminosity is ~4 x 10^37 erg/s. We compare the properties of this peculiar system with those of the Be/NS LMC transient A 0538-66 and suggest that CI Cam is of similar nature. The presence of strong radio emission during outburst indicates that the compact object is likely to be a black hole or a weakly magnetized neutron star.Comment: Accepted for publication on The Astrophysical Journal, July 199
    • 

    corecore