82 research outputs found

    Layers of powers: societies and institutions in Europe

    Get PDF
    Historians and social scientists have offered many and varied definitions of the term “community”. This chapter focuses on specific examples of face-to-face or local communities in order to test the possibilities and limits of the two major analytical approaches to communities: an anthropological approach which identifies ‘community’ as an organic entity, and a symbolic one which considers feelings of belonging and self-identification as constitutive aspects of a community. In this quest, close attention is paid to the question of the stabilization of community’s structures through legislation and institutions, a process that integrates such micro-societies into broader networks of power, and renders them visible to historians. In the first section we examine what we have called a “world of communities”, from periods when communities constituted the dominant element of social structure. Examining ancient Jewish and medieval Icelandic communities, and then early modern Irish and Scottish clans, we try to identify their basic characteristics and to reconstruct the way they related to the rest of the social structure. The second section analyzes the emergence of new loyalties and models of social membership from the 19th century onwards, emphasizing how the discourse on communities played a crucial role in the construction of these diverse patterns of identification and differentiation. Finally, we explore the permanence of the communitarian world supposedly replaced by nationalism and other major modern ideologies along with the new meanings and uses of communities in the 20th and 21st centuries. In sum, this broad overview provides a preliminary narrative of the changes in the structures of communities and their shifting position within wider patterns of social organizations while drawing attention to parallel transformations in theoretical reflection on communities

    Chronic–Progressive Dopaminergic Deficiency Does Not Induce Midbrain Neurogenesis

    Get PDF
    Background: Consecutive adult neurogenesis is a well-known phenomenon in the ventricular–subventricular zone of the lateral wall of the lateral ventricles (V–SVZ) and has been controversially discussed in so-called “non-neurogenic” brain areas such as the periventricular regions (PVRs) of the aqueduct and the fourth ventricle. Dopamine is a known modulator of adult neural stem cell (aNSC) proliferation and dopaminergic neurogenesis in the olfactory bulb, though a possible interplay between local dopaminergic neurodegeneration and induction of aNSC proliferation in mid/hindbrain PVRs is currently enigmatic. Objective/Hypothesis: To analyze the influence of chronic–progressive dopaminergic neurodegeneration on both consecutive adult neurogenesis in the PVRs of the V–SVZ and mid/hindbrain aNSCs in two mechanistically different transgenic animal models of Parkinson´s disease (PD). Methods: We used Thy1-m[A30P]h α synuclein mice and Leu9′Ser hypersensitive α4* nAChR mice to assess the influence of midbrain dopaminergic neuronal loss on neurogenic activity in the PVRs of the V–SVZ, the aqueduct and the fourth ventricle. Results: In both animal models, overall proliferative activity in the V–SVZ was not altered, though the proportion of B2/activated B1 cells on all proliferating cells was reduced in the V–SVZ in Leu9′Ser hypersensitive α4* nAChR mice. Putative aNSCs in the mid/hindbrain PVRs are known to be quiescent in vivo in healthy controls, and dopaminergic deficiency did not induce proliferative activity in these regions in both disease models. Conclusions: Our data do not support an activation of endogenous aNSCs in mid/hindbrain PVRs after local dopaminergic neurodegeneration. Spontaneous endogenous regeneration of dopaminergic cell loss through resident aNSCs is therefore unlikely

    Primary skin fibroblasts as a model of Parkinson's disease

    Get PDF
    Parkinson's disease is the second most frequent neurodegenerative disorder. While most cases occur sporadic mutations in a growing number of genes including Parkin (PARK2) and PINK1 (PARK6) have been associated with the disease. Different animal models and cell models like patient skin fibroblasts and recombinant cell lines can be used as model systems for Parkinson's disease. Skin fibroblasts present a system with defined mutations and the cumulative cellular damage of the patients. PINK1 and Parkin genes show relevant expression levels in human fibroblasts and since both genes participate in stress response pathways, we believe fibroblasts advantageous in order to assess, e.g. the effect of stressors. Furthermore, since a bioenergetic deficit underlies early stage Parkinson's disease, while atrophy underlies later stages, the use of primary cells seems preferable over the use of tumor cell lines. The new option to use fibroblast-derived induced pluripotent stem cells redifferentiated into dopaminergic neurons is an additional benefit. However, the use of fibroblast has also some drawbacks. We have investigated PARK6 fibroblasts and they mirror closely the respiratory alterations, the expression profiles, the mitochondrial dynamics pathology and the vulnerability to proteasomal stress that has been documented in other model systems. Fibroblasts from patients with PARK2, PARK6, idiopathic Parkinson's disease, Alzheimer's disease, and spinocerebellar ataxia type 2 demonstrated a distinct and unique mRNA expression pattern of key genes in neurodegeneration. Thus, primary skin fibroblasts are a useful Parkinson's disease model, able to serve as a complement to animal mutants, transformed cell lines and patient tissues

    Bypassing Progressive Taxation: Fraud and Base Erosion in the Spanish Income Tax (1970-2001)

    Full text link

    Chronic–Progressive Dopaminergic Deficiency Does Not Induce Midbrain Neurogenesis

    No full text
    Background: Consecutive adult neurogenesis is a well-known phenomenon in the ventricular–subventricular zone of the lateral wall of the lateral ventricles (V–SVZ) and has been controversially discussed in so-called “non-neurogenic” brain areas such as the periventricular regions (PVRs) of the aqueduct and the fourth ventricle. Dopamine is a known modulator of adult neural stem cell (aNSC) proliferation and dopaminergic neurogenesis in the olfactory bulb, though a possible interplay between local dopaminergic neurodegeneration and induction of aNSC proliferation in mid/hindbrain PVRs is currently enigmatic. Objective/Hypothesis: To analyze the influence of chronic–progressive dopaminergic neurodegeneration on both consecutive adult neurogenesis in the PVRs of the V–SVZ and mid/hindbrain aNSCs in two mechanistically different transgenic animal models of Parkinson´s disease (PD). Methods: We used Thy1-m[A30P]h α synuclein mice and Leu9′Ser hypersensitive α4* nAChR mice to assess the influence of midbrain dopaminergic neuronal loss on neurogenic activity in the PVRs of the V–SVZ, the aqueduct and the fourth ventricle. Results: In both animal models, overall proliferative activity in the V–SVZ was not altered, though the proportion of B2/activated B1 cells on all proliferating cells was reduced in the V–SVZ in Leu9′Ser hypersensitive α4* nAChR mice. Putative aNSCs in the mid/hindbrain PVRs are known to be quiescent in vivo in healthy controls, and dopaminergic deficiency did not induce proliferative activity in these regions in both disease models. Conclusions: Our data do not support an activation of endogenous aNSCs in mid/hindbrain PVRs after local dopaminergic neurodegeneration. Spontaneous endogenous regeneration of dopaminergic cell loss through resident aNSCs is therefore unlikely

    Chronic–Progressive Dopaminergic Deficiency Does Not Induce Midbrain Neurogenesis

    No full text
    Background: Consecutive adult neurogenesis is a well-known phenomenon in the ventricular–subventricular zone of the lateral wall of the lateral ventricles (V–SVZ) and has been controversially discussed in so-called “non-neurogenic” brain areas such as the periventricular regions (PVRs) of the aqueduct and the fourth ventricle. Dopamine is a known modulator of adult neural stem cell (aNSC) proliferation and dopaminergic neurogenesis in the olfactory bulb, though a possible interplay between local dopaminergic neurodegeneration and induction of aNSC proliferation in mid/hindbrain PVRs is currently enigmatic. Objective/Hypothesis: To analyze the influence of chronic–progressive dopaminergic neurodegeneration on both consecutive adult neurogenesis in the PVRs of the V–SVZ and mid/hindbrain aNSCs in two mechanistically different transgenic animal models of Parkinson´s disease (PD). Methods: We used Thy1-m[A30P]h α synuclein mice and Leu9′Ser hypersensitive α4* nAChR mice to assess the influence of midbrain dopaminergic neuronal loss on neurogenic activity in the PVRs of the V–SVZ, the aqueduct and the fourth ventricle. Results: In both animal models, overall proliferative activity in the V–SVZ was not altered, though the proportion of B2/activated B1 cells on all proliferating cells was reduced in the V–SVZ in Leu9′Ser hypersensitive α4* nAChR mice. Putative aNSCs in the mid/hindbrain PVRs are known to be quiescent in vivo in healthy controls, and dopaminergic deficiency did not induce proliferative activity in these regions in both disease models. Conclusions: Our data do not support an activation of endogenous aNSCs in mid/hindbrain PVRs after local dopaminergic neurodegeneration. Spontaneous endogenous regeneration of dopaminergic cell loss through resident aNSCs is therefore unlikely
    corecore