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Abstract

Background: Cell-to-cell communication between the blastocyst and endometrium is critical for implantation.
In recent years, evidence has emerged from studies in humans and several other animal species that exosomes
are secreted from the endometrium and trophoblast cells and may play an important role in cell-to-cell communication
maternal-fetal interface during early pregnancy. Exosomes are stable extracellular lipid bilayer vesicles that encapsulate
proteins, miRNAs, and mRNAs, with the ability to deliver their cargo to near and distant sites, altering cellular function(s).
Furthermore, the exosomal cargo can be altered in response to environmental cues (e.g. hypoxia). The current study
aims to develop an in vitro system to evaluate maternal-embryo interactions via exosomes (and exosomal
cargo) produced by bovine endometrial stromal cells (ICAR) using hypoxia as a known stimulus associated
with the release of exosomes and alterations to biological responses (e.g. cell proliferation).

Methods: ICAR cells cultured under 8 % O2 or 1 % O2 for 48 h and changes in cell function (i.e. migration,
proliferation and apoptosis) were evaluated. Exosome release was determined following the isolation (via
differential centrifugation) and characterization of exosomes from ICAR cell-conditioned media. Exosomal
proteomic content was evaluated by mass spectrometry.

Results: Under hypoxic conditions (i.e. 1 % O2), ICAR cell migration and proliferation was decreased (~20 and
~32 %, respectively) and apoptotic protein caspase-3 activation was increased (∼1.6 fold). Hypoxia increased
exosome number by ~3.6 fold compared with culture at 8 % O2. Mass spectrometry analysis identified 128
proteins unique to exosomes of ICAR cultured at 1 % O2 compared with only 46 proteins unique to those
of ICAR cultured at 8 % O2. Differential production of proteins associated with specific biological processes
and molecular functions were identified, most notably ADAM10, pantetheinase and kininogen 2.

Conclusions: In summary, we have shown that a stimulus such as hypoxia can alter both the cellular function and
exosome release of ICAR cells. Alterations to exosome release and exosomal content in response to stimuli may play
a crucial role in maternal-fetal crosstalk and could also affect placental development.
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Background
In dairy cattle, the average gestation length is approxi-
mately 282 days. The placenta is epitheliochorial, cotyle-
donary and non-deciduate [1]. Placentation is restricted
to the aglandular maternal caruncles, where the fetal
cotyledons come into contact with each other [2, 3].
They then form the placentome for maternal-fetal ex-
change of oxygen, nutrients and waste products. The
glandular intercaruncular regions are associated with
preserving the uterus in a state of quiescence and allow-
ing a progressive uterine hypertrophy to accommodate
the increasing needs of the growing feto-placental unit
[4]. The uterine glands present in the intercaruncular
endometrial areas secrete and release histotroph that is
crucial for conceptus survival and growth [5] and is
transported into the fetal circulation via the placental
areolae. The establishment of a successful pregnancy re-
quires the interactions between the endometrial cells
and the early conceptus during maternal recognition of
pregnancy [6, 7].
Cells located within intercaruncular region and associ-

ated with maternal fetal crosstalk include cells of stromal
(intercaruncular stromal cell; ICAR) and epithelial ori-
gin. Both cell types are known to produce prostaglandins
(e.g. PGF2α) and have immunomodulatory functions [8,
9]. Interactions between these cells may also play a piv-
otal role in endometrial receptivity during early preg-
nancy as was reported in a co-culture study that human
endometrial stromal cells can mediate epithelial cell
function by promoting differentiation and inhibiting pro-
liferation of endometrial epithelial cells [10]. In the bo-
vine, endometrial stromal cells (as utilized in the current
study) are known to differentially regulate the produc-
tion of prostaglandins and enzymes related to the pro-
duction of prostaglandins, in response to specific stimuli
(e.g. inflammatory mediators and interferon tau) [8, 11].
ICAR cells were a kind gift from Professor Michel A.
Fortier (Université Laval, Québec). ICAR cells are a
transformed cell-line derived from the intercaruncular
region of the bovine endometrium [12]. ICAR cells can
be propagated while still maintaining the phenotypical
characteristics of these cells which include the presence
of SV40 TAG and the vimentin-positive and cytokeratin-
negative features that support the stromal phenotype of
these cells [8, 13]. This study aimed to evaluate the
effect of a known stimulus of exosome release on the
production of exosomes by ICAR cells.
In recent years, evidence has emerged from studies in

humans [14] and several other animal species [15–18]
that exosomes are secreted from the endometrium and
trophoblast cells and may play important roles at the
conceptus-endometrial interface during early pregnancy.
Exosomes are specific subsets of extracellular vesicles
(smaller than 1000 nm) [19] that could provide insights

into an alternative new explanation for the crosstalk be-
tween cells. Exosomes (30–120 nm) are stable extracel-
lular lipid bilayer vesicles arising from the inward
budding of multivesicular bodies and released via an
exocytic pathway to the extracellular environment with
the capacity to modify the biological function of target
cells [20]. Exosomes provide a mechanism of cell-to-cell
communication in physiological and pathological condi-
tions and may be influenced by neighboring cells, distant
tissues or local environmental factors. There is consider-
able evidence that hypoxia is a potent stimulant to the
release of exosomes [21–24]. It is also a useful investiga-
tory agent since a lower-than-normal oxygen tension in
utero can influence many developmental events with
potentially lifelong consequences [25, 26].
Hypoxia is a well-known stimulus of exosome release

as seen in breast cancer cells, endothelial cells and hu-
man trophoblasts [24, 27, 28]. Alterations have been
documented in both the number of exosomes released
as well as differences in the content (cargo) of the exo-
somes [24, 27, 29]. This study aimed to test the hypoth-
esis that hypoxia as a known stimulus of exosome
release (and altered biological response) will modify the
phenotype of bovine endometrial stromal cells affecting
their migration, proliferation, apoptosis as well as alter-
ing both the release and cargo of the exosomes
generated.

Methods
Aim
This study investigated the effect(s) of a hypoxic envir-
onment on the function of bovine endometrial cells. In
particular, alterations to migration, proliferation and
apoptosis. Moreover, this study evaluated alterations to
the release and cargo content of exosomes generated by
bovine endometrial cells, when cultured under hypoxia.

Endometrial cell line
A well characterized bovine endometrial intercaruncular
stromal cell line (ICAR cells) was utilized for the current
study [8, 30]. ICAR cells were a kind gift from Professor
Michel A. Fortier (Université Laval, Québec). ICAR cells
were maintained in 175 cm2 (T175, Corning Costar)
culture flasks supplemented with exosome-free media
(1640 Roswell Park Memorial Institute (RPMI) medium
(Invitrogen, Life Technologies) with 10 % heat-inactivated
fetal bovine serum (Bovogen, Interpath services Pty Ltd)
depleted of exosomes by ultracentrifugation (100,000 g for
20 h at 4 °C) and 1000 U/mL antibiotic-antimycotic
solution (Gibco, Life Technologies) in a humidified cell
culture incubator at 37 °C under an atmosphere of 5 %
CO2-balanced N2 to obtain a hypoxic (1 % O2) environ-
ment or under physiologically relevant conditions (8 %
O2). Lactate dehydrogenase (LDH) assay was also
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performed accordingly to the manufacturer’s protocol
using the commercially available kit Pierce LDH cytotox-
icity assay kit (Thermo scientific) to measure LDH in
supernatants of ICAR cells cultured at 8 % O2 and 1 % O2

and ICAR cell viability was accessed. No significant differ-
ence in the LDH activity was observed (data not shown)
between 8 % O2 and 1 % O2, indicating that the viability
of ICAR cells was not affected by experimental condition.

Cell migration assay
The effect of oxygen tension on cell migration was
assessed using methods as previously published [31].
Briefly, ICAR cells were plated (30,000 cells per well)
and grown to confluence in a 96-well culture plate
(Corning Costar) at 1 % O2 or 8 % O2 oxygen tension
and a wound scratch was made on confluent monolayers
using a 96-pin WoundMaker (Essen BioScience).
Migration assays were performed in the presence of
Mitomycin C (100 ng/mL, Sigma–Aldrich) to minimize
any confounding effects of cell proliferation. The wound
images were automatically acquired every 2 h for 48 h
and registered by the IncuCyte software system (Essen
BioScience). Data are presented as the Relative Wound
Density (RWD, Eizen, v1.0 algorithm). RWD is a repre-
sentation of the spatial cell density in the wound area
relative to the spatial cell density outside of the wound
area at every time point (time-curve).

Cell proliferation assay
Proliferation of ICAR cells was assessed using methods
as previously published [28, 31]. In brief, the effect of
oxygen tension on ICAR cell proliferation was assessed
using a non-labelled cell monolayer confluence approach
with a high density phase contrast real-time cell imaging
system (IncuCyte™). ICAR cells were seeded at 40,000
cells per well in a 12-well culture plate (Corning Costar)
and exposed to oxygen tension at 1 % O2 or 8 % O2 and
the cell confluence (as the proliferation parameter) was
measured at 0, 24 and 48 h.

Cell apoptosis assay
To assess the effect of hypoxia on cell apoptosis, ICAR
cells were seeded at 5000 cells per well in 96-well cul-
ture plate (Corning Costar) in the presence of CellPlayer
Kinetic Caspase-3/7 Apoptosis Assay Reagent (1:5000;
Essen Biosciences) and imaged at 48 h with IncuCyte™.
Cell apoptosis is determined by the measurement of the
number of activated caspase 3/7 fluorescent objects
count per mm2 divided by the percentage of cell conflu-
ence at 48 h (percentage of the area of field of view cov-
ered by cells with the metric ‘phase object confluence’)
with the IncuCyte Zoom software using an integrated
object counting algorithm.

Exosome isolation from cell-conditioned media
To study the effect of oxygen tension on exosome re-
lease, ICAR cells were incubated at 1 % O2 or 8 % O2

for 48 h. Exosomes were isolated from ICAR cell
culture-conditioned media by successive differential cen-
trifugation steps at 300 × g for 10 min and 2000 × g for
30 min. The supernatant was filtered through a 0.22-μm
filter (Corning Costar) and ultracentrifuged at 100,000 × g
for 20 h at 4 °C (Sorvall, SureSpin 630/360, Swinging-
bucket ultracentrifuge rotor). Another round of ultracen-
trifugation washing steps was performed at 100,000 × g
for 2 h at 4 °C (Beckman, Type 70.1 Ti, Fixed angle ultra-
centrifuge rotor). Exosomes were further enriched by
layering on top of a discontinuous iodixanol gradient
(OptiPrep, Sigma–Aldrich), which was centrifuged at
100,000 × g for 20 h (Beckman, Sw41Ti, Swinging-bucket
ultracentrifuge rotor). Twelve fractions were obtained and
diluted in 10 mL PBS (Gibco, Life Technologies). The
fractions were washed with PBS and centrifuge at
100,000 × g for 2 h (Beckman, Type 70.1 Ti, Fixed
angle ultracentrifuge rotor) and the exosomal pellets
were suspended in 50 μL PBS.

Nanoparticle Tracking Analysis (NTA)
NTA measurements were performed using a NanoSight
NS500 instrument (NanoSight NTA 3.0 Nanoparticle
Tracking and Analysis Release Version Build 0064) as
previously described [32, 33].

Western blot analysis and transmission electron
microscopy
Exosomes were solubilized in RIPA buffer (Sigma–Al-
drich) and separated by polyacrylamide gel electrophor-
esis, transferred to a polyvinylidene fluoride (PVDF)
membrane (Bio-Rad) and probed with primary rabbit
polyclonal antibody anti-CD63 (1:1000; EXOAB-CD63A-
1, System Biosciences) and TSG101 (1:500; sc-6037, Santa
Cruz Biotechnology). For electron microscopy analysis,
exosome pellets were fixed in 3 % (w/v) glutaraldehyde
and analyzed under an FEI Tecnai 12 transmission
electron microscope (FEI, Hillsboro, Oregon, USA).

Proteomic Analysis of Endometrial Exosomes by Mass
Spectrometry (MS)
Exosomes (10 μg of protein) were solubilized in RIPA
buffer (Sigma–Aldrich) and separated by polyacrylamide
gel electrophoresis. The gel was fixed in fixing solution
(10:1:9; ethanol, acetic acid, MilliQ water respectively)
for 15 min, washed in (1:1, ethanol and MilliQ water)
for 10 min and washed three times with MilliQ water.
Proteins were stained with Coomassie Brilliant Blue R-
250 staining solution (Bio-Rad) for 1 h and the gel was
allowed to destain in MilliQ water until a clear back-
ground was obtained.
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In-gel digestion methods for the mass spectrometric
identification of exosomal proteins were performed by
modification of previously published method [34]. In
brief, each sample lane was cut into 24 gel slices and
destained twice with 200 mM ammonium bicarbonate in
50 % acetonitrile solution for 45 min at 37 °C, desiccated
using a vacuum centrifuge and then resuspended with
20 mM dithiothreitol (DTT) in 25 mM ammonium bi-
carbonate solution and reduced for 1 h at 65 °C. DTT
was then removed, and the samples were alkylated in
50 mM iodoacetamide and 25 mM ammonium bicar-
bonate at 37 °C in darkness for 40 min. Gel slices were
washed three times for 45 min in 25 mM ammonium
bicarbonate and then desiccated. Individual dried slices
were then allowed to swell in 20 μL of 40 mM
ammonium bicarbonate, 10 % acetonitrile containing
20 μg/mL trypsin (Sigma) for 1 h at room temperature.
An additional 50 μL of the same solution was added and
the samples were incubated overnight at 37 °C.
The supernatants were removed from the gel slices,

and residual peptides were washed from the slices by in-
cubating them three times in 50 μL of 0.1 % formic acid
for 45 min at 37 °C. The original supernatant and
washes were combined and desalted according to a
modified version of the stage tip protocol that we have
published [35, 36] using a 3-mm piece of an Empore
C18 (Octadecyl) SPE Extraction Disk and the eluted
peptides were dried in a vacuum centrifuge prior to
spectral acquisition.
The digested protein samples were analysed using the

TripleTOF® 5600 mass spectrometer (ABSciex, Redwood
City, CA) and Eksigent 1D+ NanoLC system with the
cHiPLC system to obtain initial high mass accuracy sur-
vey MS/MS data, identifying the peptides present in the
samples. The ChromXP C18-CL TRAP cHiPLC
(200 μm × 6 mm, 3 μm, 120 Å) and analytical
cHiPLC columns (200 μm × 15 cm; 3 μm, 120 Å)
(Eksigent, Redwood City, CA) were used to separate
the digested proteins. A 10 μL aliquot of digested
material was injected onto the column and separated
with a linear gradient of 5 to 10 % Buffer B for
2 min (Buffer A: 0.1 % Formic acid/water; Buffer B:
acetonitrile/0.1 % formic acid), 10 to 40 % Buffer B
(58 min), 40 to 50 % Buffer B (10 min), 50 to 95 %
(10 min) with a flow rate of 500 nL/min. The column
was flushed at 95 % buffer B for 15 min and re-
equilibrated with 5 % Buffer B for 6 min. The in-depth
proteomic analysis was performed using the Information
Dependent Acquisition (IDA) experiments on the Triple-
TOF® 5600 System interfaced with a nanospray source.
The source parameters were as follows: Cur gas at 25 psi,
GS1 at 5 psi and IHT at 150 °C. A 250 msec accumulation
time was set for the TOFMS survey scan and from this
scan, the 10 most intense precursor ions were selected

automatically for the MS/MS analysis (accumulation time
of 150 msecs per MS/MS scan). Ions were isolated using
unit resolution of the quadrupoles and rolling collision en-
ergy equation was used to calculate the collision energies
of precursors. The precursor selection criteria included a
minimum intensity of 50 counts per second (cps) and a
charge state greater than 2 + .
Protein identification was determined using the Pro-

teinPilot™ Software (v4.5 beta, AB Sciex, Redwood City,
CA) with the Paragon algorithm. The search parameters
were as follows: sample type, identification; cys alkyl-
ation, iodoacetamide; digestion, Trypsin; Instrument,
TripleTOF 5600; special factors, none; and ID focus, bio-
logical modifications. The database was downloaded
from the UniProt website in October 2015, which con-
tained all proteins from Bos taurus. False discovery rate
(FDR) was selected in the method and determined using
a reversed sequence database. Data were subjected to
ontology and pathway analysis using the protein analysis
through evolutionary relationships tool (PANTHER) and
gene ontology algorithms and classified based on bio-
logical process and molecular function categories [37].

Statistical analyses
The effects of oxygen tensions on ICAR cells are pre-
sented as mean ± SE for migration, proliferation and
apoptosis assays (n = 6 independent experiments in
duplicate). The number of exosomes is presented as
number of particles per mL (mean ± SE, n = 3 independ-
ent isolations from 80 million cells each). The effects of
oxygen tension on ICAR cells were identified by Stu-
dent’s T tests (two-tailed) to compare the effect of hyp-
oxia (i.e. 1 % O2) with the control group (i.e. 8 % O2)
using a commercially-available software package (Prism
6, GraphPad Inc, La Jolla, CA 92037 USA).

Results
The Effect of Oxygen Tension on Bovine Endometrial
(ICAR) cell migration and proliferation
The effect of normal oxygen tension (i.e. 8 % O2) and
hypoxia (i.e. 1 % O2) on ICAR cell migration is pre-
sented in Fig. 1. ICAR cell migration was significantly
lower under hypoxia compared with normal oxygen ten-
sion (Fig. 1a). Hypoxia decreased ICAR cell migration in
a time-dependent manner (Fig. 1b). Area under the
curve analysis indicated that hypoxia decreased ICAR
cell migration by ~20 % compared with values observed
at 8 % O2 (2173 ± 36 and 2620 ± 50 for 1 % O2 and 8 %
O2, respectively) (Fig. 1c). Interestingly, hypoxia de-
creased ICAR cell proliferation in a time-dependent
manner (Fig. 2a and b). Area under curve analysis
showed that at 1 % O2, the proliferative capacity of
ICAR cells was inhibited (p < 0.05) ~32 % compared with
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Fig. 1 The effects of different oxygen tension on migration of bovine endometrial stromal cells (ICAR). a Graphical representation of the initial
wound width (white) at 0 h and the area of the initial wound covered by advancing cells (grey) at 24 h and 48 h, Scale bar 300 μm. b Decreased
ICAR cell migration under hypoxic conditions (1 % O2 (●) compared with a normoxic 8 % O2 (○)) over a period of 48 h. c Area under the curve
analysis from (b); 8 % O2 (white bar) and 1 % O2 (black bar). Data are presented as mean ± SE, n = 6. In (b) and (c) P < 0.05

Fig. 2 The effects of different oxygen tension on proliferation of bovine endometrial stromal cells (ICAR). a Representative phase-contrast image
of ICAR cells at 48 h when cultured under hypoxic conditions (1 % O2) compared with a normoxic 8 % O2, Scale bar 200 μm. b Decreased
(p < 0.01) ICAR cell proliferation under hypoxic conditions (1 % O2 (●)) compared with a normoxic 8 % O2 (○) over a period of 48 h. c Area under the
curve analysis from (b); 8 % O2 (white bar) and 1 % O2 (black bar). Data are presented as mean ± SE, n = 6. In (C) P < 0.05
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cell proliferation at 8 % O2 (2.32 ± 0.18 and 3.41 ± 0.2 for
1 % O2 and 8 % O2, respectively) (Fig. 2c).

The Effect of Oxygen Tension on Bovine Endometrial
(ICAR) cell apoptosis
The effect of oxygen tension on cell apoptosis is pre-
sented in Fig. 3. A hypoxic (1 % O2) environment altered
cell morphology compared with cells cultured under
normal conditions (8 % O2), displaying morphological
hallmarks of apoptotic death (Fig. 3A ,a and d). Fluores-
cent images acquired with IncuCyte™ (Fig. 3A, b and e)
showed greater fluorescence in cells cultured under 1 %
O2, indicating a higher activation of caspase-3/7 under
hypoxic conditions compared with 8 % O2 (Fig. 3A, b
and e). Apoptosis was quantified using the object count-
ing algorithm in which the number of fluorescent ob-
jects was indicated with red x’s in Fig. 3A (c and f).
Quantification analysis showed that hypoxia increased
(~1.6 fold) the apoptosis ratio (presented as activated

caspase 3/7 fluorescent objects count per mm2
divided by percentage of cell confluence at 48 h)
compared with cells cultured under normal oxygen
tension (Fig. 3B).

The Effect of Oxygen Tension on Exosome Release from
Bovine Endometrial Cells (ICAR)
Exosomes were enriched by buoyant density gradient (see
Material and Methods). We fractioned the 100,000 × g
pellet into 12 fractions and the Western blot analysis for
TSG101 and CD63 showed positive protein abundance in
fractions 1.17 and 1.18 g/mL (Fig. 4a). Exosomes were
pooled between densities 1.16 and 1.18 g/mL. Morphology
of exosomes was determined by electron microscopy
(Fig. 4b), exosomes displayed a cup-shaped morphology
with an estimated diameter of 100 nm. Hypoxia did not
alter the size distribution of exosomes compared with nor-
mal oxygen tension (123 ± 2.7 nm versus 127 ± 1.7 nm for
8 % O2 and 1 % O2, respectively) (Fig. 4c). Interestingly,

Fig. 3 The effects of different oxygen tension on activation of apoptotic protein caspase-3 of bovine endometrial stromal cells (ICAR). ICAR
cells were cultured under normoxic (8 % O2) or hypoxic (1 % O2) conditions and the activated caspase-3/7 fluorescence was measured at 48 h.
A Representative phase-contrast images (a and d), fluorescent signal images (b and e) and acquired fluorescent signal using integrated object
counting algorithm with IncuCyte™ (Segmentation; c and f), Scale bar 400 μm. B Increased apoptosis of ICAR cells under hypoxic conditions as
determined by acquired fluorescent signal using integrated object counting algorithm with IncuCyte™ were normalized against cell confluence,
8 % O2 (white bar) and 1 % O2 (black bar). Data are presented as mean ± SE, n = 6. In (B) P < 0.05
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hypoxia increased (~3.6 fold) the number of exosomes
compared with values observed at normal oxygen tension
(Fig. 4d).

Proteomic Analysis of Bovine Endometrial ICAR-Derived
Exosomes
Mass spectrometric analysis identified over 250 exoso-
mal proteins with 113 similar proteins identified as
present in both exosomes of ICAR cultured at 1 % O2

and at 8 % O2 128 proteins identified as unique to exo-
somes of ICAR cultured at 1 % O2; 46 proteins were
identified as unique to exosomes of ICAR cultured at
8 % O2 (Table 1 A-C; Fig. 5a). Data were subjected to
ontology and pathway analysis using PANTHER and
gene ontology algorithms and classified based on bio-
logical process (Fig. 5b) and molecular function (Fig. 5c).
In biological process, the clusters identified from indi-
vidual proteins that are unique to and present only in
exosomes of ICAR cultured at 1 % O2 but not those at
8 % O2 were: growth (0.7 %), locomotion (0.7 %) and
reproduction (1.4 %) (Fig. 5b). In molecular functions,
the proteins related to binding and catalytic activity were
the greatest recognized in both exosomes of ICAR cul-
tured at 1 % O2 and to those of ICAR cultured at 8 %
O2 (Fig. 5c).

Discussion
A successful pregnancy is dependent of having a quality
embryo and a receptive uterus synergizing with a syn-
chronized crosstalk between the endometrium and em-
bryo. Any insults or disturbances to its normal course
can compromise implantation and the ability for the
growing fetus to develop properly in the uterus [26].
The endometrium clearly has important functions in
dairy cow pregnancy and we have now shown that exo-
somal release (30–120 nm) is part of its armamentarium
which has analogous properties to similar tissues of
other mammalian species.
In the present case, we have shown for the first time

the effects of hypoxia on the biological activities of
endometrial ICAR cells, including actions on the release
and protein content of exosomes. Although it remains to
be determined whether exosomes released from ICAR
cells at different oxygen tensions also serve different
functional goals, our data underscore that the content of
exosomes may reflect the physiological state of the cells.
Our non-exosomal characterization of the ICAR cells

indicated that the migration and proliferative capacity of
ICAR cells decreased, while activation of apoptotic
caspase-3 was enhanced at 1 % O2 (hypoxia), compared
with an oxygen tension that was close to the bovine

Fig. 4 Characterization of exosomes release from 8 % O2 and 1 % O2 ICAR cell-conditioned media. Exosomes were characterized after enrichment
from the 100,000 x g pellet by buoyant density centrifugation (see Methods). a Representative Western blot for exosome markers: TSG101 and
CD63. b Representative electron micrograph exosome fractions, Scale bar 100 nm. c Representative Nanosight measurement of
particle-size distribution exosomes from 8 % O2 and 1 % O2 cell-conditioned media after buoyant density gradient ultracentrifugation.
(8 % normoxic condition mean size (127 ± 1.7 nm) (○), 1 % hypoxic condition mean size (123 ± 2.7 nm) (●) over a period of 48 h).
d Exosomes concentration presented as vesicle per million cells per 48 h was higher (p < 0.05) at hypoxia (1 % O2) compared to normal
oxygen tension (8 % O2); 8 % O2 (white bar) and 1 % O2 (black bar). Data are presented as mean ± SE, n = 3
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Table 1 List of the common proteins identified in exosomes of ICAR cultured at 1 % O2 and at 8 % O2

A. List of 113 common proteins identified in exosomes of ICAR cultured at 1 % O2 and at 8 % O2

Protein ID Name Gene Name Biological Process (Total # Gene 69; Total
#Function 146)

Molecular function (Total #
Gene 69; Total #Function 81)

A1L523_BOVIN Copine II (Fragment) CPNE2

A3KN51_BOVIN TSG101 protein TSG101 Metabolic process Catalytic activity

A5D7L1_BOVIN CLEC11A protein CLEC11A Cellular process/Developmental process Binding/Structural molecule
activity

A5D9D2_BOVIN Complement component 4
binding protein, alpha chain

C4BPA

A5PJ69_BOVIN SERPINA10 protein SERPINA10 Biological regulation/Metabolic process Catalytic activity/Enzyme
regulator activity

A5PJE3_BOVIN Fibrinogen alpha chain FGA

A5PK77_BOVIN SERPINA11 protein SERPINA11 Biological regulation/Metabolic process Catalytic activity/Enzyme
regulator activity

A6QLB7_BOVIN Adenylyl cyclase-associated
protein

CAP1

A6QLL8_BOVIN Fructose-bisphosphate
aldolase

ALDOA

A6QNZ7_BOVIN Keratin 10 (Epidermolytic
hyperkeratosis; keratosis
palmaris et plantaris)

KRT10

A6QPP2_BOVIN SERPIND1 protein SERPIND1 Biological regulation/Metabolic process Catalytic activity/Enzyme
regulator activity

A6QPR1_BOVIN PCYOX1 protein PCYOX1

LG3BP_BOVIN Galectin-3-binding protein LGALS3BP Apoptotic process/Biological adhesion/
Biological regulation/Cellular process/
Developmental process/Immune system
process/localization/Metabolic process

Catalytic activity/Receptor
activity

A7MB82_BOVIN C1QTNF3 protein C1QTNF3

A7YWB6_BOVIN LOC539596 protein LOC539596

B0JYM4_BOVIN Tetraspanin CD63

B0JYN6_BOVIN Alpha-2-HS-glycoprotein AHSG

B0JYQ0_BOVIN ALB protein ALB

B5B3R8_BOVIN Alpha S1 casein CSN1S1

E1BDG5_BOVIN Protein Wnt WNT5A Biological regulation/Cellular process/
Developmental process/Multicellular
organismal process/Response to stimulus

Binding

CBG_BOVIN Corticosteroid-binding
globulin

SERPINA6 Biological regulation/Metabolic process Catalytic activity/Enzyme
regulator activity

F1MAV0_BOVIN Fibrinogen beta chain FGB

F1MB08_BOVIN Alpha-enolase ENO1

F1MC11_BOVIN Keratin, type I cytoskeletal 14 KRT14

F1MM32_BOVIN Sulfhydryl oxidase QSOX1 Catalytic activity

F1MMK9_BOVIN Protein AMBP AMBP

F1MMP5_BOVIN Inter-alpha-trypsin inhibitor
heavy chain H1

ITIH1

ITA3_BOVIN Integrin alpha-3 ITGA3

F1MNW4_BOVIN Inter-alpha-trypsin inhibitor
heavy chain H2

ITIH2

F1MSZ6_BOVIN Antithrombin-III SERPINC1
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Table 1 List of the common proteins identified in exosomes of ICAR cultured at 1 % O2 and at 8 % O2 (Continued)

F1MTV5_BOVIN Amino acid transporter SLC1A5

F1MW44_BOVIN Coagulation factor XIII A chain F13A1

F1MXJ5_BOVIN IST1 homolog IST1

F1MXX6_BOVIN Lactadherin MFGE8

F1MY85_BOVIN Complement C5a
anaphylatoxin

C5

F1N045_BOVIN Complement component C7 C7

HTRA1_BOVIN Serine protease HTRA1 HTRA1 Cellular process/Metabolic process Catalytic activity

F1N1I6_BOVIN Gelsolin GSN

F6QVC9_BOVIN Annexin ANXA5

G3X6N3_BOVIN Serotransferrin TF

G5E5A9_BOVIN Fibronectin FN1

G5E5V0_BOVIN Carboxypeptidase N catalytic
chain

CPN1

G8JKX6_BOVIN Tetraspanin (Fragment) CD9

I7CT57_BOVIN Vitamin D binding protein

M0QVZ6_BOVIN Keratin, type II cytoskeletal 5 KRT5

THRB_BOVIN Prothrombin F2 Immune system process/Metabolic
process/Response to stimulus

Catalytic activity

PROC_BOVIN Vitamin K-dependent protein
C (Fragment)

PROC Response to stimulus Binding

KNG2_BOVIN Kininogen-2 KNG2

THYG_BOVIN Thyroglobulin TG Metabolic process Catalytic activity

HBA_BOVIN Hemoglobin subunit alpha HBA localization/Multicellular organismal
process

HBBF_BOVIN Hemoglobin fetal subunit beta localization/Multicellular organismal
process

ALBU_BOVIN Serum albumin ALB localization

ANXA2_BOVIN Annexin A2 ANXA2 Developmental process/Metabolic
process

ASSY_BOVIN Argininosuccinate synthase ASS1 Cellular process/Metabolic process Catalytic activity

APOH_BOVIN Beta-2-glycoprotein 1 APOH Cellular process/Immune system
process/localization/Metabolic process/
Response to stimulus

Catalytic activity/Receptor
activity/Transporter activity

CLUS_BOVIN Clusterin CLU

HSP7C_BOVIN Heat shock cognate 71 kDa
protein

HSPA8 Cellular component organization or
biogenesis/Immune system process/
Metabolic process/Response to stimulus

ANXA7_BOVIN Annexin A7 ANXA7 Metabolic process

ANX11_BOVIN Annexin A11 ANXA11 Metabolic process

A2AP_BOVIN Alpha-2-antiplasmin SERPINF2 Biological regulation/Metabolic process Catalytic activity/Enzyme
regulator activity

A1AT_BOVIN Alpha-1-antiproteinase SERPINA1 Biological regulation/Metabolic process Catalytic activity/Enzyme
regulator activity

GDIB_BOVIN Rab GDP dissociation inhibitor
beta

GDI2 Biological regulation/Cellular process/
localization/Metabolic process/
Multicellular organismal process

Binding/Catalytic activity/
Enzyme regulator activity

F12AI_BOVIN Factor XIIa inhibitor

ITB1_BOVIN Integrin beta-1 ITGB1 Biological adhesion/Cellular process/
Response to stimulus

Receptor activity
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Table 1 List of the common proteins identified in exosomes of ICAR cultured at 1 % O2 and at 8 % O2 (Continued)

ITIH3_BOVIN Inter-alpha-trypsin inhibitor
heavy chain H3

ITIH3 Biological regulation/Metabolic process Binding/Catalytic activity/
Enzyme regulator activity

ACTB_BOVIN Actin, cytoplasmic 1 ACTB Cellular component organization or
biogenesis/Cellular process/
Developmental process/localization

Structural molecule activity

ANXA6_BOVIN Annexin A6 ANXA6 Metabolic process

CFAB_BOVIN Complement factor B CFB Biological adhesion/Cellular process/
Immune system process/localization/
Metabolic process/Response to stimulus

Catalytic activity/Receptor
activity/Transporter activity

TBA1B_BOVIN Tubulin alpha-1B chain Cellular process/Developmental process/
localization

Structural molecule activity

LUM_BOVIN Lumican LUM Biological adhesion/Biological
regulation/Cellular process/
Developmental process/Immune system
process/Metabolic process/Multicellular
organismal process

Receptor activity

UPAR_BOVIN Urokinase plasminogen
activator surface receptor

PLAUR

5NTD_BOVIN 5’-nucleotidase NT5E Metabolic process Catalytic activity

PGM1_BOVIN Phosphoglucomutase-1 PGM1 Cellular process/Metabolic process Catalytic activity

Q09TE3_BOVIN Insulin-like growth factor
binding protein acid labile
subunit

Q17R18_BOVIN Adenosine kinase ADK

FA5_BOVIN Coagulation factor V F5 Biological adhesion/Biological
regulation/Cellular process/
Developmental process/Immune system
process/localization/Metabolic process/
Multicellular organismal process/
Response to stimulus

Binding/Catalytic activity/
Enzyme regulator activity/
Receptor activity/Transporter
activity

Q2KIF2_BOVIN Leucine-rich alpha-2-
glycoprotein 1

LRG1 Cellular process/Multicellular organismal
process

Receptor activity

CBPB2_BOVIN Carboxypeptidase B2 CPB2 Metabolic process Catalytic activity

Q2KJ47_BOVIN EH-domain containing 2 EHD2 Biological regulation/Cellular process/
localization/Metabolic process/
Multicellular organismal process

Binding/Catalytic activity/
Enzyme regulator activity

TBB5_BOVIN Tubulin beta-5 chain TUBB5 Cellular process/Developmental process/
localization

Structural molecule activity

A1BG_BOVIN Alpha-1B-glycoprotein A1BG Cellular process/Immune system
process/Response to stimulus

Binding/Receptor activity

HPT_BOVIN Haptoglobin HP Biological regulation/Immune system
process/localization/Metabolic process/
Multicellular organismal process/
Reproduction/Response to stimulus

Binding/Catalytic activity/
Enzyme regulator activity/
Receptor activity

CO3_BOVIN Complement C3 C3 Biological regulation/Cellular process/
Metabolic process/Response to stimulus

Binding/Catalytic activity/
Enzyme regulator activity

Q3MHH8_BOVIN Alpha-amylase AMY2A

SAHH_BOVIN Adenosylhomocysteinase AHCY Cellular process/Metabolic process Catalytic activity

CO9_BOVIN Complement component C9 C9 Cellular process/localization/Metabolic
process/Response to stimulus

Catalytic activity/Receptor
activity/Transporter activity

Q3MHW2_BOVIN F10 protein (Fragment) F10

Q3MHZ0_BOVIN FLOT1 protein (Fragment) FLOT1

Q3SYR0_BOVIN Serpin peptidase inhibitor, clade
A (Alpha-1 antiproteinase,
antitrypsin), member 7

SERPINA7
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Table 1 List of the common proteins identified in exosomes of ICAR cultured at 1 % O2 and at 8 % O2 (Continued)

FETA_BOVIN Alpha-fetoprotein AFP Developmental process/localization

Q3SZH5_BOVIN Angiotensinogen AGT

HEMO_BOVIN Hemopexin HPX localization

Q3SZZ9_BOVIN FGG protein FGG

PGK1_BOVIN Phosphoglycerate kinase 1 PGK1 Metabolic process Catalytic activity

Q3T101_BOVIN IGL@ protein IGL@

G6PI_BOVIN Glucose-6-phosphate
isomerase

GPI Metabolic process Catalytic activity

Q3ZBX0_BOVIN Basigin BSG

Q3ZC87_BOVIN Pyruvate kinase (Fragment) PKM2

Q3ZCI4_BOVIN 6-phosphogluconate
dehydrogenase,
decarboxylating

PGD Metabolic process Catalytic activity

FETUB_BOVIN Fetuin-B FETUB

EHD1_BOVIN EH domain-containing protein 1 EHD1 Biological regulation/Cellular process/
localization/Metabolic process/
Multicellular organismal process

Binding/Catalytic activity/
Enzyme regulator activity

HPPD_BOVIN 4-hydroxyphenylpyruvate
dioxygenase

HPD Metabolic process Catalytic activity

Q5EA67_BOVIN Inter-alpha (Globulin) inhibitor
H4 (Plasma Kallikrein-sensitive
glycoprotein)

ITIH4

Q5GN72_BOVIN Alpha-1-acid glycoprotein agp

BHMT1_BOVIN Betaine–homocysteine S-
methyltransferase 1

BHMT Cellular process/Metabolic process Catalytic activity

Q5J801_BOVIN Endopin 2B

Q6T182_BOVIN Sex hormone-binding globulin
(Fragment)

SHBG

A2MG_BOVIN Alpha-2-macroglobulin A2M Biological regulation/Cellular process/
Immune system process/Metabolic
process/Response to stimulus

Binding/Catalytic activity/
Enzyme regulator activity

PEDF_BOVIN Pigment epithelium-derived
factor

SERPINF1 Biological regulation/Metabolic process Catalytic activity/Enzyme
regulator activity

CHIA_BOVIN Acidic mammalian chitinase CHIA Immune system process/Metabolic
process/Response to stimulus

Binding/Catalytic activity

IPSP_BOVIN Plasma serine protease
inhibitor

SERPINA5 Biological regulation/Metabolic process Catalytic activity/Enzyme
regulator activity

SPA31_BOVIN Serpin A3-1 SERPINA3-1 Biological regulation/Metabolic process Catalytic activity/Enzyme
regulator activity

V6F9A2_BOVIN Apolipoprotein A-I
preproprotein

APOA1

B. List of 128 unique proteins identified in exosomes of ICAR cultured at 1 % O2

Protein ID Name Gene Name Biological Process (Total # Gene 22; Total
#Function 49)

Molecular function (Total #
Gene 22; Total #Function 28)

G3X6T9_BOVIN Flotillin-2 (Fragment) FLOT2

TSP1_BOVIN Thrombospondin-1 THBS1

F1N2L9_BOVIN 4-trimethylaminobutyraldehyde
dehydrogenase

ALDH9A1

E1B9F6_BOVIN Elongation factor 1-alpha EEF1A1
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Table 1 List of the common proteins identified in exosomes of ICAR cultured at 1 % O2 and at 8 % O2 (Continued)

APOE_BOVIN Apolipoprotein E APOE Apoptotic process/Biological regulation/
Cellular component organization or
biogenesis/Cellular process/
Developmental process/Growth/
localization/Metabolic process/
Multicellular organismal process/
Response to stimulus

Binding/Catalytic activity/
Enzyme regulator activity/
Transporter activity

G1K1R6_BOVIN Galactokinase GALK1

G3P_BOVIN Glyceraldehyde-3-phosphate
dehydrogenase

GAPDH Metabolic process Catalytic activity

Q0P5B0_BOVIN Arrestin domain containing 1 ARRDC1

RL40_BOVIN Ubiquitin-60S ribosomal
protein L40

UBA52 Metabolic process Binding/Structural molecule
activity

A5D9B6_BOVIN Syntenin SDCBP

Q8HZY1_BOVIN Serine protease inhibitor clade
E member 2

SERPINE2

Q5E962_BOVIN Aldo-keto reductase family 1,
member B1

AKR1B1

A7MBH9_BOVIN GNAI2 protein GNAI2 Biological regulation/Cellular process/
Metabolic process/Response to stimulus

Binding/Catalytic activity

GBB2_BOVIN Guanine nucleotide-binding
protein G(I)/G(S)/G(T) subunit
beta-2

GNB2 Cellular process/Metabolic process/
Multicellular organismal process

Binding/Catalytic activity

I6YIV1_BOVIN Annexin

F16P1_BOVIN Fructose-1,6-bisphosphatase 1 FBP1 Metabolic process

F1N3Q7_BOVIN Apolipoprotein A-IV APOA4

AK1A1_BOVIN Alcohol dehydrogenase
[NADP(+)]

AKR1A1 localization/Metabolic process Catalytic activity/Transporter
activity

A5D784_BOVIN CPNE8 protein CPNE8 localization

HS90A_BOVIN Heat shock protein HSP 90-
alpha

HSP90AA1 Immune system process/
Metabolic process/Response to stimulus

Q1JPA2_BOVIN Eukaryotic translation
elongation factor 1 gamma
(Fragment)

EEF1G

SERA_BOVIN D-3-phosphoglycerate
dehydrogenase

PHGDH Metabolic process Catalytic activity

Q3T085_BOVIN OGN protein OGN

A8DBT6_BOVIN Monocyte differentiation
antigen CD14

CD14

A5PK73_BOVIN Fructose-bisphosphate
aldolase

ALDOB

G5E5U7_BOVIN S-adenosylmethionine
synthase

MAT1A

F1N2W0_BOVIN Prostaglandin reductase 1 PTGR1

IF4A1_BOVIN Eukaryotic initiation factor 4A-I EIF4A1 Biological regulation/Metabolic process Binding/Catalytic activity/
Translation regulator activity

Q05B55_BOVIN IGK protein IGK

F1N1D4_BOVIN Protein tweety homolog TTYH3 localization Transporter activity

A4FV94_BOVIN KRT6A protein KRT6A

RGN_BOVIN Regucalcin RGN Cellular process/localization/Metabolic
process

Binding/Catalytic activity

1433E_BOVIN 14-3-3 protein epsilon YWHAE Cellular process
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Table 1 List of the common proteins identified in exosomes of ICAR cultured at 1 % O2 and at 8 % O2 (Continued)

Q2HJB6_BOVIN Procollagen C-endopeptidase
enhancer

PCOLCE Biological adhesion/Biological
regulation/Cellular process/
Developmental process/Immune system
process/localization/Metabolic process/
Multicellular organismal process/
Response to stimulus

Binding/Catalytic activity/
Enzyme regulator activity/
Receptor activity/Transporter
activity

B8YB76_BOVIN Homogentisate 1,2-
dioxygenase

HGD

DHSO_BOVIN Sorbitol dehydrogenase SORD Metabolic process Catalytic activity

HS71A_BOVIN Heat shock 70 kDa protein 1A HSPA1A Cellular component organization or
biogenesis/Immune system process/
Metabolic process/Response to stimulus

Q3ZBQ9_BOVIN APOM protein APOM

PYGL_BOVIN Glycogen phosphorylase, liver
form

PYGL Metabolic process Catalytic activity

A6QP30_BOVIN CPN2 protein CPN2 Cellular process/Multicellular organismal
process

Receptor activity

ARF3_BOVIN ADP-ribosylation factor 3 ARF3 Cellular process/localization/Metabolic
process

Binding/Catalytic activity

G3MYH4_BOVIN Tetraspanin (Fragment) CD81

ACTC_BOVIN Actin, alpha cardiac muscle 1 ACTC1 Cellular component organization or
biogenesis/Cellular process/
Developmental process/localization

Structural molecule activity

GALM_BOVIN Aldose 1-epimerase GALM Metabolic process Catalytic activity

TSN6_BOVIN Tetraspanin-6 TSPAN6 Biological adhesion/Cellular process/
Immune system process/Multicellular
organismal process/Reproduction/
Response to stimulus

Binding/Receptor activity

Q3ZC83_BOVIN Solute carrier family 29
(Nucleoside transporters),
member 1

SLC29A1 localization/Metabolic process Transporter activity

B4GA1_BOVIN Beta-1,4-glucuronyltransferase 1 B4GAT1 Metabolic process Catalytic activity

ADA10_BOVIN Disintegrin and
metalloproteinase domain-
containing protein 10

ADAM10 Apoptotic process/Developmental
process/Reproduction

A6QR28_BOVIN Phosphoserine
aminotransferase

PSAT1 Metabolic process Catalytic activity

Q1JPB6_BOVIN Acetyl-Coenzyme A
acetyltransferase 2

ACAT2

DDBX_BOVIN Dihydrodiol dehydrogenase 3 localization/Metabolic process Catalytic activity/Transporter
activity

A2VE11_BOVIN IGSF8 protein IGSF8

F1MS32_BOVIN Apolipoprotein D APOD

A6QP64_BOVIN VPS37B protein (Fragment) VPS37B

Q2KIW4_BOVIN Lecithin-cholesterol
acyltransferase

LCAT Metabolic process Catalytic activity

GBB1_BOVIN Guanine nucleotide-binding
protein G(I)/G(S)/G(T) subunit
beta-1

GNB1 Cellular process/Metabolic process Binding/Catalytic activity

GNA11_BOVIN Guanine nucleotide-binding
protein subunit alpha-11

GNA11 Biological regulation/Cellular process/
Metabolic process/Response to stimulus

Catalytic activity

Q17QK4_BOVIN Epoxide hydrolase 2,
cytoplasmic

EPHX2
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Table 1 List of the common proteins identified in exosomes of ICAR cultured at 1 % O2 and at 8 % O2 (Continued)

K2C7_BOVIN Keratin, type II cytoskeletal 7 KRT7 Cellular component organization or
biogenesis/Cellular process/
Developmental process

Structural molecule activity

CLIC1_BOVIN Chloride intracellular channel
protein 1

CLIC1 Biological regulation/Cellular process/
Metabolic process/Response to stimulus

Binding/Catalytic activity/
Structural molecule activity/
Translation regulator activity

Q08DW4_BOVIN Mannan-binding lectin serine
peptidase 1 (C4/C2 activating
component of Ra-reactive factor)

MASP1

B4GT1_BOVIN Beta-1,4-galactosyltransferase 1 B4GALT1

A5D7E6_BOVIN Tetraspanin CD82 Cellular process/Response to stimulus Binding/Receptor activity

A5D973_BOVIN Alpha isoform of regulatory
subunit A, protein
phosphatase 2

PPP2R1A

E1B726_BOVIN Plasminogen PLG

G5E6I9_BOVIN Histone H2B LOC101904777 Cellular component organization or
biogenesis/Cellular process/Metabolic
process

Binding

ADIPO_BOVIN Adiponectin ADIPOQ

F1MBC5_BOVIN Coagulation factor IX F9

A2VDL2_BOVIN Solute carrier family 2
(Facilitated glucose
transporter), member 3

SLC2A3

VPS4B_BOVIN Vacuolar protein sorting-
associated protein 4B

VPS4B

G3X8B1_BOVIN Peptidyl-prolyl cis-trans
isomerase

LOC613401

K4JB97_BOVIN Alpha-2-macroglobulin variant 4 A2M

ACTG_BOVIN Actin, cytoplasmic 2 ACTG1 Cellular component organization or
biogenesis/Cellular process/localization

Structural molecule activity

Q1JPG7_BOVIN Pyruvate kinase PKLR

GTR1_BOVIN Solute carrier family 2,
facilitated glucose transporter
member 1

SLC2A1

F1N342_BOVIN Protein tweety homolog TTYH2 localization Transporter activity

ADHX_BOVIN Alcohol dehydrogenase class-3 ADH5 Metabolic process Catalytic activity

URP2_BOVIN Fermitin family homolog 3 FERMT3

E1B7N2_BOVIN Histone H4 HIST1H4I Cellular component organization or
biogenesis/Cellular process/Metabolic
process

Binding

EF2_BOVIN Elongation factor 2 EEF2 Biological regulation/Metabolic process Binding/Translation regulator
activity

KLKB1_BOVIN Plasma kallikrein KLKB1 Biological regulation/localization/
Metabolic process/Response to stimulus

Binding/Catalytic activity/
Enzyme regulator activity/
Receptor activity

ESTD_BOVIN S-formylglutathione hydrolase ESD Metabolic process Catalytic activity

SEPR_BOVIN Prolyl endopeptidase FAP FAP Cellular process/Immune system
process/localization/Metabolic process/
Multicellular organismal process /
Response to stimulus

Binding/Catalytic activity

Q5EA54_BOVIN Solute carrier family 3
(Activators of dibasic and
neutral amino acid transport),
member 2

SLC3A2
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Table 1 List of the common proteins identified in exosomes of ICAR cultured at 1 % O2 and at 8 % O2 (Continued)

Q1JPD9_BOVIN G protein-coupled receptor,
family C, group 5, member B

GPRC5B Cellular process Receptor activity

F1MS05_BOVIN Aconitate hydratase ACO1

F1MJ12_BOVIN Complement C1s
subcomponent

C1S

CNDP2_BOVIN Cytosolic non-specific
dipeptidase

CNDP2 Metabolic process Catalytic activity

Q2TBQ1_BOVIN Coagulation factor XIII, B
polypeptide

F13B Biological adhesion/Cellular process/
Immune system process/localization/
Metabolic process/Response to stimulus

Catalytic activity/Receptor
activity/Transporter activity

Q1JP72_BOVIN Colony stimulating factor 1
receptor

CSF1R

Q0VD03_BOVIN CD44 antigen CD44

G3X6Y4_BOVIN Osteomodulin OMD

GAMT_BOVIN Guanidinoacetate N-
methyltransferase

GAMT

VWA1_BOVIN von Willebrand factor A
domain-containing protein 1

VWA1

SERC3_BOVIN Serine incorporator 3 SERINC3

Q862H8_BOVIN Similar to 40S ribosomal
protein SA (P40) (Fragment)

A8E4P3_BOVIN STOM protein STOM

F1MHP6_BOVIN Adenylosuccinate lyase ADSL

E1BMG9_BOVIN 10-formyltetrahydrofolate
dehydrogenase

ALDH1L1 Metabolic process Catalytic activity

Q705V4_BOVIN Kappa-casein (Fragment) csn3

G3X6Q8_BOVIN Pentraxin-related protein PTX3 PTX3

K7QEL2_BOVIN MHC class I antigen BoLA

TCPQ_BOVIN T-complex protein 1 subunit
theta

CCT8 Cellular component organization or
biogenesis / Metabolic process

F1N6Z0_BOVIN 26S proteasome non-ATPase
regulatory subunit 5

PSMD5

ARLY_BOVIN Argininosuccinate lyase ASL Metabolic process Catalytic activity

E1BNG2_BOVIN alpha-1,2-Mannosidase MAN1A1 Metabolic process

F1MU79_BOVIN Peptidyl-prolyl cis-trans isomer-
ase FKBP4

FKBP4

DPYL2_BOVIN Dihydropyrimidinase-related
protein 2

DPYSL2 Metabolic process Catalytic activity

PRS23_BOVIN Serine protease 23 PRSS23

B0JYN1_BOVIN Cathepsin L2 CTSL2

A4FV99_BOVIN FCNB protein FCNB

A7YW37_BOVIN CD58 protein (Fragment) CD58 Immune system process/
Response to stimulus

Binding

F1MTP5_BOVIN WD repeat-containing protein 1 WDR1

A7E3D0_BOVIN CCDC45 protein (Fragment) CCDC45

Q0VCK1_BOVIN Myeloid-associated
differentiation marker

MYADM

A1L570_BOVIN Ephrin-B1 EFNB1 Biological regulation/Cellular component
organization or biogenesis/Cellular
process/Developmental process/
locomotion/Multicellular organismal
process/Response to stimulus

Binding
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Table 1 List of the common proteins identified in exosomes of ICAR cultured at 1 % O2 and at 8 % O2 (Continued)

F1N049_BOVIN Actin-related protein 3
(Fragment)

ACTR3

PAI1_BOVIN Plasminogen activator inhibitor 1 SERPINE1 Biological regulation/Metabolic process Catalytic activity/Enzyme
regulator activity

Q3ZC30_BOVIN Sulfotransferase SULT1E1

COL11_BOVIN Collectin-11 COLEC11 Biological regulation/Immune system
process/Multicellular organismal process

MPZL1_BOVIN Myelin protein zero-like
protein 1

MPZL1 Cellular process/localization Transporter activity

G5E595_BOVIN Lys-63-specific deubiquitinase
BRCC36

BRCC3

O18977_BOVIN Tenascin-X TN-X

A6H7D3_BOVIN KRT18 protein (Fragment) KRT18

J9ZXG5_BOVIN Integrin alpha V subunit

B0JYN3_BOVIN L-lactate dehydrogenase LDHB

MB211_BOVIN Protein mab-21-like 1 MAB21L1

E1B7R4_BOVIN Eukaryotic translation initiation
factor 3 subunit A

EIF3A Biological regulation/Metabolic process Binding/Translation regulator
activity

C. List of 46 unique proteins identified in exosomes of ICAR cultured at 8 % O2

Protein ID Name Gene Name Biological Process (Total # Gene 22; Total
#Function 49)

Molecular function (Total #
Gene 22; Total #Function 28)

F1MMD7_BOVIN Inter-alpha-trypsin inhibitor
heavy chain H4

ITIH4

F1N3A1_BOVIN Thrombospondin-1 THBS1

PLMN_BOVIN Plasminogen PLG Biological regulation/localization/
Metabolic process/Response to stimulus

Binding/Catalytic activity/
Enzyme regulator activity/
Receptor activity

F1MYN5_BOVIN Fibulin-1 FBLN1 Cellular process/Developmental process Binding

F1MNV5_BOVIN Kininogen-1 KNG1

EF1A1_BOVIN Elongation factor 1-alpha 1 EEF1A1 Biological regulation/Metabolic process Binding/Catalytic activity/
Translation regulator activity

ITAV_BOVIN Integrin alpha-V ITGAV Biological adhesion

F1MK44_BOVIN Integrin alpha-5 ITGA5

TTHY_BOVIN Transthyretin TTR localization Transporter activity

F1MC45_BOVIN Complement factor H
(Fragment)

CFH

J9QD97_BOVIN Periostin variant 9

ACTS_BOVIN Actin, alpha skeletal muscle ACTA1 Cellular component organization or
biogenesis/Cellular process/
Developmental process/localization

Structural molecule activity

E1B9K1_BOVIN Polyubiquitin-C UBC

A7YWR0_BOVIN Apolipoprotein E APOE

FA9_BOVIN Coagulation factor IX F9 Apoptotic process/Biological
regulation/Developmental process/
Immune system process/ localization/
Metabolic process/Multicellular
organismal process/Response to
stimulus

Binding/Catalytic activity/
Enzyme regulator activity/
Receptor activity

COMP_BOVIN Cartilage oligomeric matrix
protein

COMP
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endometrial physiological oxygen levels (8 % O2; [38]).
Moreover, the effect on migration was greater when
exposed at 1 % O2 [39]. Interestingly, no relationship

between oxygen tension and cell proliferation and apop-
tosis was observed in this previous study. Differences in
cell types may explain this observation. Ito et al.

Table 1 List of the common proteins identified in exosomes of ICAR cultured at 1 % O2 and at 8 % O2 (Continued)

K2C80_BOVIN Keratin, type II cytoskeletal 80 KRT80 Cellular component organization or
biogenesis/Cellular process/
Developmental process

Structural molecule activity

TRFE_BOVIN Serotransferrin TF localization/Metabolic process Catalytic activity

K4JDR8_BOVIN Alpha-2-macroglobulin variant 5 A2M

Q32P72_BOVIN CP protein (Fragment) CP

J9ZW47_BOVIN Integrin beta

F1MM86_BOVIN Complement component C6 C6

E1BI02_BOVIN Fibromodulin FMOD

VNN1_BOVIN Pantetheinase VNN1 Biological adhesion/Cellular process/
Metabolic process

Catalytic activity

G3X807_BOVIN Histone H4 (Fragment) Cellular component organization or
biogenesis/Cellular process/Metabolic
process

Binding

MOT1_BOVIN Monocarboxylate transporter 1 SLC16A1 Cellular process/localization Transporter activity

TF_BOVIN Tissue factor F3 Biological regulation/Cellular process/
Response to stimulus

Binding/Receptor activity

HS71L_BOVIN Heat shock 70 kDa protein
1-like

HSPA1L Metabolic process/Response to stimulus

Q3ZCA7_BOVIN Guanine nucleotide binding
protein (G protein), alpha
inhibiting activity polypeptide 3

GNAI3 Biological regulation/Cellular process/
Metabolic process/Response to stimulus

Binding/Catalytic activity

IDHC_BOVIN Isocitrate dehydrogenase
[NADP] cytoplasmic

IDH1

Q1PBC8_BOVIN CD14 (Fragment)

F1MJJ8_BOVIN Radixin (Fragment) RDX

IF4A2_BOVIN Eukaryotic initiation factor 4A-II EIF4A2 Biological regulation/Metabolic process Binding/Catalytic activity/
Translation regulator activity

C1QB_BOVIN Complement C1q
subcomponent subunit B

C1QB

A6QPD4_BOVIN LOC790886 protein LOC790886

CTL2_BOVIN Choline transporter-like protein 2 SLC44A2 localization Transporter activity

HPCL1_BOVIN Hippocalcin-like protein 1 HPCAL1 Cellular process/Multicellularorganismal
process

Q24K07_BOVIN Vacuolar protein sorting 11
homolog (S. cerevisiae)

VPS11

Q5H9M6_BOVIN Dynein heavy chain (Fragment) Bv2

Q864S1_BOVIN Cathepsin C (Fragment)

Q4ZJS0_BOVIN MHC class I antigen
(Fragment)

BoLA-N

Q58CZ4_BOVIN Flotillin 2 FLOT2

MBL2_BOVIN Mannose-binding protein C MBL Binding

TM214_BOVIN Transmembrane protein 214 TMEM214

Q8MIR1_BOVIN Nicotinic acetylcholine receptor
beta 2 subunit (Fragment)

CHRNB2

Q5E9W1_BOVIN CDC45-like CDC45L

Mass spectrometric (with a set FDR of 5 %) identification of proteins was present in exosomes generated by ICAR cultured at 1 % O2 and at 8 % O2. Data were
subjected to ontology and pathway analysis using PANTHER and gene ontology algorithms and classified based on biological process and molecular function
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described the rate of proliferation of human mesenchy-
mal stem cell (MSCs) was observed to be highest in 5 %
O2 and the lowest in < 0.1 % O2 conditions [40]. The
MSCs at severely induced hypoxic conditions (<0.1 %
O2), showed a decrease in proliferative ability, but were
able to maintain viability for at least 48 h through in-
creased glucose availability, to facilitate the generation
of energy. Similar results were obtained from an air-
way smooth muscle study [41]. Hence, our cells have
relatively normal proliferation responses to decreased
oxygen tension.
Our study suggests that exosomes can serve as a

vector for signaling molecules that harbor a variety of
bioactive molecules including proteins at the conceptus-
endometrial interface and that has the potential to
modulate the functions of targeted cells during early
pregnancy. Endometrial exosome release may also be
modulated during an insult such as infection [42, 43].

In the current study we utilized hypoxia (i.e. 1 % O2)
as a known modulator of exosome release as docu-
mented by alteration to both the number of exosomes
released as well as differences in the exosomal con-
tent (cargo) [24, 27, 29].
In our study, endometrial cells exposed to 1 % O2-

released ~3.6 more exosomes relative to the 8 % O2

culture treatment, suggesting that hypoxia modulates
cell function, including the release of exosomes. Hyp-
oxia has already been reported to be a stimulus to
increase secretion of exosomes by several groups
[44–46]. It is also suggested that the protein and
RNA content of exosomes can reflect the physio-
logical state of the cell as well as when the cells are
in stress condition [47, 48]. However, the initial
stress insult that contributed to an alteration of the
exosomal content in relation to the functional effects
of the subsequent cargo transfer and their role in

Fig. 5 Proteomic analysis of bovine endometrial ICAR-derived exosomes. Mass spectrometric analyses of ICAR cell-derived exosome proteins. a
Representative Venn diagram of common and unique proteins identified by 5600 Triple TOF MS (ABSciex) from exosomes released by ICAR cells
at 48 h at both 8 % O2 and 1 % O2. b The gene ontology classification of ICAR cell-derived exosome proteins, on the basis of their involvement
in biological process, identified clusters that are unique to and present only in exosomes of ICAR cultured at 1 % O2 but not those at 8 % O2.
These biological processes were: growth (0.7 %), locomotion (0.7 %) and reproduction (1.4 %). c Molecular function (using PANTHER and Gene
Ontology algoritnms) of exosome proteins were mostly related to binding and catalytic activity in both ICAR cultured at 1 % O2 and at 8 % O2
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cell-to-cell communication remains unclear. It is pos-
sible that exposure to other stressors such as adverse
environmental hazards [49–51] will also increase se-
cretion of exosomes and alter composition of the
cargo.
The protein content of exosomes from ICAR cells

cultured under the 1 % O2 contained unique proteins
compared to the contents of the ICAR exosomes cul-
tured at 8 % O2. Our proteomic analyses detected the
presence of tetraspanin-6 (TSPAN6), disintegrin and
metalloproteinase domain-containing protein 10
(ADAM10) that are only unique to exosomes of
ICAR cultured at 1 % O2. These proteins are involved
in the biological processes for reproduction. Interest-
ingly, to evaluate TSPAN6, belonging to the trans-
membrane 4 superfamily that mediate the regulation
of signal transduction events, as well as the
disintegrin-like metalloproteinase ADAM10 which
participates in ectodomain shedding activity could
provide great insights into their functional role and
regulation that is important for reproduction.
Studies using immunohistochemistry of human pla-

cental explants [52] have demonstrated that ADAM10
expression is significantly increased in preeclamptic pla-
centas compared with normal placentas. Up-regulation
of ADAM10 could induce placental release of soluble
vascular endothelial growth factor receptor-1 (sFlt-1)
and this cascade is associated with endothelial dysfunc-
tion, suggesting the significant role of oxidative change
in preeclamptic placentas. ADAM10 is also a shed-
dase [53] that could induce CD46 shedding attributed
to cell apoptotic processes [54], as well as mediate E-
cadherin shedding affecting cellular adhesion and cell
migration [55].
Mass spectrometry detection of pantetheinase

(VNN1) in exosomes was unique to ICAR cultured at
8 % O2. VNN1 is an enzyme that hydrolyses
pantetheine to form pantothenic acid (a precursor of
coenzyme A) and the antioxidant cysteamine [56].
VNN1 could promote tissue inflammation through
peroxisome proliferator-activated receptor gamma as
well as modulate levels of glutathione [57]. It is
proposed that VNN1 have innate immune functions
and might contribute to tissue injury in endometritis
[58, 59]. VNN1 was also reported being involved in
proteolysis and can denature proteins by reducing
disulfides [60], suggesting that it may have a role in
regulating uterine receptivity for implantation and
trophoblast invasion [61].
Mass spectrometry detected kininogen-2 (KNG2) in

exosomes generated by ICAR cells cultured at either 1
or 8 % O2. KNG2 is a precursor protein to high molecu-
lar weight kininogen, low molecular weight kininogen
and bradykinin and the concentration were reported to

fluctuate during ovulation, pregnancy, and parturition
[62]. Studies also showed that the release of vasoactive
bradykinins from high molecular weight kininogen
and low molecular weight kininogen are responsible
for micro-vascular permeability and vascular growth,
which plays an essential role in utero-placental vascu-
lature and angiogenesis, necessary for embryonic and
fetal survival [63].

Conclusion
Our present findings show that ICAR cell function,
release of exosomes and exosomal content can be
altered when subjected to adverse stimuli. These find-
ings should be expanded to include cells of endomet-
rial epithelial origin, interactions between these cells
(i.e. stromal—epithelial crosstalk) and in the presence
of common pathophysiological factors associated with
reduced fertility (e.g. infectious or inflammatory
agents). The identification of unique proteins (by
mass spectrometry) in exosomes of ICAR cultured at
1 % O2 compared to 8 % O2 suggests that the cells
respond and release proteins encapsulated within the
exosomes to signal the environment in which they
live. It is hoped that identification of unique proteins
in exosomes following stimulation by factors affecting
the physiological condition of cows may lead to novel
targets for manipulation to aid fertility. Moreover, in-
vestigations into the release, uptake and content of
exosomes may offer the opportunity to evaluate
maternal-fetal crosstalk.
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